Correlación entre variables
|
|
|
- Carmen Domínguez Salazar
- hace 10 años
- Vistas:
Transcripción
1 Correlación entre variables Apuntes de clase del curso Seminario Investigativo VI Por: Gustavo Ramón S.* * Doctor en Nuevas Perspectivas en la Investigación en Ciencias de la Actividad Física y el Deporte (Universidad de Granada). Docente Investigador del Instituto Universitario de Educación Física, Universidad de Antioquia (Colombia). Correo: [email protected] Correlación entre variables La Correlación es una técnica estadística usada para determinar la relación entre dos o más variables. La relación entre la duración de una carrera de distancia y el test del escalón, o la relación entre las características de la personalidad y la participación en deportes de alto riesgo. La correlación puede ser de al menos dos variables o de una variable dependiente y dos o más variables independientes, denominada correlación múltiple. Coeficiente de correlación El Coeficiente de Correlación es un valor cuantitativo de la relación entre dos o más variables. La coeficiente de correlación puede variar desde hasta La correlación de proporcionalidad directa o positiva se establece con los valores y de proporcionalidad inversa o negativa, con No existe relación entre las variables cuando el coeficiente es de 0.00.
2 Nombre Masa corporal Fuerza Pedro Pablo Chucho Jacinto José Nombre Masa corporal Fuerza Pedro 1 1 Pablo 2 2 Chucho 3 3 Jacinto 4 4 José 5 5
3 Coeficiente de correlación = r
4 N Masa Fuerza X X2 Y Y2 XY Σ
5 Ecuaciones de Regresión La fórmula general para una ecuación de regresión lineal es: Y = a+bx donde Y es el valor predicho a es el intercepto b es la pendiente de la línea y X es el predictor a puede ser calculada a partir de la siguiente fórmula: a = My - bmx, donde My es la media de Y, y Mx es la media de X b puede ser calculada a partir de la siguiente fórmula: 4 b = r (Sy/Sx), donde Sy es la desviación estándar de Y, y Sx la de X
6 Intercepto = a = O Pendiente = b = Y / X = (5-0) / (5 0) = 1 Si X = 2 Y = O + 1*2 = 2 b= r (Sy/Sx)= (19.71/13.69)= a= My bmx= *80= 31.2 Con esta ecuación de regresión podemos calcular los valores de los extremos para la masa corporal (60 y 100 kg): Y60 = *60 = 97.8 Y100 = *100 = 142.2
7 Valores reales para una masa corporal de 60kg era de 100 Kp y en el caso estimado fue de 97.8 (una diferencia de -2.2 kp) Para el 100 kg, era de 150 y su estimación fue de (una diferencia de -7.8kp). Esto sucede porque la correlación no es de error estándar de la estimación. En el anterior ejemplo, hicimos la recta de regresión de Y sobre los valores de X. Pero igualmente podríamos calcular y dibujar la línea de regresión de los valores de X sobre Y (X = O.536Y). El resultado final sería el gráfico siguiente.
8 Se puede observar que ambas rectas se cortan en el punto correspondiente a la media de X y la media de Y. Se podría decir que la relación entre las rectas de regresión gira en este punto común. De manera que, cuando r es igual a 1, las rectas se superponen y cuando r es cero, las rectas son perpendiculares. Se pueden realizar diagramas de dispersión en los que aparece una sola recta de regresión: la que sirve para predecir Y a partir de los valores de X. Aunque este estudio se refiera a una sola recta, todas las conclusiones serán también aplicables a la recta que sirve para predecir X a partir de Y. La recta de regresión representa el mejor fundamento para predecir valores de Y a partir de valores conocidos de X. No todos los puntos que representan las calificaciones caen sobre la recta de regresión. Las desviaciones de los valores reales menos los valores predichos representan los errores de la predicción. Las tres sumas de cuadrados son:
9 1. Variaciones de los valores con respecto a la media de la muestra. Esta variación está dada por (Y - Media)² y es básica para la determinación de la varianza y de la desviación estándar de la muestra. Es la variación total. 2. Variación de los valores reales con respecto a la recta de regresión (o valores predichos) Esta variación está dada por (Y - Y ) ² y se llama variación no explicada. Si la correlación fuese de ±1.00, todos los valores caen en la recta de regresión y en consecuencia, se explicarían toda la variación de los valores de Y en función de la variación en X. Cuando existe una correlación perfecta, no existe variaci6n no explicada. Cuando la correlación no es perfecta, muchos de los puntos no caen en la recta de regresión. Las desviaciones de estos valores con respecto a la recta de regresión representan las variaciones que no pueden ser explicadas mediante la correlación entre ambas variables, de ahí el uso del término.
