Conceptos básicos de estadística para clínicos
|
|
|
- Julia Farías Villanueva
- hace 10 años
- Vistas:
Transcripción
1 Conceptos básicos de estadística para clínicos Víctor Abraira A Coruña. Noviembre 2008
2 Programa Valor p : qué significa? Aleatorización Pruebas de hipótesis para variables continuas Pruebas de hipótesis para variables categóricas Tiempo hasta un evento V.Abraira 2
3 Valor p V.Abraira 3
4 Qué son? Reducción relativa del riesgo (RRR) Intervalo de confianza (CI) Valor p la probabilidad de encontrar una diferencia en las proporciones de recurrencia de ictus como la que se ha encontrado, o mayor, en la hipótesis, llamada hipótesis nula, de que el tratamiento no tenga efecto. V.Abraira 4
5 Ejemplo: La dama y las tazas de té Supóngase que una dama asegura que es capaz de distinguir entre dos formas de preparar el té Experimento: se preparan 8 tazas, 4 de cada tipo, la dama lo sabe, y se le presentan al azar H 0 : la dama no distingue Resultado: Señala todas correctamente. C 8;4 =70 p=1/70= 0,014 V.Abraira 5
6 Ejemplo: La dama y las tazas de té Si se hubieran preparado 4 tazas; 2 y 2 C 4;2 =6 p=1/6= 0,17 No sería un experimento que aportara suficiente carga contra H 0 aunque acertara todas Notar que el cálculo de p depende del diseño V.Abraira 6
7 Ejemplo: La dama y las tazas de té Si la dama no supiera cuantas tazas se preparan de cada tipo, sólo que hay, o puede haber, de los dos tipos. La variable número de aciertos en H 0 es Bin(n=8,p=0,5) p æö = f(8) = ( 0,5)( 0,5) = 0, 0039 ç çè8 ø V.Abraira 7
8 Críticas El valor p depende sobre todo del tamaño muestral. Ver SEMERGEN 2002; 28:374-5 El formalismo de los contrastes de hipótesis no contempla la información proveniente de otros estudios. El procedimiento garantiza a la larga una frecuencia preestablecida de decisiones correctas, pero no dice nada sobre la verdad o falsedad de cada hipótesis concreta. V.Abraira 8
9 Alternativas Hacer estimaciones con IC Misma base conceptual Feinstein AR. P-values and confidence intervals: two sides of the same unsatisfactory coin. J Clin Epidemiol 1998; 51: Abraira V. Estimación: intervalos de confianza. SEMERGEN 2002; 28: Alternativa Bayesiana Abraira V. Inferencia estadística bayesiana. SEMERGEN 2005; 31: V.Abraira 9
10 Aleatorización Dos conceptos: Muestra aleatoria (afecta a toda la inferencia). Es necesaria para: muestra sea representativa cuantificar incertidumbre muestreo Asignación aleatoria de tratamientos (afecta a los EECC). Necesaria para igualar el pronóstico de los pacientes. V.Abraira 10
11 Muestra aleatoria Aquella en que todos sus elementos tienen la misma probabilidad y cada uno está independientemente de los demás. Cada muestra es independiente de las demás y con la misma probabilidad. En la práctica rara vez se dispone de muestras aleatorias, por la tanto la situación habitual es V.Abraira 11
12 Muestra aleatoria V.Abraira 12
13 Diseño ensayo clínico Tratamiento experimental grupo 1 Resultado Muestra pacientes grupo 2 Resultado Tratamiento control V.Abraira 13
14 Cómo se calcula la p? PROGRESS V.Abraira 14
15 Cómo se calcula la p? Gran variedad de métodos (los llamados tests estadísticos) dependiendo de la hipótesis, del diseño, del tipo de variables, etc. Un amplio grupo son aquellos en que la hipótesis es la asociación entre dos variables: Ambas categóricas Una categórica y otra continuas Tiempo a un evento Ambas continuas V.Abraira 15
16 Dos variables categóricas BMJ 2000;321: Lancet 2001;358: V.Abraira 16
17 Contrastes sobre diferencia de proporciones H 0 : p 1 =p 2 =p 0 El estadístico para el contraste es (si se puede aproximar a la normal) Z = pˆ pˆ1- pˆ2 : æ1 1 ö (1- pˆ ) + ç èn n ø Nor(0, 1) O, equivalentemente, la prueba jicuadrado O la prueba de Fisher si no se puede aproximar a la normal V.Abraira 17
18 Ejemplo Resultados del ensayo del BMJ: Z = 200 participantes en cada grupo; 52 con éxito en el grupo tratado y 18 en el placebo p ˆ = 0 pˆ pˆ pˆ 1 2 æ1 1 ö (1- pˆ ) ç + çèn n ø Z pˆ1= ; pˆ1= ; pˆ0 =?? ,26-0,09 = = 4,474 æ 1 1 ö 0,175 0,825 ç + çè ø p = 0, V.Abraira 18
19 Una categórica y otra continua V.Abraira 19
20 Estadísticos para los contrastes sobre diferencias de medias H 0 : µ 1 =µ 2 Los estadísticos para el contraste son (si las variables son normales) Varianzas conocidas Varianzas desconocidas iguales Z = desiguales V.Abraira ( X - X ) s n s 2 + n 1 2 T = T = S : Nor(0, 1) ( X - X ) p ( X - X ) S n S n n 1 2 n : : t n t n + n
