TRABAJO PRÁCTICO Nº 7
|
|
|
- Valentín Molina Godoy
- hace 10 años
- Vistas:
Transcripción
1 TRABAJO PRÁCTICO Nº 7 Empleo de compensadores de retardo constante y variable. Objetivo: Utilizar las láminas compensadoras para determinar el orden de los colores de interferencia y la elongación de los minerales. Compensadores Los compensadores son láminas accesorias que se introducen en la ranura o hendidura del microscopio de polarización para caracterizar varias propiedades ópticas diagnósticas de minerales anisótropos. Estas placas están elaboradas con minerales anisótropos, los cuales proporcionan retardos conocidos que se suman o restan al retardo producido por los minerales a analizar. Permiten realizar las siguientes observaciones: - Determinar las direcciones de vibración de los rayos lento (Z) y rápido (X) en el mineral. - Determinar la diferencia de paso o el retardo producido por un mineral para establecer la birrefringencia de la misma. - Determinar el signo óptico sobre figuras de interferencia en las observaciones conoscópicas. - Ubicar la posición exacta de extinción en secciones de baja birrefringencia o fuerte dispersión. Existen distintos tipos de compensadores, pero los más utilizados son: Tipo Nombre Para birrefringencia λ (*) Retardo Color Lámina de mica Baja 1/4 140 mµ Gris de 1 er orden Retardo constante Lámina de yeso Baja a media mµ Retardo variable Cuña de cuarzo Media a alta Variable (*) Longitud de onda de la luz de sodio. Rojo de 1 er orden Los compensadores de retardo constante presentan un espesor uniforme; mientras que los de retardo variable poseen un aumento progresivo de espesor (Figura 7.1). Para los compensadores de retardo constante la diferencia o ventaja que se produce entre un rayo y otro al pasar por ellos es conocida. En el caso de la cuña de cuarzo, se inserta inicialmente su extremo delgado en la abertura accesoria del microscopio y se produce un aumento creciente en los retardos a medida que sus porciones más espesas se interponen en el camino de la luz. 53
2 Medición de la diferencia de paso El método consiste en interponer en el camino de los rayos, debajo del analizador, una lámina anisótropa. Como cualquier mineral anisótropo, el mineral que compone cada compensador posee dos direcciones privilegiadas de vibración perpendiculares entre sí. Como ya hemos visto, el índice de refracción de una sustancia es inversamente proporcional a la velocidad de propagación de la luz en ella. Por lo tanto, la dirección que corresponde al mayor índice de refracción (N) equivale a la dirección del rayo lento Z, y la correspondiente al menor índice de refracción (n) equivale a la dirección del rayo rápido X. En la montura metálica del compensador está indicada la dirección del rayo lento Z con una flecha o línea (Figura 7.1). (a) (b) Figura 7.1. Compensadores de retardo constante (a) y variable (b). Determinación de las direcciones de vibración de los rayos lento (Z) y rápido (X) en un mineral anisótropo En todo cristal anisótropo vibran dos rayos perpendiculares entre sí que se desplazan con distintas velocidades de propagación. Para recordar, el rayo rápido se denomina X y corresponde al menor índice de refracción. El rayo lento denominado Z corresponde por lo tanto al mayor índice de refracción. Las placas compensadoras se colocan en la ranura del microscopio de forma que cruzan el campo visual a 45º de los hilos del retículo (equivale decir a 45º de las direcciones de vibración del polarizador y analizador del microscopio). En esta posición, cuando la sección mineral presenta máxima iluminación (color de interferencia más intenso), las direcciones de vibración de la placa coinciden con las direcciones de vibración del mineral. Pueden darse dos casos: Adición: La dirección de vibración del rayo lento de la placa es paralela a la dirección de vibración del rayo lento del mineral (Zp // Zm) y consecuentemente el rayo rápido de la placa es paralelo al rápido del mineral (Xp // Xm). Es la posición de adición, en la cual la diferencia de paso producida por la placa se suma a la diferencia de paso generada por el mineral. Al colocar la placa se aprecia un aumento en el color de interferencia del mineral. 54