10 Variación no explicada: Desviación de valores estimados menos los reales 3. Variación de los valores estimados respecto a la media de la distribución. Esta variación está dada por (Y - Media)² y se la conoce como variación explicada. Este nombre deriva, de manera análoga, a la dada para la variación anterior. Variación explicada: Desviación de valores Y con respecto a la prima.
11 Coeficiente de determinación r = raíz (r²) Puesto que r² representa la proporción de la variación explicada, (1- r²) representará la proporción de la variación que no es explicada, conocido como coeficiente de no determinación y se representa por k². La relación entre r² y k² es k²+r² = 1
REGRESION simple. Correlación Lineal:
REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)
2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES
2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía
Regresión múltiple I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía I.- INTRODUCCIÓN Como la Estadística Inferencial nos permite trabajar con una variable a nivel de intervalo
Aula Banca Privada. La importancia de la diversificación
Aula Banca Privada La importancia de la diversificación La importancia de la diversificación La diversificación de carteras es el principio básico de la operativa en mercados financieros, según el cual
CORRELACIÓN Y PREDICIÓN
CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una
Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA
ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)
TEMA 5 ESTUDIOS CORRELACIONALES.
TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.
Técnicas Cuantitativas para el Management y los Negocios
Segundo cuatrimestre - 4 Técnicas Cuantitativas para el Management y los Negocios Mag. María del Carmen Romero 4 [email protected] Módulo III: APLICACIONES Contenidos Módulo III Unidad 9. Análisis
La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota
La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas
Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79
. Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.
Gráfico de Dispersión de Notas en la Prueba 1 versus Notas en la Prueba Final Acumulativa de un curso de 25 alumnos de Estadística en la UTAL
0. Describiendo relaciones entre dos variables A menudo nos va a interesar describir la relación o asociación entre dos variables. Como siempre la metodología va a depender del tipo de variable que queremos
Nº Persona Altura (m) Peso (Kg.) Nº Persona Altura (m) Peso (Kg.) 001 1.94 95.8 026 1.66 74.9 002 1.82 80.5 027 1.96 88.1 003 1.79 78.2 028 1.56 65.