21 En el ejemplo T 2,7-3 = = ,1 + 0,1 2,12 p = 0,017 V.Abraira 21
22 Tiempo al evento V.Abraira 22
23 Por qué distinto? Problemas con la medición: F E D C B A Desconocido en Pérdidas No eventos (evento competitivo) Censuras Frecuencia En general, no normal V.Abraira 23 tiempo en dialisis en meses
24 Cómo se resume? La variable tiempo de espera, usando la información parcial de las censuras, se resume mediante: la función de supervivencia S(t) V.Abraira 24
25 Función de supervivencia Kaplan-Meier survival estimate analysis time S(t) es la probabilidad de que, en un individuo, el evento ocurra en un tiempo igual o mayor que t (si el evento es muerte, sobreviva al menos t). P.e. S(100) es la probabilidad de que un individuo sobreviva 100 ó más meses. V.Abraira 25
26 Puntos críticos El método asume que las pérdidas son al azar (no tienen información). Tiempo de seguimiento. Lo mide: Mediana de seguimiento (más habitual) Mediana de pérdidas V.Abraira 26
27 Estabilidad de la gráfica Las gráficas de K-M deberían incluir algún índice de la precisión de las 1,0,9 estimaciones:,8 Intervalos de confianza,3,2 Tablas de individuos en riesgo Survival propability,7,6,5,4,1 0, II 100 1A I 120 Months I II Eje tiempo hasta el 10% de los individuos Pocock, Clayton, Altman. Lancet 2002: 359: V.Abraira 27
28 A modo de resumen VARIABLE INDEPENDIENTE (X) Categórica Categórica VARIABLE DEPENDIENTE (Y) Cuantitativa Cuantitativa Tiempo al evento (2 categorías) (más de (No Normal) (Normal) 2 categorías) Categórica (2 categorías) Categórica (más de 2 categorías) Comparación 2 proporciones o Chi-cuadrado o Fisher Chi-cuadrado Chi-cuadrado Mann-Whitney Kruskall-Wallis Comparación 2 medias - t de Student/ ANOVA Kaplan-Meier y log rank Cuantitativa Regresión logística Correlación Spearman Correlación Pearson/ Regresión lineal Regresión Cox V.Abraira 28
Capítulo 7: Distribuciones muestrales
Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.
Pruebas de. Hipótesis
Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar
ANÁLISIS DE DATOS NO NUMERICOS
ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas
Problemas. Intervalos de Confianza y Contrastes de Hipótesis
Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población
Tema 1: Introducción a la Estadística
Tema 1: Introducción a la Estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 1: Introducción a la Estadística Curso 2009-2010
TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística
TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud
ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos)
ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos) (Aplicaciones de Microsoft Excel ) Curso a distancia (EDICIÓN Junio 2012) ASECAL, S.L. MADRID-ESPAÑA RONDA DE TOLEDO, 8, LOCAL 1º- 28005 MADRID. Teléfono:
Inferencia Estadística
EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre
Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:
Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial
Test ( o Prueba ) de Hipótesis
Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a
REGRESION simple. Correlación Lineal:
REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................
Métodos no paramétricos para el análisis de la varianza
Capítulo 4 Métodos no paramétricos para el análisis de la varianza MÉTODOS PARAMÉTRICOS Y NO-PARAMÉTRICOS Los procedimientos inferenciales que presentan estimaciones con respecto a losparámetrosdelapoblacióndeinteréssellamanmétodos
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
Curso Práctico de Bioestadística Con Herramientas De Excel
Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA [email protected] (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister
Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16
3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una
INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas
INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:
1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros
TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación
Cómo hacer paso a paso un Análisis de Supervivencia con SPSS para Windows.
