PRUEBAS NO PARAMÉTRICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBAS NO PARAMÉTRICAS"

Transcripción

1 PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la evaluación del ajuste de una variable continua a una curva normal, tanto de forma gráfica como analítica. Las pruebas analíticas de que dispone esta opción son: Kolmogorov-Smirnov con la modificación de Lillierfors y la prueba de Shapiro-Wilks. Esta última la realiza el SPSS si el tamaño muestral es inferior a 50, es decir, da por defecto las dos pruebas; mientras que si el nº de individuos es superior a 50, sólo da como resultado la de Kolmogorov-Smirnov. 1.1 La prueba de Kolmogorov-Smirnov con la modificación de Lillierfors es la más utilizada y se considera uno de los test más potentes para muestra mayores de 30 casos. En este test la Hipótesis nula Ho: es que el conjunto de datos siguen una distribución normal. Y la Hipótesis Alternativa H 1 : es que no sigue una distribución normal. Este test se basa en evaluar un estadístico: D n = F n (x) F(x)

2 F n (x): es la distribución empírica F (x): s la distribución teórica, que en este caso es la normal Si el valor del estadístico supera un determinado valor, que depende del nivel de significación con el que uno quiera rechazar la hipótesis nula, diremos que esa colección de datos no se distribuye según una distribución normal. Lillierfors tabuló este estadístico para el caso más habitual en el que desconocemos la media y la varianza poblacional y las estimamos a partir de los datos muestrales. El SPSS ya utiliza esta prueba modificada. 1.3 La prueba de Shapiro-Wilks se basa en estudiar el ajuste de los datos graficados sobre un gráfico probabilístico en el que cada dato es un punto cuyo valor de abscisa el valor observado de probabilidad para un valor determinado de la variable, y el de ordenada el valor esperado de probabilidad. En este test la Ho y la H 1 son iguales que para la prueba anterior. El estadístico W de Shapiro-Wilks mide la fuerza del ajuste con una recta. Cuanto mayor sea este estadístico mayor desacurdo habrá con la recta de normalidad, por lo que

3 podremos rechazar la hipótesis nula. La prueba de Shapiro-Wilks está considerada como la prueba más potente para muestra inferiores a 30 casos. 1.3 Test de Chi Cuadrado (χ 2 ). Para comparar si un grupo de frecuencias observadas con unas frecuencias esperadas y decidir si existen diferencias. Grados de libertad : K -1 AQUÍ es donde se elige esta opción de χ 2 ; como os dais cuenta es dentro de NO PARAMÉTRICAS AQUÍ nos da la opción de decir de dónde toma los datos esperados, es decir, los TEÓRICOS para comparar la distribución.

4 El otro gráfico que SPSS denominado DETRENTED normal Plot, se basaen que si los datos se distribuyen normalmente los puntos deben distribuirse aleatoriamente alrededor del 0. Qué hacemos si comprobamos que una distribución no sigue una curva normal? Tenemos dos opciones: Podemos intentar tansformar la variable para que se distribuya según una normal Podemos utilizar otra metodología estadística que presupongan poco acerca de la distribución de la población muestreada. Tales métodos se denominan de Distribución Libre o No Paramétricos II CONTRASTE DE POSICIÓN: UNA MUESTRA CONTRASTE DE LOS SIGNOS PARA LA MEDIANA para variables continuas evaluamos las diferencias entre la mediana de la muestra y la poblacional, a través de su signo: +, - ó 0 TEST DE LOS RANGOS CON SIGNO DE WILCOXON similar al test de los signos por aumento o disminución de la mediana según la poblacional; pero teniendo además en cuenta la magnitud del cambio. Por tanto es más potente este test que el test de los signos. III CONTRASTE DE POSICIÓN: DATOS APAREADOS PARA DOS MUESTRAS VARIABLES CUALITATIVAS: TEST DE Mc NEMAR: evalúa las variaciones de una variable dicotómica antes y después de algo VARIABLES CUANTITATIVAS CONTRASTE DE LOS SIGNOS PARA LA MEDIANA DE LAS DIFERENCIAS: para variables continuas evaluamos las diferencias de antes y después de algo pero a través de su signo: +, - ó 0 TEST DE LOS RANGOS CON SIGNO DE WILCOXON: DATOS APAREADOS: similar al test de los signos por aumento o disminución de la variable; pero teniendo además en cuenta la magnitud del cambio. Por tanto es más potente este test que el test de los signos. Se elige AQUÍ