.1. DIAGRAMAS DE DISPERSIÓN Diagramas de Dispersión Los Diagramas de Dispersión o Gráficos de Correlación permiten estudiar la relación entre 2 variables. Dadas 2 variables X e Y, se dice que existe una
FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS
AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada
Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3
Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar
GRADO TURISMO TEMA 3: ANÁLISIS DE DATOS TURÍSTICOS BIDIMENSIONALES
GRADO TURISMO TEMA 3: ANÁLISIS DE DATOS TURÍSTICOS BIDIMENSIONALES Prof. Rosario Martínez Verdú TEMA 3: ANÁLISIS DE DATOS TURÍSTICOS BIDIMENSIONALES 1. Distribuciones bidimensionales de frecuencias y diagrama
Medidas de tendencia central o de posición: situación de los valores alrededor
Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
12 Distribuciones bidimensionales
Solucionario Distribuciones bidimensionales ACTIVIDADES INICIALES.I. Halla la ecuación de la recta que pasa por el punto A(, ) y tiene por pendiente. Calcula la ordenada en el origen y represéntala. La
Práctica 2. Estadística Descriptiva
Práctica 2. Estadística Descriptiva Ejercicio 1 Mucha gente manifiesta reacciones de alergia sistémica a las picaduras de insectos. Estas reacciones varían de paciente a paciente, no sólo en cuanto a gravedad,
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA INSTRUMENTOS DE MEDICION INFORME DE LABORATORIO Presentado por: Andrés González - 0329032 Andrea Herrera - 0327121 Hans Haeusler - 0332903 Rafael Triviño -
UNED. DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple
011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple 1 Índice 8.1 Introducción... 3 8. Objetivos... 4 8.3 Análisis de Regresión Simple... 4 8.3.1
UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS
UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS I. INTRODUCCIÓN Y MANEJO DE DATOS MANUAL DE SPSS 1 MASTER CALIDAD TOTAL 1/ INTRODUCCIÓN Las aplicaciones de la Estadística en la
Inferencia estadística Módulo de regresión lineal simple
DOCUMENTOS DE INVESTIGACIÓN Facultad de Administración No. 147, ISSN: 0124-8219 Noviembre de 2013 Inferencia estadística Módulo de regresión lineal simple Diego Fernando Cardona Madariaga Javier Leonardo
Capítulo 8. Tipos de interés reales. 8.1. Introducción
Capítulo 8 Tipos de interés reales 8.1. Introducción A lo largo de los capítulos 5 y 7 se ha analizado el tipo de interés en términos nominales para distintos vencimientos, aunque se ha desarrollado más
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:
El modelo Ordinal y el modelo Multinomial
El modelo Ordinal y el modelo Multinomial Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Motivación 1 Motivación 2 3 Motivación Consideramos las siguientes
ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH
ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH Cuando se estudian en forma conjunta dos características (variables estadísticas) de una población o muestra, se dice que estamos analizando una variable
Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.
Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta
Capítulo 7: Distribuciones muestrales
Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.
Empresarial y Financiero
Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),
Capítulo 9. Regresión lineal simple
Capítulo 9. Regresión lineal simple 9.1 Introducción Uno de los aspectos más relevantes de la Estadística es el análisis de la relación o dependencia entre variables. Frecuentemente resulta de interés
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle
Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
Aplicaciones de Estadística Descriptiva
Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................
Se ha visto anteriormente que la correlación entre dos variables puede ser alta a pesar de que la relación entre las dos sea fuertemente no lineal.
Análisis de los residuos Se ha visto anteriormente que la correlación entre dos variables puede ser alta a pesar de que la relación entre las dos sea fuertemente no lineal. Se pueden utilizar los residuos
15 ESTADÍSTICA BIDIMENSIONAL
ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL
1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en
Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68.
Departamento de Economía Aplicada: UDI de Estadística. Universidad Autónoma de Madrid Notas sobre el manejo de Excel para el análisis descriptivo y exploratorio de datos. (Descriptiva) 1 1 Introducción
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se
UNIVERSIDAD AUTÓNOMA DE MADRID DPTO DE ECONOMÍA CUANTITATIVA CURSO 2010/2011 ECONOMETRIA I HOJA 2. Problemas
UNIVERSIDAD AUTÓNOMA DE MADRID DPTO DE ECONOMÍA CUANTITATIVA CURSO 2010/2011 ECONOMETRIA I HOJA 2 Problemas 1. Supongamos que se dispone de una muestra de n = 5 individuos, con la que se quiere estudiar
Procesamiento de información para la investigación utilizando el programado Excel recopilados. Los participantes rán en
Procesamiento de información para la investigación utilizando el programado Excel recopilados. Los participantes rán en Julio E. Rodríguez Torres el Joel uso O. Lucena de Excel. Quiles Centro para la Excelencia