DOCUWEB FABIS Dot. Núm 0702006 Cómo hacer paso a paso un Análisis de Supervivencia con SPSS para Windows. Aguayo Canela M, Lora Monge E Servicio de Medicina Interna. Hospital Universitario Virgen Macarena.
UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año
UNIVERSIDAD DEL SALVADOR PROGRAMA UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria DIVISIÓN / COMISIÓN: Primer Año TURNO: Único OBLIGACIÓN ACADÉMICA: ESTADÍSTICA Y DISEÑO
Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n
Un diseño experimental que se utiliza muy a menudo es el de un grupo control y uno de tratamiento. En el caso de que los datos sean cuantitativos y sigan una distribución normal, la hipótesis de interés
Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1
Biometría Clase 8 Pruebas de hipótesis para una muestra Adriana Pérez 1 Qué es una prueba de hipótesis? Es un proceso para determinar la validez de una aseveración hecha sobre la población basándose en
Curso de Estadística no-paramétrica
Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
Estimación de una probabilidad
Estimación de una probabilidad Introducción En general, la probabilidad de un suceso es desconocida y debe estimarse a partir de una muestra representativa. Para ello, deberemos conocer el procedimiento
CORRELACIÓN Y PREDICIÓN
CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una
1.1. Introducción y conceptos básicos
Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................
MUESTREO CONCEPTOS GENERALES
MUESTREO CONCEPTOS GENERALES Resumen del libro Muestreo para la investigación en Ciencias de la Salud Luis Carlos Silva Ayçaguer (páginas de la 1 a la 14) Cuando se decide cuantificar sólo una parte de
Metodología de la Investigación. Dr. Cristian Rusu [email protected]
Metodología de la Investigación Dr. Cristian Rusu [email protected] 6. Diseños de investigación 6.1. Diseños experimentales 6.1.1. Diseños preexperimentales 6.1.2. Diseños experimentales verdaderos
Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba
Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos
Nombre...Apellidos... Grado en:...grupo:...
ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA - Soluciones Estadística- Curso 01/1. 9 de Julio de 01 Nombre...Apellidos... Grado en:...grupo:... 1. Considera la variable aleatoria (v.a.) X cuyos posibles
DESCRIPCIÓN ESPECÍFICA
DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad
PRUEBAS NO PARAMÉTRICAS
PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la
TALLER BÁSICO DE EXPERIMENTOS CONTROLADOS ALEATORIOS
TALLER BÁSICO DE EXPERIMENTOS CONTROLADOS ALEATORIOS 1. INTRODUCCIÓN Y JUSTIFICACIÓN Este Taller Básico de Experimentos Controlados Aleatorios (ECA) está dirigido a profesionales de la salud interesados
Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos
Test de hipótesis t de Student Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos HOMA Casos Válidos Perdidos Total N Porcentaje N Porcentaje
Tema 12: Contrastes Paramétricos
Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de
Muestreo estadístico. Relación 2 Curso 2007-2008
Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los
Tests de hipótesis estadísticas
Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para
ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES
ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES DE BÁSICA PRIMARIA EN LA CIUDAD DE PEREIRA José R. Bedoya Universidad Tecnológica de Pereira Pereira, Colombia La formación estadística en la ciudadanía,
MANUAL PARA EL USO DE SPSS
MANUAL PARA EL USO DE SPSS 1 INTRODUCCIÓN El propósito de este manual, es ilustrar con un ejemplo cómo generar tablas de frecuencia, tablas de contingencia, cálculos de medias, así como la generación de
Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias
Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía
Matemáticas 2º BTO Aplicadas a las Ciencias Sociales
Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las
I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales
1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se
Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.
Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables
TEMA 5 ESTUDIOS CORRELACIONALES.
TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.
Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Pruebas de ipótesis de Una y Dos Muestras UCR ECCI CI-35 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides ipótesis Estadísticas Conceptos Generales En algunos casos el científico
IIC 3633 - Sistemas Recomendadores
Tests Estadísticos para Comparar Recomendaciones IIC 3633 - Sistemas Recomendadores Denis Parra Profesor Asistente, DCC, PUC CHile Page 1 of 11 TOC En esta clase 1. Significancia Estadistica de los Resultados
Estimación. Intervalos de Confianza para la Media y para las Proporciones
Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo
1 Ejemplo de análisis descriptivo de un conjunto de datos
1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos
Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos?