3 Sustracción: La dirección de vibración del rayo lento de la placa es paralela al rayo rápido del mineral y viceversa (Zp // Xm y Xp // Zm). Es la posición de sustracción, en la cual la diferencia de paso producida por la placa se le resta a la diferencia de paso generada por el mineral. Al colocar la placa se aprecia un descenso en el color de interferencia del mineral. Generalmente se habla de compensación total cuando la placa resta exactamente la diferencia de paso producida por el mineral, en tal caso la birrefringencia se anula y el mineral queda extinguido. Recordar que la lámina de mica (retardo = 140 mµ) se utiliza para minerales de baja birrefringencia; la placa de yeso (retardo = 560 mµ) para minerales de birrefringencia baja a media; en tanto que la cuña de cuarzo (retardo variable) se usa para los que poseen birrefringencia media a alta. Ejemplo con lámina de yeso: 1) Colocar el mineral a analizar en posición de extinción, haciendo coincidir las direcciones de vibración de los dos rayos con los planos de vibración de los nicoles (hilos del retículo). 2) Luego girar la platina unos 45º de la posición de extinción para determinar el color de interferencia en la posición de máxima iluminación. 3) Insertar la lámina de yeso (560 mµ). El color de interferencia del mineral cambiará produciéndose un aumento (adición) o disminución (sustracción) en el color de interferencia: a) Adición: se suman los valores de retardo (retardo de las bandas observadas más el retardo de la placa de yeso) y se corrobora el valor obtenido con los colores de la Tabla de Michel Lévy. Esto ocurre porque las direcciones de vibración lentas y rápidas en el mineral y en el compensador coinciden: Zp // Zm y Xp // Xm (Figura 7.2). Con placa de yeso Adición Z p // Z m X p // X m Posición de extinción Máxima iluminación Anar. 1º mµ mµ = Anar. 2º mµ Rojo 1º mµ mµ = Rojo 2º mµ Azul 2º mµ mµ = Verde 3º mµ Figura 7.2. Direcciones de vibración cuando hay adición. 55
4 b) Sustracción: se restan los valores de retardo (retardo de las bandas observadas menos el retardo de la placa de yeso) y se corrobora el valor obtenido con los colores de la Tabla de Michel Lévy. Esto ocurre porque las direcciones de vibración lentas y rápidas en el mineral y en el compensador no coinciden: Zp // Xm y Xp // Zm (Figura 7.3). Con placa de yeso Sustracción Z p // X m X p // Z m Posición de extinción Máxima iluminación Anar. 1º mµ mµ = Gris 1º mµ Rojo 1º mµ mµ = Negro... 0 mµ Azul 2º mµ mµ = Gris 1º mµ Figura 7.3. Direcciones de vibración cuando hay sustracción. Ejemplo con cuña de cuarzo: Se siguen los mismos pasos que en el caso anterior, pero aquí el efecto aditivo puede determinarse mediante el desplazamiento que muestra la apretada sucesión de colores de interferencia en los bordes acuñados de los granos minerales. - Si al interponer la cuña de cuarzo se genera un movimiento de las bandas hacia el borde del mineral, el proceso es aditivo. - Si al interponer la cuña de cuarzo se genera un movimiento de las bandas hacia el centro del mineral, el efecto es sustractivo. Elongación de los minerales Esta propiedad óptica se determina únicamente en minerales de hábito prismático o acicular (presentan mayor desarrollo en una dirección) utilizando las placas compensadoras. Se denomina elongación (o alargamiento) a la relación que existe entre la mayor dimensión de un cristal (generalmente la dirección del eje cristalográfico c) y la dirección de vibración más próxima, sea el rayo lento Z o el rayo rápido X. La elongación puede ser positiva o negativa, según el siguiente criterio: 56
5 Positiva: cuando la dirección de vibración más próxima a la mayor longitud del mineral es el rayo lento Z, en consecuencia en esa posición estará el mayor índice de refracción. Ejemplo: piroxenos, anfíboles, olivino, cuarzo, sillimanita, rutilo, zircón, etc. (+) Rayo Lento (Z) Índice > (N) Negativa: cuando la dirección de vibración más próxima a la mayor longitud del mineral es el rayo rápido X, en consecuencia en esa posición estará el menor índice de refracción. Ejemplo: apatita, turmalina, clorita, andalucita, etc. (-) Rayo Rápido (X) Índice < (n) * * * * * Desarrollo del práctico Definir el color de interferencia y la birrefringencia de minerales anisótropos utilizando la tabla de Michel Lévy. Determinar las direcciones de vibración de los rayos lento (Z) y rápido (X) utilizando los distintos tipos de compensadores. En caso de que sea factible, determinar la elongación del mineral. 57
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
Vectores. Observación: 1. Cantidades vectoriales.