5 Con este botón se pasan las parejas elegidas a la otra ventana AQUÍ se eligen los estadísticos descriptivos y de posición de todas las variables elegidas AQUÍ es donde se eligen las parejas AQUÍ se eligen los diferentes test a realizar VARIABLES CUANTITATIVAS PARA MÁS DE DOS MUESTRAS (K MUESTRAS) TEST DE FRIEDMAN: tenemos k variables en columnas y n elementos en filas. Ordenamos cada fila de menor a mayor según las diferentes columnas desde 1 hasta k (esto sería el rango que ocupa cada variable para ese caso). Si no hubiera diferencias entre las variables esperamos que los rangos estén repartidos en cada columna de manera uniforme y solo encontraremos entre ellas pequeñas diferencias debidas al azar. La hipótesis nula es que los rangos sumados para cada columna (cada variable) sean iguales; y la hipótesis alternativa es que al menos uno es diferente. El estadístico sigue una distribución de χ 2 con grados de libertad K-1. VARIABLES CUALITATIVAS TEST DE KENDALL O COEFICIENTE DE CONCORDANCIA: este coeficiente mide el grado de concordancia entre un grupo de elementos (K) y un grupo de características (n). La respuesta es ordinal. La hipótesis nula es que no hay concordancia : W=0; y la Hipótesis Alternativa es que si la hay (W > 0). Este estadístico sigue una χ 2 con grados de libertad: n- 1 TEST DE COCHRAN: válido para evaluar si la respuesta de un grupo de n elementos (filas) ante un conjunto de K características (columnas) es homogénea, siendo la respuesta dicotómica. La hipótesis nula es que las características son iguales a lo largo de los n elementos y la hipótesis alternativa: es que las características no son iguales. El estadístico es Q y si este toma un valor superior a un valor crítico, concluimos que la respuesta a las características estudiadas es significativamente distinta. Nos informa si hay acuerdo o no; pero no nos informa sobre la magnitud del mismo. III CONTRASTE DE POSICIÓN: DATOS NO APAREADOS DOS MUESTRAS TEST DE LA MEDIANA la prueba se fundamenta en analizar si las medianas de las dos poblaciones son distintas. Esta prueba es adecuada para comparar dos variables cuantitativas y los tamaños poblacionales pueden ser distintos. El test se basa en que si las dos medianas son iguales, la proporción de casos de cada muestra que son mayores o menores que la mediana global serán iguales. Pero por el contrario, si ambas medianas son diferentes, la proporción de casos por encima o por debajo de la mediana global serán significativamente diferentes en ambas muestras. Es decir, realiza tablas de contingencia al

6 categorizar la variable continua en dos categorías según el valor de la mediana. Por tanto, la hipótesis nula: Ho es que la Mediana de A = Mediana de B; mientras que la hipótesis alternativa, H 1 : es que son diferentes. TEST DE MANN-WHITNEY: este prueba es aplicable para comparar 2 variables continuas independientes. Las dos muestras pueden tener dos tamaños diferentes. Es la prueba no paramétrica considerada más potente para comparar 2 variables continuas independientes. La Ho: es que no hay diferencias y la H 1 : es que si hay diferencias. AQUÍ es donde se elige la prueba NO PARAMÉTRICA para comparación de dos muestras independientes AQUÍ nos da la opción de realizar otros test estadísticos para comparar estas dos medianas El test de Kolmogorov-Smirnov lo que está evaluando es si las dos distribuciones son iguales (Ho) El test de rachas de Wald_Wolfowitz, también es un test para comparar dos distribuciones cuantitativas independientes, donde puede detectar diferencias entre dichas distribuciones en relación a la tendencia central, dispersión y oblicuidad El test de los valores extremos de Moses trata de determinar si los valores extremos, mayores y menores, de las dos variables son iguales o distintos. La Ho: es que no hay diferencias entre los valores extremos de dos distribuciones PARA MÁS DE DOS MUESTRAS (K MUESTRAS) TEST DE KRHUSKALL WALLIS: Para la comparación de una misma variable cuantitativa en más de tres grupos. Es la prueba no paramétrica considerada más potente para comparar >2 variables continuas independientes. Es el similar al test de ANOVA para un factor.