Capítulo. Métodos no paramétricos Los métodos presentados en los capítulos anteriores, se basaban en el conocimiento de las distribuciones muestrales de las diferencias de porcentajes o promedios, cuando
Metodología de Investigación en Odontología.
Avanzamos contigo Metodología de Investigación en Odontología. Directora: Dra. Elena Figuero Madrid & Oviedo Octubre 2014-Abril 2015 Dirigido a Periodoncistas, Odontólogos, Estomatólogos y Otros profesionales
Asignatura: Econometría. Conceptos MUY Básicos de Estadística
Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes
10. DISEÑOS EXPERIMENTALES
10. DISEÑOS EXPERIMENTALES Dr. Edgar Acuña http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ Diseños Experimentales de Clasificación Simple En un diseño experimental
Tema 3. Comparaciones de dos poblaciones
Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:
Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.
Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,
SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática
SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en
Diseños de Investigación 40 conceptos que debes conocer
Diseños de Investigación 40 conceptos que debes conocer 1. El método científico: Se puede realizar desde dos enfoques distintos, hipotético deductivo y analítico inductivo. Con frecuencia los dos ocurren
Tema 10. Estimación Puntual.
Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener
LA MEDIDA Y SUS ERRORES
LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger
SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas
SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria
Relación entre variables cuantitativas
Investigación: Relación entre variables cuantitativas 1/8 Relación entre variables cuantitativas Pita Fernández S., Pértega Díaz S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario
Diseño de un estudio de investigación de mercados
Diseño de un estudio de investigación de mercados En cualquier diseño de un proyecto de investigación de mercados, es necesario especificar varios elementos como las fuentes a utilizar, la metodología,
Inferencia Estadística
Felipe José Bravo Márquez 11 de noviembre de 2013 Para realizar conclusiones sobre una población, generalmente no es factible reunir todos los datos de ésta. Debemos realizar conclusiones razonables respecto
Curso/Tutorial: Estadística Aplicada en la Investigación Biomédica
Curso/Tutorial: Estadística Aplicada en la Investigación Biomédica Nombre del curso Modalidad Duración Intensidad Certificado Dirigido a Estadística Aplicada en la Investigación Biomédica Virtual 16 sesiones
EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013
Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios
T. 5 Inferencia estadística acerca de la relación entre variables
T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas
Mónica López Ratón BIOSTATECH, Advice, Training & Innovation in Biostatistics, S.L. Octubre 2012. [email protected]
Mónica López Ratón BIOSTATECH, Advice, Training & Innovation in Biostatistics, S.L. Octubre 01 [email protected] Tablas de contingencia y tests asociados Índice 1. Datos categóricos. Tablas de
Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS
Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS ESTIMACIÓN DE UN MODELO DE REGRESIÓN LINEAL CON EXCEL La Herramienta para análisis Regresión
ESTADÍSTICA DESCRIPTIVA CON SPSS
ESTADÍSTICA DESCRIPTIVA CON SPSS (2602) Estadística Económica Joaquín Alegre y Magdalena Cladera SPSS es una aplicación para el análisis estadístico. En este material se presentan los procedimientos básicos
Inducción. El arco del conocimiento. Intro: hace 2.500 años. Intro: el método científico (II) Intro: el método científico (I)
Intro: hace 2.500 años Introducción Probabilidad, estadística e inferencia científica Marco Pavesi Senior Epidemiologist CIS Clinical Epidemiology Novartis Farmacéutica S.A. Antístenes: yo veo estos caballos,
Se toma una muestra aleatoria de diez personas de una población. Se ha estimado de experiencias anteriores que la característica en estudio se
Se toma una muestra aleatoria de diez personas de una población. Se ha estimado de experiencias anteriores que la característica en estudio se distribuye según una variable aleatoria normal de media 167
INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98
(.$263*7.5"4+%#,"8..9$ $.$ - -. 7.# "4< $ 8 $ 7 "% @
!"#$%!& ' ($ 2 ))!"#$%& '$()!& *($$+%( & * $!" "!,"($"$ -(.$!- ""& +%./$$&,-,$,". - %#,"0# $!01 "23(.4 $4$"" ($" $ -.#!/ ". " " ($ "$%$(.$2.3!- - *.5.+%$!"$,"$ (.$263*7.5"4+%#,"8..9$ $.$ - $,"768$"%$,"$%$!":7#;
Tema 2: Muestreo. Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales
Tema 2: Muestreo. Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 2: Muestreo Curso 2008-2009 1 / 13 Índice 1 Introducción 2 Muestreo
Población, Unidad de Análisis, Criterios de Inclusión y Exclusión.