Capítulo VI DESIGUALDADES E INECUACIONES
Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y
2 Resolución de algunos ejemplos y ejercicios del tema 2.
INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 8 2 Resolución de algunos ejemplos y ejercicios del tema 2. 2.1 Ejemplos. Ejemplo 13 La siguiente tabla de frecuencias absolutas corresponde a 200 observaciones
Métodos, Diseño y Técnicas de Investigación en Psicología 2010-2011
NOMBRE DE LA ASIGNATURA Métodos, Diseño y Técnicas de Investigación en Psicología OBLIGATORIA /CRÉDITOS 4,5 Titulación en la que se imparte/ Curso /Cuatrimestre: Psicopedagogía / 1º / 1º Curso académico:
Parámetros y estadísticos
Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población
Medidas de tendencia Central
Medidas de tendencia Central 7.1 Media 7.1.1 Media para un conjunto de datos no agrupados Este parámetro lo usamos con tanta cotidianidad que nos será muy familiar, aunque también aprenderemos algunas
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
Tema 2: Estadística Descriptiva Multivariante
Tema 2: Estadística Descriptiva Multivariante Datos multivariantes: estructura y notación Se llama población a un conjunto de elementos bien definidos. Por ejemplo, la población de las empresas de un país,
DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009
Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión
Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 3, Marzo 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Autor:
Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11
Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales
CAPÍTULO III. Metodología. 3.1 Tipo de Investigación. La investigación se define como un estudio sistemático, controlado, empírico,
49 CAPÍTULO III 3.1 Tipo de Investigación La investigación se define como un estudio sistemático, controlado, empírico, reflexivo y crítico de proposiciones hipotéticas sobre las supuestas relaciones que
Cap. 24 La Ley de Gauss
Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).
SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el
Regresión lineal múltiple
. egresión lineal múltiple egresión lineal múltiple. Introducción. En el tema anterior estudiamos la correlación entre dos variables y las predicciones que pueden hacerse de una de ellas a partir del conocimiento
FUNCIONES 1. DEFINICION DOMINIO Y RANGO
1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad
f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0
FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
CALCULO 11-M-1 Primera Parte
CALCULO 11-M-1 Primera Parte Duración 1h 4m Ejercicio 1 (1. puntos) Una isla A se encuentra a 3 kilómetros del punto más próximo B de una costa rectilínea. En la misma costa, a 1 kilómetros de B se encuentra
Una fórmula para la pendiente
LECCIÓN CONDENSADA 5.1 Una fórmula para la pendiente En esta lección aprenderás cómo calcular la pendiente de una recta dados dos puntos de la recta determinarás si un punto se encuentra en la misma recta
REGRESIÓN LINEAL Variable dependiente Y Variable independiente X Ejemplo
REGRESIÓN LINEAL El Análisis de Regresión, en una versión simple, es una metodología estadística que permite analizar la relación entre una variable Y (dependiente, explicada, respuesta ó endógena) y otra
Capítulo 10. Gráficos y diagramas
Capítulo 10. Gráficos y diagramas 1. Introducción Los gráficos y diagramas que se acostumbran a ver en libros e informes para visualizar datos estadísticos también se utilizan con propósitos cartográficos,
Estadística I. Finanzas y Contabilidad
Estadística I. Finanzas y Contabilidad Práctica 1: INTRODUCCIÓN AL USO DE SOFTWARE ESTADÍSTICO OBJETIVO: Los estudiantes deberán conocer el funcionamiento de la Hoja de Cálculo EXCEL y utilizarla para
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales
Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector
Tema 7 COSTO ESTÁNDAR
Tema 7 COSTO ESTÁNDAR Campus Santa Fé Miguel Ángel Gutiérrez Banegas 1 Introducción En el proceso de generación de información en los negocios, la predeterminación de costos soluciona la dificultad que
Multiple Linear Regression
Multiple Linear Regression Aniel Nieves-González Abril 2013 Aniel Nieves-González () Time Series Abril 2013 1 / 15 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por
FONDO MUTUO SURA SELECCION ACCIONES CHILE SERIE A Folleto Informativo al cierre de septiembre 2015
FONDO MUTUO SURA SELECCION ACCIONES CHILE SERIE A Administradora RUN Patrimonio Serie Monto Mínimo S.A. 8685 CLP $504.867.977 $5.000 Plazo : 10 días Rentabilidad en Pesos desde 01/10/2010 a 3% 1 Mes -3,55%
ESTADÍSTICA SEMANA 4
ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...
UNIVERSIDAD AUTÓNOMA GABRIEL RENÉ MORENO FACULTAD DE HUMANIDADES UNIDAD DE POSGRADO
UNIVERSIDAD AUTÓNOMA GABRIEL RENÉ MORENO FACULTAD DE HUMANIDADES UNIDAD DE POSGRADO Estudio Estadístico sobre un problema de la Educación Superior Estudiante: Daine Álvarez Ortiz Registro: 961010355 Módulo:
Circuito RC, Respuesta a la frecuencia.
Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un
Análisis de Regresión y Correlación con MINITAB
Análisis de Regresión y Correlación con MINITAB Primeras definiciones y conceptos de la regresión El análisis de la regresión es una técnica estadística que se utiliza para estudiar la relación entre variables
SERIES DE TIEMPO INTRODUCCIÓN
Clase Nº 5 SERIES DE TIEMPO INTRODUCCIÓN La forma más utilizada para el análisis de las tendencias futuras es realizar pronósticos. La función de un pronóstico de demanda de un bien, por ejemplo ventas
Servicios de salud en la Cruz Roja Mexicana, Delegación Xalapa, Ver.
Servicios de salud en la Cruz Roja Mexicana, Delegación Xalapa, Ver. Beatriz Meneses Aguirre RESUMEN En este documento se presenta información acerca del número de servicios que se han dado en el consultorio
Tema 2 Estadística Descriptiva
Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada
Una forma rápida de ordenar datos numéricos (Diagrama de Tallo y Hoja)
Una forma rápida de ordenar datos numéricos (Diagrama de Tallo y Hoja) Los siguientes datos corresponden a los precios de la libra de cobre en la Bolsa de Metales de Londres en Enero de 000. Día Precio
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
TEMA 9 DISTRIBUCIONES BIDIMENSIONALES
Tema 9 Distribuciones bidimensional Matemáticas CCI 1º Bachillerato 1 TEMA 9 DITRIBUCIONE BIDIMENIONALE NUBE DE PUNTO Y COEFICIENTE DE CORRELACIÓN EJERCICIO 1 : Las notas de 10 alumnos y alumnas de una
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS
UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS Wilson Mayorga M. Director de Cámara de Vida y Personas y Actuaría Con base en modelos de regresión que explican la evolución de las
LECCION 1ª Introducción a la Estadística Descriptiva
LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,
RIESGO Y PROBABILIDAD
RIESGO Y PROBABILIDAD Debido a la naturaleza del proyecto, se pueden presentar riesgos, por ejemplo actividades complejas que no se han realizado antes, nuevas tecnologías, actividades de investigación,
CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS
CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:
FONDO MUTUO SURA SELECCION ACCIONES USA SERIE A Folleto Informativo al cierre de septiembre 2015
FONDO MUTUO SURA SELECCION ACCIONES USA SERIE A Administradora RUN Patrimonio Serie Monto Mínimo S.A. 8915 CLP $2.016.700.184 $5.000 Rentabilidad en Pesos desde 21/03/2012 a 90% 1 Mes -3,98% Anual de Costos
DETERMINANTES MACROECONÓMICOS DE LOS SEGUROS DE VIDA Y PERSONAS
DETERMINANTES MACROECONÓMICOS DE LOS SEGUROS DE VIDA Y PERSONAS Wilson Mayorga M. Director de Cámara de Vida y Personas y Actuaría Mediante la estimación de modelos de regresión lineal se cuantificó el
MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN
MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes
TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I)
VARIABLES Variable: característica de cada sujeto (cada caso) de una base de datos. Se denomina variable precisamente porque varía de sujeto a sujeto. Cada sujeto tiene un valor para cada variable. El