7 TEST DE LA MEDIANA la prueba se fundamenta en analizar si las medianas de las más de dos poblaciones son distintas. Esta prueba es adecuada para comparar más de dos variables cuantitativas y los tamaños poblacionales pueden ser distintos. El test se basa en que si las dos medianas son iguales, la proporción de casos de cada muestra que son mayores o menores que la mediana global serán iguales. Pero por el contrario, si ambas medianas son diferentes, la proporción de casos por encima o por debajo de la mediana global serán significativamente diferentes en ambas muestras. Es decir, realiza tablas de contingencia al categorizar la variable continua en dos categorías según el valor de la mediana. Por tanto, la hipótesis nula: Ho es que la Mediana de A = Mediana de B=...= Mediana de n; mientras que la hipótesis alternativa, H 1 : es que al menos 1 es diferente. AQUÍ se elige esta opción AQUÍ se ponen los rangos de la variable de agrupación AQUÍ se elige el test a realizar

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos. PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de

Más detalles

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

Métodos no paramétricos para la comparación de dos muestras

Métodos no paramétricos para la comparación de dos muestras Investigación Métodos no paramétricos para la comparación de dos muestras Métodos no paramétricos para la comparación de dos muestras Pértega Díaz, S. Unidad de Epidemiología Clínica y Bioestadística.

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos?

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos? Capítulo. Métodos no paramétricos Los métodos presentados en los capítulos anteriores, se basaban en el conocimiento de las distribuciones muestrales de las diferencias de porcentajes o promedios, cuando

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las

Más detalles

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics-

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- 1. Introducción Ficheros de datos: TiempoaccesoWeb.sf3 ; AlumnosIndustriales.sf3 El objetivo de esta práctica es asignar un modelo

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

PROPUESTAS COMERCIALES

PROPUESTAS COMERCIALES PROPUESTAS COMERCIALES 1. Alcance... 2 2. Entidades básicas... 2 3. Circuito... 2 3.1. Mantenimiento de rutas... 2 3.2. Añadir ofertas... 5 3.2.1. Alta desde CRM... 5 3.2.2. Alta desde el módulo de Propuestas

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación

Más detalles

Introducción a la estadística y SPSS

Introducción a la estadística y SPSS Introducción a la estadística y SPSS Marcelo Rodríguez Ingeniero Estadístico - Magister en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I

Más detalles

no descompone no descompone no descompone

no descompone no descompone no descompone Problema 1. Sea I n el conjunto de los n primeros números naturales impares. Por ejemplo: I 3 = {1, 3, 5, I 6 = {1, 3, 5, 7, 9, 11, etc. Para qué números n el conjunto I n se puede descomponer en dos partes

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMAS RESUELTOS DE CONTRASTE DE HIPÓTESIS

Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMAS RESUELTOS DE CONTRASTE DE HIPÓTESIS Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMA REUELTO DE CONTRATE DE HIPÓTEI 1 Un investigador quiere contrastar si el peso medio de ciertas hortalizas está en los 1,9 Kg. que

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X =

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X = Selectividad Junio 011 Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO/A DEBERÁ ESCOGER UNO DE

Más detalles

Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A)

Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A) aprenderaprogramar.com Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A) Sección: Cursos Categoría: Curso creación y administración web: Joomla

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Comparación de medias

Comparación de medias 12 Comparación de medias Irene Moral Peláez 12.1. Introducción Cuando se desea comprobar si los valores de una característica que es posible cuantificar (como podría ser la edad o la cifra de tensión arterial,

Más detalles

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS 6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS Esquema del capítulo Objetivos 6.1. 6.. 6.3. 6.4. ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS COEFICIENTES DE CONTINGENCIA LA

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

Indicaciones específicas para los análisis estadísticos.

Indicaciones específicas para los análisis estadísticos. Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1 Biometría Clase 8 Pruebas de hipótesis para una muestra Adriana Pérez 1 Qué es una prueba de hipótesis? Es un proceso para determinar la validez de una aseveración hecha sobre la población basándose en

Más detalles

1 Ejemplo de análisis descriptivo de un conjunto de datos

1 Ejemplo de análisis descriptivo de un conjunto de datos 1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

Análisis de la Varianza (ANOVA) de un factor y test a posteriori.

Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Ejercicios Temas 8 y 9 (Resuelto) 1. Problema 5 Se quiere estudiar el efecto de distintas dosis de un medicamento para combatir a los parásitos

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

T. 8 Estadísticos de asociación entre variables

T. 8 Estadísticos de asociación entre variables T. 8 Estadísticos de asociación entre variables. Concepto de asociación entre variables. Midiendo la asociación entre variables.. El caso de dos variables categóricas.. El caso de una variable categórica

Más detalles

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical Enunciado Si la unidad la dividimos en varias partes iguales, podemos tomar como nueva unidad de medida una de estas partes más pequeñas. Las unidades fraccionarias son necesarias cuando lo que queremos

Más detalles

Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n

Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n Un diseño experimental que se utiliza muy a menudo es el de un grupo control y uno de tratamiento. En el caso de que los datos sean cuantitativos y sigan una distribución normal, la hipótesis de interés

Más detalles

Finanzas de Empresas Turísticas

Finanzas de Empresas Turísticas Finanzas de Empresas Turísticas Prof. Francisco Pérez Hernández ([email protected]) Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid 1 Departamento de Financiación e Investigación

Más detalles

MATEMÁTICAS CON LA HOJA DE CÁLCULO

MATEMÁTICAS CON LA HOJA DE CÁLCULO MATEMÁTICAS CON LA HOJA DE CÁLCULO Podemos dar a esta aplicación un uso práctico en el aula de Matemáticas en varios sentidos: Como potente calculadora: sucesiones, límites, tablas estadísticas, parámetros

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Métodos no paramétricos para el análisis de la varianza

Métodos no paramétricos para el análisis de la varianza Capítulo 4 Métodos no paramétricos para el análisis de la varianza MÉTODOS PARAMÉTRICOS Y NO-PARAMÉTRICOS Los procedimientos inferenciales que presentan estimaciones con respecto a losparámetrosdelapoblacióndeinteréssellamanmétodos

Más detalles

7.- PRUEBA DE HIPOTESIS

7.- PRUEBA DE HIPOTESIS 7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información

Más detalles

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO Análisis estadístico 31 3. ANÁLII ETADÍTICO DE LA PRECIPITACIONE EN EL MAR CAPIO 3.1. ANÁLII Y MÉTODO ETADÍTICO UTILIZADO 3.1.1. Introducción Una vez analizado el balance de masas que afecta al mar Caspio

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

GUÍA PARA LA FORMULACIÓN PROYECTOS

GUÍA PARA LA FORMULACIÓN PROYECTOS GUÍA PARA LA FORMULACIÓN PROYECTOS Un PROYECTO es un PLAN DE TRABAJO; un conjunto ordenado de actividades con el fin de satisfacer necesidades o resolver problemas. Por lo general, cualquier tipo de proyecto,

Más detalles

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 [email protected] El objeto de las tablas de contingencia es extraer información de cruce entre dos

Más detalles

CAPÍTULO 3. METODOLOGÍA. En este capítulo discutimos los pasos que seguimos para el diseño de las encuestas, tanto de la

CAPÍTULO 3. METODOLOGÍA. En este capítulo discutimos los pasos que seguimos para el diseño de las encuestas, tanto de la CAPÍTULO 3. METODOLOGÍA En este capítulo discutimos los pasos que seguimos para el diseño de las encuestas, tanto de la encuesta directa como para la Aleatorizada. De igual forma se explica brevemente

Más detalles

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas

Más detalles

Informática Aplicada a la Gestión de Empresas (IAGE) Parte III Excel e Internet Tema 2

Informática Aplicada a la Gestión de Empresas (IAGE) Parte III Excel e Internet Tema 2 Informática Aplicada a la Gestión de Empresas (IAGE) Parte III Excel e Internet Tema 2 1. Rango de celdas. Definición. Selección Contenido. 2. Referencias relativas, absolutas y mixtas. 3. Gráficos. Creación,

Más detalles

Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas

Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas En los capítulos 13 al 18 hemos estudiado una serie de procedimientos estadísticos diseñados para analizar variables cuantitativas:

Más detalles

MANUAL PARA EL USO DE SPSS

MANUAL PARA EL USO DE SPSS MANUAL PARA EL USO DE SPSS 1 INTRODUCCIÓN El propósito de este manual, es ilustrar con un ejemplo cómo generar tablas de frecuencia, tablas de contingencia, cálculos de medias, así como la generación de

Más detalles

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

LAS BARRAS. La barra de acceso rápido

LAS BARRAS. La barra de acceso rápido LS RRS La barra de título Contiene el nombre del documento sobre el que se está trabajando en ese momento. Cuando creamos un libro nuevo se le asigna el nombre provisional Libro1, hasta que lo guardemos

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles

ANÁLISIS Y GESTIÓN DEL DESARROLLO DE SOFTWARE TEMA 5: LA PLANIFICACIÓN DEL PRODUCTO

ANÁLISIS Y GESTIÓN DEL DESARROLLO DE SOFTWARE TEMA 5: LA PLANIFICACIÓN DEL PRODUCTO ANÁLISIS Y GESTIÓN DEL DESARROLLO DE SOFTWARE TEMA 5: LA PLANIFICACIÓN DEL PRODUCTO DAVID RODRÍGUEZ HERNÁNDEZ FECHA DE REVISIÓN: 1 Noviembre 2007 ZAMORA (CURSO 2007/2008) [email protected] Nota importante:

Más detalles

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers )

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) CAPÍTULO 5 POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) Ya hemos trabajado antes con los principios básicos de la toma de decisiones

Más detalles

Hipótesis Alternativa: Afirmación sobre las posibles alternativas que se tienen a la afirmación hecha en la hipótesis nula.