Población Población, Unidad de Análisis, Criterios de Inclusión y Exclusión. Muestra: Identificación y Reclutamiento. Nomenclatura En esta aproximación conceptual consideraremos a Población como sinónimo
Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2
Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación
ESTIMACION DE INTERVALOS DE CONFIANZA
pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones
Procesamiento de información para la investigación utilizando el programado Excel recopilados. Los participantes rán en
Procesamiento de información para la investigación utilizando el programado Excel recopilados. Los participantes rán en Julio E. Rodríguez Torres el Joel uso O. Lucena de Excel. Quiles Centro para la Excelencia
Tema 7: Modelos de diseños de experimentos
Tema 7: Modelos de diseños de experimentos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Modelos de diseños de experimentos Curso
MATEMÁTICAS aplicadas a las Ciencias Sociales II
MATEMÁTICAS aplicadas a las Ciencias Sociales II UNIDAD 1: SISTEMAS DE ECUACIONES. MÉODO DE GAUSS Sistemas de ecuaciones lineales Sistemas equivalentes. Transformaciones que mantienen la equivalencia.
Tabla de contenidos. El Informe Secreto de la Primitiva
Tabla de contenidos Tabla de contenidos... 1 Hay números que salen más que otros?... 2 Hay números más rentables que otros?... 3 Cómo podemos jugar de manera óptima?... 5 Conclusiones... 5 El Informe Secreto
Empresa de telefonía celular: Transintelcel
Empresa de telefonía celular: Transintelcel El proceso metodológico de esta investigación de mercados está dividido en las siguientes etapas: 1. Datos generales de la empresa 2. Planteamiento del problema
PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.
PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de
Estadística (Gr. Biología-09) (2010-2011)
Estadística (Gr. Biología-09) (2010-2011) PRESENTACIÓN OBJETIVOS PROGRAMA METODOLOGÍA EVALUACIÓN BIBLIOGRAFÍA HORARIO ATENCIÓN http://www.unav.es/asignatura/estadisticabio/ 1 de 10 PRESENTACIÓN Descripción
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008
UNIVERSIDAD DE MURCIA REGIÓN DE MURCIA CONSEJERÍA DE EDUCACIÓN, CIENCIA E INVESTIGACIÓN UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre
FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4
FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 REQUISITO LICENCIATURA EN ENFERMERÌA PROFESOR 1. Justificación. Se requiere
Métodos y Diseños utilizados en Psicología
Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos
Multiple Linear Regression
Multiple Linear Regression Aniel Nieves-González Abril 2013 Aniel Nieves-González () Time Series Abril 2013 1 / 15 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por
Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones
Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo
7 Cuestiones estadísticas básicas.
7 Cuestiones estadísticas básicas. Domingo Pérez Flores 1. LA INCERTIDUMBRE EN LA TOMA DE DECISIONES EN MEDICINA. 2. LA ESTADÍSTICA EN LA LECTURA CRÍTICA DE LA LITERATURA. 2.1.Muestreo. 3.INTERVALO DE
Importancia de la investigación clínica EN ONCOLOGÍA. ONCOvida. oncovida_20.indd 1 10/10/11 12:53
Importancia de la investigación clínica EN ONCOLOGÍA 20 ONCOvida C O L E C C I Ó N oncovida_20.indd 1 10/10/11 12:53 ONCOvida C O L E C C I Ó N oncovida_20.indd 2 10/10/11 12:53 1 2 3 4 5 6 7 Por qué es
7.6 Comparación entre dos medias Poblacionales usando muestras independientes
7.6 Comparación entre dos medias Poblacionales usando muestras independientes Supongamos que se tiene dos poblaciones distribuidas normalmente con medias desconocidas µ y µ, respectivamente. Se puede aplicar
Estudio de Marca y Reputación ISAGEN 2014
Estudio de Marca y Reputación 214 Estudio de Marca y Reputación 214 2 Estudio de Marca y Reputación 214 En el mes de abril, se entregó por parte de la firma INVAMER el reporte de resultados del estudio
Qué es la Estadística Ambiental?
Qué es la Estadística Ambiental? La Estadística Ambiental es simplemente la aplicación de la Estadística a problemas relacionados con el ambiente. Ejemplos de las actividades que requieren del uso de estas