Vectores. 1. Cantidades vectoriales. Los vectores se definen como expresiones matemáticas que poseen magnitud y dirección, y que se suman de acuerdo con la ley del paralelogramo. Los vectores se representan,
1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica
1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:
VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.
VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman
Resolución de problemas. Temas: VOR e ILS
Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR
VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.
VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.
3.3.6 Introducción a los Instrumentos Ópticos
GUÍA DE ESTUDIO Complemento a la Unidad 3.3 LUZ 3.3.6 Introducción a los Instrumentos Ópticos. Instrumentos de Lente.. Imágenes Reales... El Proyector Opera con el objeto (diapositiva) muy cerca de la
Electrostática: ejercicios resueltos
Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos
VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.
CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través
ALGEBRA DE VECTORES Y MATRICES VECTORES
ALGEBRA DE VECTORES Y MATRICES VECTORES DEFINICIÓN DE ESCALAR: Cantidad física que queda representada mediante un número real acompañado de una unidad. EJEMPLOS: Volumen Área Densidad Tiempo Temperatura
Práctica 7. Dispersión de la luz mediante un prisma
Dispersión de la luz mediante un prisma 1 Práctica 7. Dispersión de la luz mediante un prisma 1. OBJETIVOS - Aprender el manejo del espectrómetro. - Determinar del índice de refracción de un prisma y de
TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)
1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso
Unidad didáctica: Electromagnetismo
Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.
1.4. Clasificación Microscópica de Rocas Ígneas. 1.4.1. Microscopios de Luz Polarizada.
1.4. Clasificación Microscópica de Rocas Ígneas. 1.4.1. Microscopios de Luz Polarizada. Primero describiremos un microscopio óptico común y la forma que los microscopios deben manipularse. Posteriormente
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
Existen dos sistemas básicos para producir el color: el sistema de color aditivo y el sistema de color sustractivo.
Continuación de Luz y Color (I) LA REPRODUCCIÓN DEL COLOR Existen dos sistemas básicos para producir el color: el sistema de color aditivo y el sistema de color sustractivo. El sistema de color aditivo
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
Objetivos. 19 mm 24 mm Gran angular 28 mm 50 mm Lente normal 70 mm 105 mm 135 mm Teleobjetivo 200 mm 400 mm. Lente gran angular:
26 27 Objetivos La cámara fotográfica básicamente está compuesta por dos partes: el cuerpo y la lente. La lente es mucho más importante que el cuerpo ya que definirá la calidad de la imagen. Los objetivos
TEMA 11 Optica. Bases Físicas y Químicas del Medio Ambiente. Ondas luminosas. La luz y todas las demás ondas electromagnéticas son ondas transversales
Bases Físicas y Químicas del Medio Ambiente Ondas luminosas TEMA 11 Optica La luz y todas las demás ondas electromagnéticas son ondas transversales La propiedad perturbada es el valor del campo eléctrico
SUMA Y RESTA DE VECTORES
SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
Espectro de Vega captado el 15-10-2012 (de 19h14 a 19h30 TU) con
Espectro de Vega captado el 15-10-2012 (de 19h14 a 19h30 TU) con SC 8 a f/6.3, cámara QSI y red de difracción Star Analyser 100. Tratamiento del espectro con Visual Spec. Se ve en la imagen Vega (espectro
PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL
1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma
requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.