Hipótesis Alternativa: Afirmación sobre las posibles alternativas que se tienen a la afirmación hecha en la hipótesis nula. PRUEBA DE HIPÓTESIS Introducción (10 min) En el mundo de las finanzas, la administración y la economía tan importante como saber hacer y entender a cabalidad las estimaciones que nos ayudaran a la toma

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

En este tutorial vamos a calificar una tarea por el método "Calificación simple directa"que es el que utiliza por defecto moodle.

En este tutorial vamos a calificar una tarea por el método Calificación simple directaque es el que utiliza por defecto moodle. 1 de 9 Calificar Tarea En este tutorial vamos a calificar una tarea por el método "Calificación simple directa"que es el que utiliza por defecto moodle. La evaluación por guías de calificación y las rúbricas

Más detalles

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que

Más detalles

Funciones CONJUNTO EXCEL 2013 AVANZADO

Funciones CONJUNTO EXCEL 2013 AVANZADO EXCEL 2013 AVANZADO Esta función contará la cantidad de celdas que contengan palabras de cuatro letras y que terminen con la A. El asterisco cumple una función similar, pero la diferencia radica en que

Más detalles

Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A)

Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A) aprenderaprogramar.com Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A) Sección: Cursos Categoría: Curso Bases de la programación

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

(.$263*7.5"4+%#,"8..9$ $.$ - -. 7.# "4< $ 8 $ 7 "% @

(.$263*7.54+%#,8..9$ $.$ - -. 7.# 4< $ 8 $ 7 % @ !"#$%!& ' ($ 2 ))!"#$%& '$()!& *($$+%( & * $!" "!,"($"$ -(.$!- ""& +%./$$&,-,$,". - %#,"0# $!01 "23(.4 $4$"" ($" $ -.#!/ ". " " ($ "$%$(.$2.3!- - *.5.+%$!"$,"$ (.$263*7.5"4+%#,"8..9$ $.$ - $,"768$"%$,"$%$!":7#;

Más detalles

TEMA 5. MUESTREO PARA LA ACEPTACIÓN.

TEMA 5. MUESTREO PARA LA ACEPTACIÓN. TEMA 5. MUESTREO PARA LA ACEPTACIÓN. Introducción. Planes de muestreo por atributos simple, doble, múltiple y rectificativos Dodge-Romig, Norma militar 1000STD-105D. Pautas a seguir para el cambio de rigor

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA [email protected] (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS Las soluciones a estos ejercicios y los outputs del SPSS se encuentran al final. EJERCICIO 1. Comparamos dos muestras de 10

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G.

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G. El concepto de asociación estadística Tema 6 Estadística aplicada Por Tevni Grajales G. En gran medida la investigación científica asume como una de sus primera tareas, identificar las cosas (características

Más detalles

8.2.2. Intervalo para la media (caso general)

8.2.2. Intervalo para la media (caso general) 182 Bioestadística: Métodos y Aplicaciones 100 de ellos se obtiene una media muestral de 3 kg, y una desviación típica de 0,5 kg, calcular un intervalo de confianza para la media poblacional que presente

Más detalles

Comparación de proporciones

Comparación de proporciones 11 Comparación de proporciones Neus Canal Díaz 11.1. Introducción En la investigación biomédica se encuentran con frecuencia datos o variables de tipo cualitativo (nominal u ordinal), mediante las cuales

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Para cerrar Excel, puedes utilizar cualquiera de las siguientes operaciones:

Para cerrar Excel, puedes utilizar cualquiera de las siguientes operaciones: Elementos de Excel Excel es un programa del tipo Hoja de Cálculo que permite realizar operaciones con números organizados en una cuadrícula. Es útil para realizar desde simples sumas hasta cálculos de

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Tema 12: Contrastes Paramétricos

Tema 12: Contrastes Paramétricos Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de

Más detalles