2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,
CUPES L. Ciencias experimentales. Configuración Electrónica. Recopiló: M.C. Macaria Hernández Chávez
CUPES L Ciencias experimentales Configuración Electrónica Recopiló: M.C. Macaria Hernández Chávez 1. Existen 7 niveles de energía o capas donde pueden situarse los electrones, numerados del 1, el más interno,
INTRODUCCIÓN A VECTORES Y MAGNITUDES
C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.
PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO
PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO 1- OBJETIVO Y FUNDAMENTO TEORICO A efectos de cálculo, el comportamiento paraxial de un sistema óptico puede resumirse en el
Unidad: Representación gráfica del movimiento
Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce
Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9
Archivo: ie cap 12 ejem 09 Ejemplo nueve. Se pide: Dimensionar la estructura soporte del tinglado de la figura. Se analizan las solicitaciones actuantes en las correas, cabriadas, vigas y columnas, para
ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.
ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Centro de Capacitación en Informática
Fórmulas y Funciones Las fórmulas constituyen el núcleo de cualquier hoja de cálculo, y por tanto de Excel. Mediante fórmulas, se llevan a cabo todos los cálculos que se necesitan en una hoja de cálculo.
NIVEL 2 ADIESTRAMIENTO PARA ASESOR SENIOR MODULO 1 LENTES OFTALMICOS 2 ADAPTACIÓN DE LENTES OFTÁLMICOS
NIVEL 2 ADIESTRAMIENTO PARA ASESOR SENIOR MODULO 1 LENTES OFTALMICOS 2 ADAPTACIÓN DE LENTES OFTÁLMICOS La función compensadora de una lente oftálmica es conseguir que la imagen del objeto en infinito se
ANÁLISIS DEL ESTADO DE POLARIACIÓN
SESIÓN 5: ANÁLISIS DEL ESTADO DE POLARIACIÓN TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Luz natural Luz con el vector eléctrico vibrando en todas las direcciones del plano perpendicular a la dirección de propagación.
FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética
Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3
En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.
3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las
OPERATORIA CON NUMEROS NEGATIVOS
OPERATORIA CON NUMEROS NEGATIVOS Conjunto Z de los N os Enteros María Lucía Briones Podadera Profesora de Matemáticas Universidad de Chile. 34 CONJUNTO Z DE LOS NUMEROS ENTEROS.- Representación gráfica
INSTRUCCIÓN DE SERVICIO NOCIONES BÁSICAS PARA DIAGRAMAS DE FLUJO. MICROSOFT VISIO
INSTRUCCIÓN DE SERVICIO NOCIONES BÁSICAS PARA DIAGRAMAS DE FLUJO. MICROSOFT VISIO 2007 Fecha: 23/11/07 Autor: Aurora Estévez Ballester. TGRI Sección Normalización y Proceso Técnico Área de Bibliotecas
2. GRAFICA DE FUNCIONES
. GRAFICA DE FUNCIONES En vista de que el comportamiento de una función puede, en general, apreciarse mu bien en su gráfica, vamos a describir algunas técnicas con auda de las cuales podremos hacer un
Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.
1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos
INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes
Departamento de Física Universidad de Jaén INTRODUCCIÓN A LAS MÁQUINAS SIMPLES Y COMPUESTAS Aplicación a la Ingeniería de los capítulos del temario de la asignatura FUNDAMENTOS FÍSICOS I (I.T.MINAS): Tema
JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica
Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la
Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA
Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS
35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico
q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,
POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID. Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA)
POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA) MICROSCOPIA Elabore portada, introducción y descripción
= 4.38 10 0.956h = 11039 h = 11544 m
PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas
Líneas Equipotenciales
Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia
Docente: Carla De Angelis Curso: T.I.A. 5º
POLARIMETRIA La polarimetría es una técnica que se basa en la medición de la rotación óptica producida sobre un haz de luz linealmente polarizada al pasar por una sustancia ópticamente activa. La actividad
OPTIMIZACIÓN DEL AISLAMIENTO ACÚSTICO A RUIDO AÉREO EN SISTEMAS DE DOBLE PARED DE YESO LAMINADO Y LANA DE ROCA.
OPTIMIZACIÓN DEL AISLAMIENTO ACÚSTICO A RUIDO AÉREO EN SISTEMAS DE DOBLE PARED DE YESO LAMINADO Y LANA DE ROCA. José Carlos Aguilar ROCKWOOL PENINSULAR S.A. C/Bruc, nº 50-3ª, 08010 Barcelona; tel: 93.318.9028;
Definir columnas de estilo periodístico
Columnas de texto estilo periodístico Trabajar con columnas de texto Word posee una herramienta denominada columnas estilo periodístico la cual permite organizar el texto de un documento en dos o más columnas
Fundamentos del trazado electrocardiográfico
Clase 14 Fundamentos del trazado electrocardiográfico Los fenómenos de despolarización y repolarización que se registran en un electrocardiograma se representan a través de flechas llamadas vectores. Estos
COMPLEMENTOS BLOQUE 5: ÓPTICA
COMPLEMENTOS BLOQUE 5: ÓPTICA 1. ESPEJISMOS Otro fenómeno relacionado con la reflexión total es el de los espejismos. Se deben al hecho de que durante el verano o en aquellos lugares donde la temperatura
sistema solar? Solución: Porque la luz viaja en todas las direcciones. luz? Los objetos transparentes como el vidrio.
1 Cuál es la razón por la que los rayos del Sol son capaces de iluminar todos los planetas del sistema solar? Porque la luz viaja en todas las direcciones. 2 Relaciona las dos columnas mediante flechas.
5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura
5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a
LABORATORIO 7: LEY DE HOOKE. Calcular la constante de elasticidad de un resorte y determinar el límite de elasticidad.
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO 7: LEY DE HOOKE Calcular la constante de elasticidad de un resorte
11 Número de publicación: 2 240 556. 51 Int. Cl. 7 : A43C 15/16. 72 Inventor/es: Jungkind, Roland. 74 Agente: Díez de Rivera y Elzaburu, Ignacio
19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 240 6 1 Int. Cl. 7 : A43C 1/16 12 TRADUCCIÓN DE PATENTE EUROPEA T3 86 Número de solicitud europea: 01993409.0 86 Fecha de presentación
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
1. Magnitudes vectoriales
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere
TEMA 2. CIRCUITOS ELÉCTRICOS.
TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura
INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO
INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante
TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR
Tema 5 Simetría Molecular 1 TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR La simetría de una molécula determina muchas de sus propiedades e incluso determina cómo se producen algunas reacciones. El estudio
III. DIFUSION EN SOLIDOS
Metalografía y Tratamientos Térmicos III - 1 - III. DIFUSION EN SOLIDOS III.1. Velocidad de procesos en sólidos Muchos procesos de producción y aplicaciones en materiales de ingeniería están relacionados
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
TEMA: Dossier Energía Eólica. FECHA 14 04 08 PROYECTO O TRABAJO Dossier resumen sobre Energía Eólica
Una instalación de energía eólica busca el aprovechamiento de la energía cinética del viento para transformarlo en energía eléctrica. Se basa en la utilización de aerogeneradores o molinos eólicos que
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +
Representación de un Vector
VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores
CONCEPTOS BÁSICOS DE ELECTRICIDAD
CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga
1.1 Estructura interna de la Tierra
CAPITULO 1 NOCIONES BASICAS DE SISMOLOGÍA 1.1 Estructura interna de la Tierra La estructura interna de la Tierra (Fig. 1.1) esta formada principalmente por la corteza, manto y núcleo, siendo en estos medios
TEMA V ACOMODACIÓN Y PRESBICIA. VI - Pseudoimagen y círculo de desenfoque en el ojo acomodado
TEMA V ACOMODACIÓN Y PRESBICIA I - Acomodación: Punto próximo II - Amplitud de acomodación e intervalo de visión nítida III - Modificaciones del ojo durante la acomodación IV - El ojo teórico acomodado
Matemáticas para la Computación
Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.
Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1
Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1 La localización de los lugares en la superficie terrestre y su representación sobre un plano requieren de dos procesos distintos: en
Unidad III Sonido. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal.
Unidad III Sonido Unidad III - Sonido 3 Sonido Te haz preguntado qué es el sonido? Sonido: (en física) es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no),
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
Un Apunte de Funciones "Introducción al Cálculo Dif. e Int."
Un Apunte de Funciones "Introducción al Cálculo Dif. e Int." Las funciones son relaciones, las cuales, lo que hacen es tomar un elemento de un conjunto de partida (dominio) y transformarlo en otra cosa,
ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física
ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.
GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN
GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría
n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)
Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como
EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Sumador: C o. C in. Sumador serie: Sumador paralelo con propagación de arrastre:
UNIDAD ARITMETICO-LOGICA Conceptos Unidad aritmético-lógica: Elemento que realiza las operaciones aritméticas y lógicas entre los datos Operaciones típicas Sumar Restar Multiplicar Desplazamiento de registros
FÍSICA LAB. 8. la polarización. Comprender la técnica de análisis por espectroscopia. Visualización de los
FÍSICA LAB. 8 ÓPTICA FÍSICA Objetivos: Comprender y visualizar los espectros de difracción e interferencia y el fenómeno de la polarización. Comprender la técnica de análisis por espectroscopia. Visualización
d s = 2 Experimento 3
Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición
Polo positivo: mayor potencial. Polo negativo: menor potencial
CORRIENTE ELÉCTRICA Es el flujo de carga a través de un conductor Aunque son los electrones los responsables de la corriente eléctrica, está establecido el tomar la dirección de la corriente eléctrica
Tolerancias dimensionales. Especificaciones dimensionales y tolerancias
Tolerancias dimensionales Especificaciones dimensionales y tolerancias Eje y agujero Pareja de elementos, uno macho y otro hembra, que encajan entre sí, independientemente de la forma de la sección que
PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES.
PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. 1.1. Introducción Teórica. (a) El osciloscopio El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra
Potencial eléctrico. du = - F dl
Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula
Matemática Función exponencial
Matemática Función eponencial La selección de problemas que aquí se presentan forma parte del documento Función eponencial de la Serie Aportes para la enseñanza. Nivel Medio, en proceso de edición en la
Clase de apoyo de matemáticas Ángulos Escuela 765 Lago Puelo Provincia de Chubut
Clase de apoyo de matemáticas Ángulos Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la escuela 765 de
MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.
MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular
ACTIVIDADES Tema 10. 2. Qué relación hay entre los minerales y las rocas? Los minerales se mezclan para formar las rocas.
ACTIVIDADES Tema 10 1. Escribe en tu cuaderno una definición de mineral en la que se especifiquen las tres características que lo identifican. Un mineral es un sólido creado por la combinación química
TRANSFORMACIONES EN EL PLANO
TRANSFORMACIONES EN EL PLANO Conceptos teóricos Una transformación del plano es una aplicación del plano en el mismo. Esto significa que es un procedimiento que, a todo punto M del plano, asocia un punto
VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
1.1 Probetas de sección cuadrada
ANEXOS En este apartado se muestran todas las gráficas de todos los ensayos realizados en cada uno de los planos. 1.1 Probetas de sección cuadrada Con este tipo de ensayos se pretende estudiar si los resultados
Vectores en R n y producto punto
Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................
ELABORACION DE ESTADOS FINANCIEROS CON DATOS INCOMPLETOS
CAPITULO I V ELABORACION DE ESTADOS FINANCIEROS CON DATOS INCOMPLETOS 4.1. LA ECUACION PATRIMONIAL La condición o posición financiera de un negocio está representada por la relación que existe entre los
A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.
Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:
ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA
ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA 1. Hipótesis empleadas Las hipótesis que supondremos en este capítulo son: Material elástico lineal. Estructura estable La estructura es cargada lentamente. La
P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:
