DISEÑOS EXPERIMENTALES
|
|
|
- Vicenta Castellanos Fernández
- hace 9 años
- Vistas:
Transcripción
1 CAPITULO I DISEÑOS EXPERIMENTALES 1.1 ASPECTOS GENERALES El Diseño de Experimentos tuvo su inicio teórico a partir de 1935 por Sir Ronald A. Fisher, quién sentó la base de la teoría del Diseño Experimental y que a la fecha se encuentra bastante desarrollada y ampliada. Actualmente las aplicaciones son múltiples, especialmente en la investigación de las ciencias naturales, ingeniería, laboratorios y casi todas las ramas de las ciencias sociales. La experimentación proporciona los datos experimentales, en contraste con los datos de la observación; los datos de la observación se representan como su nombre indica por observaciones de las unidades elementales de una población o de una muestra, y no deben ser cambiados ni modificados por ningún intento de parte de un investigador en el curso de la observación. ORIENTACIONES GENERALES EN LA EXPERIMENTACION AGRICOLA En la planificación agrícola o biológica y en el desarrollo de una investigación en particular, son de interés las siguientes aspectos: a. Especificar los problemas, con el fin de probar hipótesis o encontrar respuestas. Es necesario considerar que los experimentos sean: a.1. Experimentos simples, cuando se estudia un solo factor de variación; por ejemplo, probar cinco variedades de sorgo, estudiar cinco dosis de nitrógeno en trigo, etc. a.2. Experimentos factoriales, cuando se estudian simultáneamente dos o más factores que influyen en la producción; por ejemplo, estudiar tres variedades, cada una sembrada a tres densidades de siembra, o bien tratamientos de fósforo, nitrógeno y potasio, cada uno a cuatro dosis por unidad de superficie. b. Ubicar el lugar adecuado para la realización de los experimentos, para lo cual se debe elegir una localidad accesible y representativa de áreas agrícolas, de suelo uniforme, con unidades experimentales lo más uniforme posible, y escoger el material adecuado para experimentos, de manera que pueda estratificarse (agruparse unidades experimentales con características homogéneas) el terreno correctamente para formar grupos uniformes y de fácil manejo. c. Reducir las fuentes de error, tanto del experimento como de aquellos errores o equivocaciones operacionales. Es muy importante que en la selección de datos, muestreo, etc., el personal responsable esté constituido por técnicos o personas con entrenamiento.
2 d. Mantener constante los diversos factores que pueden afectar a la producción o a la calidad del producto, de manera que los únicos factores de variación sean los tratamientos objeto de estudio. e. Extremar precauciones y ser cautos en los resultados experimentales, considerando que un experimento es una observación de una muestra en una población de experimentos. f. Repetir experimentos uniformes en diferentes localidades,suelos y años. g. Tener conocimiento de la tecnología de campo y saber cuáles son los problemas del productor. En la planeación o diseño de un experimento agronómico, es necesario aplicar un conjunto de disciplinas y conocimientos biológicos con el fin de encontrar una respuesta correcta a un problema específico. Por ejemplo, si se comparan diversas variedades de trigo, todos los factores de la producción que influyen en el comportamiento de las variedades deben permanecer constantes y las únicas fuentes de variación o diferencias serán presentadas por las variedades de trigo, si tales fuentes existen. Para lograr lo anterior, es necesario contar con ciertos conocimientos sobre: a. Suelos, a fin de elegir el terreno más uniforme y adecuado para realizar el experimento. b. Fertilización, para cuando sea necesario planear experimentos con fertilizantes químicos orgánicos o abonos orgánicos. c. Topografía e hidráulica, para trazar parcelas, niveles, riegos, etc. d. Especialidades afines como: Botánica, entomología, fitopatología, fisiología, genética, ecología, etc. para poder trabajar con seres vivos. e. Tecnologías de : Cultivos, sistemas agroforestales, agrosilvo pastoriles y zootecnia, para manejar las unidades experimentales. f. Estadística (biometría o bioestadística), para evaluar y separar las diversas causas de variación y para realizar la interpretación de los resultados experimentales.
3 Pasos al planear un experimento: El método científico sugiere que en el planeamiento de la experimentación se debe tener presente las siguientes etapas : a. Definir el problema: En esta etapa se debe determinar los antecedentes, importancia, objetivos, hipótesis a probar y revisión de la bibliografía. b. Planeamiento y diseño del experimento: En esta etapa se debe tener en cuenta: Lugar de ejecución del experimento, tamaño de la parcela o unidad experimental, número de repeticiones por tratamiento, equipos e instrumentos a utilizar y métodos de evaluación de los resultados c. Ejecución del experimento. d. Recolección de datos del experimento. e. Ordenamiento de la información experimental. f. Discusión de los resultados obtenidos. g. Análisis económico de los tratamientos que se probaron y utilidad práctica. h. Conclusión final y recomendación. DISEÑO DEL EXPERIMENTO Este término se utiliza para planear un experimento de manera que se pueda obtener la información pertinente a un determinado problema que se investiga y así tomar decisiones correctas. El diseño adecuado del experimento es una etapa fundamental de la experimentación, que permite el suministro correcto de datos a posteriori, los que a su vez conducirán a un análisis objetivo y con deducciones válidas del problema. PROPOSITO DE UN DISEÑO EXPERIMENTAL El propósito de un diseño experimental es proporcionar métodos que permitan obtener la mayor cantidad de información válida acerca de una investigación, teniendo en cuenta el factor costo y el uso adecuado del material disponible mediante métodos que permitan disminuir el error experimental.
4 TRATAMIENTO Los tratamientos vienen a constituir los diferentes procedimientos, procesos, factores o materiales y cuyos efectos van a ser medidos y comparados. El tratamiento establece un conjunto de condiciones experimentales que deben imponerse a una unidad experimental dentro de los confines del diseño seleccionado. Ejemplos: Dósis de fertilizante, ración alimenticia, profundidad de sembrado, distanciamiento entre plantas, variedades de un cultivo. TESTIGO El testigo es el tratamiento de comparación adicional, que no debe faltar en un experimento; por ejemplo, si se usan cinco tratamientos con fertilizante, el testigo puede ser aquel tratamiento que no incluye fertilizante. La elección del tratamiento testigo es de gran importancia en cualquier investigación, este se constituye como referencial del experimento y sirve para la comparación de los tratamientos en prueba. UNIDAD EXPERIMENTAL La unidad experimental, es el objeto o espacio al cual se aplica el tratamiento y donde se mide y analiza la variable que se investiga. En los experimentos pecuarios la unidad experimental por lo general esta conformada por un animal (cuye, cerdo, pato, etc.), en los experimentos forestales la unidad experimental en la mayoría de los casos esta conformado por un árbol y en la mayor parte de las pruebas de campo agrícolas, la unidad experimental es una parcela de tierra en lugar de una planta individual; es en este último caso que con frecuencia se presenta lo que se llama efecto de borde. Efecto de Borde En los experimentos agrícolas, muchas veces existen diferencias en el crecimiento y la producción de las plantas que están situadas en los perímetros de la parcela en relación con aquellas plantas situadas en la parte central; esta diferencia es llamado efecto de borde y puede causar sobre-estimación o sub-estimación de las respuestas de los tratamientos, llegando con esto a comparaciones sesgadas entre ellos. El efecto de bordes puede ser causado por: - Vecindad de las parcelas ó áreas no cultivadas, que hace que las plantas en los perímetros tengan menor competencia de luz y nutrientes. - Competencia entre tratamientos, que depende de la naturaleza de los tratamientos vecinos. Para controlar el efecto de borde se acostumbra a evaluar solamente las plantas centrales para los fines experimentales. Estas plantas centrales constituyen lo que se llama PARCELA NETA EXPERIMENTAL.
5 En el siguiente ejemplo se muestra el croquis de una parcela de maíz con cuatro surcos, donde las plantas de cabecera y de los dos surcos laterales, se consideran efectos de borde. Una manera de disminuir el efecto de borde es mediante el uso de Calles que pueden ser: áreas adyacentes sin sembrar ó el uso de bordes con plantas que no intervendrán en la cosecha del experimento ANALISIS DE LA VARIANCIA Es una técnica estadística que sirve para analizar la variación total de los resultados experimentales de un diseño en particular, descomponiéndolo en fuentes de variación independientes atribuibles a cada uno de los efectos en que constituye el diseño experimental.
6 Esta técnica tiene como objetivo identificar la importancia de los diferentes factores ó tratamientos en estudio y determinar como interactúan entre sí. HIPOTESIS ESTADISTICA Es el supuesto que se hace sobre el valor de un parámetro (constante que caracteriza a una población) el cual puede ser validado mediante una prueba estadística. En la investigación agraria al realizar un análisis estadístico utilizando el ANVA de un diseño experimental, la hipótesis a probar es si los tratamientos tienen el mismo efecto sobre la variable que se estudia, es así como se tienen las hipótesis planteada (Hp) e hipótesis alterna (Ha): Hp: τ i = 0 (Los i tratamientos tienen el mismo efecto sobre la variable en estudio) Ha: τ i 0 (No todos los tratamientos tienen el mismo efecto sobre la variable en estudio) Al probar la hipótesis estadística el investigador está propenso a cometer los siguientes tipos de errores: Error Tipo I: Se comete cuando se rechaza la hipótesis que se plantea, siendo esta hipótesis falsa; la magnitud de este error es fijado por el investigador y constituye el nivel de significación de la prueba ; usualmente los valores usados como nivel de significación son 0.05 ó Error tipo II: Se comete cuando se acepta la hipótesis que se plantea, siendo esta hipótesis falsa; la magnitud de este error no se puede fijar, pero si es posible minimizar utilizando un tamaño adecuado de muestra. PRINCIPIOS BASICOS DEL DISEÑO EXPERIMENTAL Los principios básicos del diseño experimental son: repetición, aleatorización, y control local. Repetición: Viene a ser la reproducción o réplica del experimento básico (asignación de un tratamiento a una unidad experimental). Las principales razones por las cuales es deseable la repetición son : Primero por que proporciona una estimación del error experimental, siendo tal estimación confiable a medida que aumenta el número de repeticiones, y segundo permite estimaciones más precisas del tratamiento en estudio. Aleatorización: Consiste en la asignación al azar de los tratamientos en estudio a las unidades experimentales con el propósito de asegurar que un determinado tratamiento no presente sesgo. Por otro lado la aleatorización hace válidos los procesos de inferencia y las pruebas estadísticas. Control Local (Control del error Experimental): Consiste en tomar medidas dentro del diseño experimental para hacerlo más eficiente, de tal manera que pueda permitir la reducción del error experimental y así hacerla más sensible a cualquier prueba de significación.
7 SUPUESTOS ACERCA DEL MODELO ESTADISTICO Los supuestos necesarios del modelo estadístico son: a. Aditividad: Los factores o componentes del modelo estadístico son aditivos, es decir la variable respuesta es la suma de los efectos del modelo estadístico. b. Linealidad: La relación existente entre los factores o componentes del modelo estadístico es del tipo lineal. c. Normalidad: Los valores resultado del experimento provienen de una distribución de probabilidad «Normal» con media µ y variancia σ 2. d. Independencia: Los resultados observados de un experimento son independientes entre sí. e. Variancias Homogéneas (Homocedasticidad): Las diversas poblaciones generadas por la aplicación de dos o más tratamientos tienen variancias homogéneas (variancia común). TIPOS DE MODELOS ESTADISTICOS De acuerdo a la selección de los tratamientos y otros factores se tiene la siguiente clasificación: Modelo I (Efectos Fijos): Se presenta cuando los tratamientos y demás factores que intervienen en un experimento son fijados por el investigador; es decir, no se efectúa una elección aleatoria. En estos casos las conclusiones del análisis de variancia solamente son válidas para los tratamientos y otros factores usados en el experimento. En el presente trabajo se ha considerado únicamente el caso de modelo de efectos fijos, por ser el que se presenta con mayor frecuencia en la experimentación agraria. Modelo II (Efectos aleatorios): Se presenta cuando los tratamientos y demás factores que intervienen en un experimento son elegidos al azar de una población. En estos casos las conclusiones del análisis de variancia son válidos, tanto para los tratamientos y demás factores usados, asi como para todas las poblaciones de tratamientos y factores. Modelo III (Modelo Mixto): Este modelo es la combinación de los dos anteriores y se presenta cuando algunos factores son fijados y otros son elegidos al azar. En estos casos las conclusiones del análisis de variancia serán válidas para toda la población de factores cuando estos son elegidos al azar, y solamente para los factores usados cuando estos son fijados.
8 PRUEBAS DE COMPARACION DE MEDIAS Es propósito de todo investigador que realiza un análisis de variancia de un experimento en particular, realizar la prueba sobre el efecto de los tratamientos en estudio, para ello hace uso de la prueba F el cual indicará si los efectos de todos los tratamientos son iguales o diferentes; en caso de aceptar la hipótesis de que todos los tratamientos no tienen el mismo efecto, entonces es necesario realizar pruebas de comparación de promedios a fin de saber entre que tratamientos hay diferencias, y para esto es necesario realizar pruebas de comparación múltiple como las siguientes: Diferencia Significativa Mínima (DLS): Es una prueba para comparar dos medias y su uso en comparaciones simultáneas se justifica sólo en las siguientes condiciones: a. La prueba F resulta significativa. b. Las comparaciones fuéron planeadas antes de ejecutar el experimento. Prueba de Rangos Múltiples de Duncan: Este procedimiento es utilizado para realizar comparaciones múltiples de medias; para realizar esta prueba no es necesario realizar previamente la prueba F y que ésta resulte significativa; sin embargo, es recomendable efectuar esta prueba después que la prueba F haya resultado significativa, a fin de evitar contradicciones entre ambas pruebas. Prueba de Rangos Múltiples de Tukey: Este procedimiento es llamado también «Diferencia Significativa Honesta», se utiliza para realizar comparaciones múltiples de medias; esta prueba es similar a la prueba de Duncan en cuanto a su procedimiento y además es más exigente. Prueba de Comparación de Dunnet: Esta prueba es útil cuando el experimentador está interesado en determinar que tratamiento es diferente de un testigo, control o tratamiento estándar, y no en hacer todas las comparaciones posibles (que pasarían a una segunda prioridad); es decir, cuando se quiere comparar el testigo con cada uno de los tratamientos en estudio. TRANSFORMACION DE DATOS La razón principal de la transformación de datos es que de llevarse a cabo un análisis estadístico con resultados que no cumplan con los supuestos acerca del modelo estadístico, se puede llegar a una conclusión equivocada. Un cambio de escala puede variar la media y la variancia de la variable así como su relación con respecto a otras variables. La forma de la distribución de una variable cambia con la escala. Mediante una transformación adecuada puede conseguirse que un variable que no se distribuye normalmente pase a tener una distribución casi normal. Las poblaciones con variancias desiguales pueden convertirse en homocedásticas (variancias homogéneas) mediante una transformación apropiada. Las transformaciones mas usadas son:
9 a. Transformación logarítmica El modelo lineal (por ejemplo Y ij = µ + τ i + β j + e ij ) indica que el efecto del bloque, el efecto del tratamiento y el error experimental, son todos ellos aditivos. Si los bloques y los tratamientos aumentan o disminuyen las mediciones en un determinado porcentaje en lugar de una determinada cantidad, entonces se dice que los efectos son multiplicativos y no aditivos. En estos casos, una transformación logarítmica transformará en aditiva la relación multiplicativa y en consecuencia el modelo lineal podrá ser aplicado a los nuevos datos. Para ciertos tipos de análisis, el investigador prefiere la escala que elimina las interacciones mientras que para otras puede preferir la escala que restituye los efectos lineales. Lo que hay que recordar es que la relación entre las variables está muy influenciada por las escalas con las que se miden dichas variables. Las interpretaciones de los datos sólo son válidas en relación con la escala particular adoptada en un caso determinado. b. Transformación de la raíz cuadrada Cuando los datos están dados por números enteros procedentes del conteo de objetos, como por ejemplo el número de manchas en una hoja o el número de bacterias en una placa, los números observados tienden a presentar una distribución de Poisson más que una distribución normal. Las consideraciones teóricas conducen a la transformación de la raíz cuadrada de los números observados. Normalmente esta transformación determina que las variancias de los grupos sean más iguales. También es aplicable a las distribuciones sesgadas puesto que acorta la cola larga. Si y es el número observado, para el análisis estadístico y la prueba de significación utilizaremos y 1/2. Cuando los números observados son pequeños (de 2 a 10), se prefiere la transformación (y+0.5) 1/2, en especial cuando algunos de los números observados son cero. COEFICIENTE DE VARIABILIDAD Es una medida de variabilidad relativa (sin unidades de medida) cuyo uso es para cuantificar en términos porcentuales la variabilidad de las unidades experimentales frente a la aplicación de un determinado tratamiento. En experimentación no controlada (condiciones de campo) se considera que un coeficiente de variabilidad mayor a 35% es elevado por lo que se debe tener especial cuidado en las interpretaciones y ó conclusiones; en condiciones controladas (laboratorio) se considera un coeficiente de variabilidad mayor como elevado. La expresión estimada del coeficiente de variabilidad es: cv= cme Y x100
NOTAS SOBRE DISEÑO DE EXPERIMENTOS
INTRODUCCIÓN DISEÑO DE EXPERIMENTOS El Diseño de Experimentos tuvo su inicio teórico a partir de 1935 por Sir Ronald A. Fisher, quién sentó la base de la teoría del Diseño Experimental y que a la fecha
BASES DEL DISEÑO EXPERIMENTAL EN CIENCIA ANIMAL
BASES DEL DISEÑO EXPERIMENTAL EN CIENCIA ANIMAL ETAPAS DE UNA INVESTIGACION a. Planteamiento y formulación del PROBLEMA b. Justificación c. Objetivos d. Hipótesis e. Procedimiento / diseño experimental
ANOVA Análisis de la Varianza en diseño de experimentos
ANOVA Análisis de la Varianza en diseño de experimentos NATURALEZA DEL DISEÑO EXPERIMENTAL El diseño experimental tiene sus orígenes en los trabajos de Ronald Aylmer Fisher (1890 1962) desarrollados en
Diseño de Experimentos
Diseño de Experimentos Estudios experimentales vs observacionales Experimento vs Muestreo La palabra experimento se utiliza en un sentido preciso, implicando una investigación donde un sistema bajo estudio
Diseño de Experimentos
Diseño de Experimentos p. Diseño de Experimentos Isabel Casas Despacho: 10.0.04 [email protected] Hector Cañada [email protected] Introducción Los modelos que vamos a estudiar son usados para
Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA
ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos
Diseño de experimentos. Introducción
Diseño de experimentos Introducción Objetivo: Introducción Es estudiar la influencia de FACTORES en la RESPUESTA RESPUESTA Variable de interés FACTOR(ES) Pueden ser controlados OTRAS VARIABLES Que pueden
- Si se repite un experimento, en condiciones indistinguibles, los resultados presentan variabilidad.
Introducción Los modelos que vamos a estudiar son usados para averiguar si una o más variables o factores afectan nuestra variable de interés. Ejemplos donde esta disciplina puede ser utilizada son: -
Diseño de Experimentos. Diseños Factoriales
Diseño de Experimentos Diseños Factoriales Luis A. Salomón Departamento de Ciencias Matemáticas Escuela de Ciencias, EAFIT Luis A. Salomón (EAFIT) Inspira Crea Transforma Curso 2016 Índice 1 Introducción
DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO
TEMA II ESQUEMA GENERAL Definición y clasificación del diseño experimental de grupos Diseño experimental de dos grupos: definición y clasificación Diseño experimental de dos grupos: análisis estadístico
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...
CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................
Diseño de Experimentos
Diseño de Experimentos Dr. Raúl René Robles de la Torre rrenerdlt @ yahoo.com, [email protected] Centro de Investigación en Biotecnología Aplicada Instituto Politécnico Nacional Origen A R. A. Fisher, estadístico
Diseño de Experimentos
Diseño de Experimentos Mejoramiento Continuo de Deming DOE Sí el análisis expuso una serie de factores de entrada para el proceso que deben ser controlados para maximizar o minimizar un resultado, entonces
Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F
Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa
Diseño Muestreo y Experimental -->fundamental para análisis estadísticos. Escogencia de factores (V. independientes), niveles de factores,
Diseño Muestreo y Experimental -->fundamental para análisis estadísticos Escogencia de factores (V. independientes), niveles de factores, (tratamientos), Unidades de repuesta (replicas), Unidades de muestreo
DISEÑO DE EXPERIMENTOS
DISEÑO DE EXPERIMENTOS Dr. Héctor Escalona [email protected] [email protected] Diseño de 1. Introducción al diseño de 2. Herramientas de inferencia estadística 3. para la comparación de dos tratamientos
Pruebas t para muestras pareadas
AGRO 55 LAB 1 Pruebas t para muestras pareadas PARTE I. Incluya en cada caso todos los pasos necesarios para probar las hipótesis correspondientes, una gráfica con t tab (t crítico), el cálculo del t obs
Planeación experimental
Planeación experimental Diseño de Experimentos Diseño de Experimentos Ventajas Identifica uno o más factores influyen dentro de la variable de respuesta. Permite establecer la combinación adecuada de tratamientos
Introducción a la Estadística Aplicada en la Química
Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00
Contraste de Hipótesis
Contraste de Hipótesis Introducción Ejemplo El peso de plantines de un arbusto forrajero, almacenado a temperatura y humedad relativa ambientes, obtenido a los 20 días desde la germinación es en promedio
4. TEORÍA DE DISEÑO DE EXPERIMENTOS
Una vez mostrados el capítulo de materiales de construcción así como el de propagación de señales de radio frecuencia, se puede unir los conceptos para poder diseñar el experimento que sirve para lograr
ERRORES Y FUENTES DE ERROR
FUNDACION NEXUS ERRORES Y FUENTES DE ERROR MAYO/2013 FUENTES DE ERROR El mayor esfuerzo en el control de la calidad de los resultados de un laboratorio está relacionado con los errores en las mediciones.
ESTADISTICA AVANZADA. Sesión D6/m2 Introducción DOE
ESTADISTICA AVANZADA Sesión D6/m2 Introducción DOE DOE - Definiciones Básicas Experimento Es un cambio en las condiciones de operación de un sistema o proceso, que se hace con el objetivo de medir el efecto
EXPERIMENTOS FACTORIALES
EXPERIMENTOS FCTORILES Generalidades Simbología Diseños Experimentales Ventajas Desventajas nálisis Estadístico Ventajas - Desventajas Ventajas 1. Economía en el material experimental, al obtener información
EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION
EXPERIMENTOS FCTORILES CON RESTRICCIONES DE LETORIZCION Diseño de Parcela Dividida Diseño de Bloques Divididos o en Franjas Características generales de estos diseños Esquemas a campo y aleatorización
Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías
ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis
ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC.
ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC. ALGUNAS DEFINICIONES NECESARIAS.. UNIDAD EXPERIMENTAL (UE) Porción de material
DESCRIPCIÓN DE DATOS POR MEDIO DE GRÁFICAS
ÍNDICE Introducción: Entrene su cerebro para la estadística... 1 La población y la muestra... 3 Estadísticas descriptivas e inferenciales... 4 Alcanzar el objetivo de estadísticas inferenciales: los pasos
AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II
Facultad de Ciencias EYactas, Físicas y Naturales Universidad Nacional de Córdoba AVISOS Bioestadística II 2015 El miércoles 1 Abril no hay clases de BIO II http://estadisticaybiometria.wordpress.com seguir
INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas
INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de
DISEÑO DE CUADRADOS LATINOS
DISEÑO DE CUADRADOS LATINOS a vimos que el diseño de bloques al azar, era el diseño apropiado cuando se conocía de antemano algún factor que fuera fuente de variabilidad entre las unidades experimentales.
Diseño de experimentos
Diseño de experimentos Quimiometría Por qué diseñar experimentos? Exploración: cuáles factores son importantes para realizar exitosamente un proceso Optimización: cómo mejorar un proceso Ahorro de tiempo:
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO CONTENIDO DE CARTA DESCRIPTIVA 1.- IDENTIFICACIÓN Curso: Bioestadística Programa: Doctorado en Inmunobiología
PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ
PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA
Diseño de Experimentos
Diseño de Experimentos Tema 3. Introducción al Diseño de Experimentos JAIME MOSQUERA RESTREPO QUE ES UN EXPERIMENTO? Pruebas o una serie de pruebas en las que se hacen cambios deliberados en las variables
Indicaciones para el lector... xv Prólogo... xvii
ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...
Conocer los principales métodos de la estadística inferencial e identificar sus aplicaciones a diversas áreas del conocimiento y de la cotidianidad.
NOMBRE DEL CURSO: ESTADÍSTICA INFERENCIAL CÓDIGO: CRÉDITOS 5 PRE-REQUISITO: POST-REQUISITO: JORNADA: PRESENTACIÓN: Se estudian los métodos más importantes de la estadística inferencial, enfocándose principalmente
Diseño de experimentos - Experimentos multifactoriales.
Diseño de experimentos - Experimentos multifactoriales http://www.academia.utp.ac.pa/humberto-alvarez/diseno-deexperimentos-y-regresion Introducción Los casos anteriores explicaban los diseños en bloques
Métodos de Diseño y Análisis de Experimentos
1 / 28 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM marzo 2018 Ideas básicas del diseño experimental Capítulo 4 de Analysis
CENTRO UNIVERSITARIO UAEM ZUMPANGO LIC. DE INGENIERO AGRONOMO EN PRODUCCIÓN DISEÑO DE BLOQUES AL AZAR PRESENTA. DR en EDU. JOSÉ LUIS GUTIÉRREZ LIÑÁN
CENTRO UNIVERSITARIO UAEM ZUMPANGO LIC. DE INGENIERO AGRONOMO EN PRODUCCIÓN DISEÑO DE BLOQUES AL AZAR PRESENTA DR en EDU. JOSÉ LUIS GUTIÉRREZ LIÑÁN SEPTIEMBRE, 2015 INTRODUCCIÓN Los diseños experimentales
FACULTAD DE AGRONOMÍA-ALUR SORGO DULCE PARA PRODUCCIÓN DE ETANOL ( )
FACULTAD DE AGRONOMÍA-ALUR SORGO DULCE PARA PRODUCCIÓN DE ETANOL (2006-2007) OBJETIVO GENERAL Estudiar el comportamiento del sorgo dulce para la producción de etanol buscando la mejor combinación posible
Metodología de la Investigación: Validez y Confiabilidad. Prof. Reinaldo Mayol Arnao
Metodología de la Investigación: Validez y Confiabilidad Prof. Reinaldo Mayol Arnao Validez en varios momentos En esta presentación hablaremos sobre la medición de la validez en dos pasos críticos de la
Diseño o de un estudio epidemiológico
Diseño o de un estudio epidemiológico Dr. José Luis Hernández Hernández Unidad de Metabolismo Óseo Departamento de Medicina Interna Hospital Marqués de Valdecilla Diseño del estudio: definición Un diseño
Análisis de la Varianza
Análisis de la Varianza El Análisis de la Varianza -ANOVA- es una herramienta del área de la inferencia estadística, utilizada en las investigaciones científico-técnicas. Objetivo: probar hipótesis referidas
Estadística III. Carrera: FOR Participantes Representante de las academias de Ingeniería Forestal de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística III Ingeniería Forestal FOR - 0619 2 1 5 2. HISTORIA DEL PROGRAMA Lugar
Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011
Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños
DISEÑO EN PARCELAS DIVIDIDAS
DISEÑO EN PARCELAS DIVIDIDAS Este es un diseño experimental combinado que resulta útil cuando al estudiar simultáneamente varios factores, alguno o algunos de ellos deben ser aplicados sobre unidades experimentales
Inferencia estadística: Prueba de Hipótesis. Jhon Jairo Padilla A., PhD.
Inferencia estadística: Prueba de Hipótesis Jhon Jairo Padilla A., PhD. Justificación Es una etapa de análisis de datos de un experimento comparativo: Se compara un parámetro de una v.a. con un valor dado.
DISEÑOS EXPERIMENTALES EN LAS CIENCIAS AGRÍCOLAS
DISEÑOS EXPERIMENTALES EN LAS CIENCIAS AGRÍCOLAS EXPERIMENTOS FACTORIALES PRINCIPIOS FUNDAMENTALES CONCEPTOS IMPORTANTES 1 } Experimentos factoriales se refiere al arreglo de los tratamientos, no es un
Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández
Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema
Carta de Probabilidad de Weibull
Carta de Probabilidad de Weibull Israel Jair Pérez Pérez* Israel González Barrera*, José Antonio Ruiz Ayerdi*, Christian Bonilla Monzón*, Antonio Romero Hernández*, Juan José Hurtado Moreno** *alumnos
INDICE Capitulo uno Introducción y estadísticas descriptiva Capitulo dos Conceptos en probabilidad Capitulo tres
INDICE Capitulo uno Introducción y estadísticas descriptiva 1.1. Introducción 1.2. descripción grafica de los datos 3 1.3. medidas numéricas descriptivas 11 Ejercicios 22 Apéndice: sumatorias y otras notaciones
Diseño de experimentos - prueba de hipótesis.
Diseño de experimentos - prueba de hipótesis http://www.academia.utp.ac.pa/humberto-alvarez/diseno-deexperimentos-y-regresion Inferencia estadística Conjunto de métodos y técnicas que permiten inducir,
Cada método (endocría, selección individual) tiene distinta capacidad de explotar la variabilidad genética.
HEREDABILIDAD Concepto La HEREDABILIDAD es el parámetro que se estima y discute más frecuentemente en genética cuantitativa, ya sea en mejora animal o vegetal, o cuando se aplica a poblaciones naturales.
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4)
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4) Apellido y nombre: - Este examen contiene 15 preguntas con 5 respuestas propuestas cada una. Identificar y marcar la única respuesta correcta en cada caso.
ENCUESTA NACIONAL AGROPECUARIA 2014 FICHA TÉCNICA
ENCUESTA NACIONAL AGROPECUARIA 2014 FICHA TÉCNICA ENCUESTA NACIONAL AGROPECUARIA 2014 FICHA TÉCNICA 1. OBJETIVOS 1.1 GENERALES Obtener información para la construcción de indicadores del sector agropecuario
Diseño de Bloques al azar. Diseño de experimentos p. 1/25
Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos
Análisis de la varianza
Análisis de la varianza José Gabriel Palomo Sánchez [email protected] E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor
Estadísticas básicas y medidas epidemiológicas para la Investigación en Salud Pública
Enfoque científico de la Salud Pública Estadísticas básicas y medidas epidemiológicas para la Investigación en Salud Pública Dr. Luis Gabriel Montes de Oca Lemus Objetivos Analizar las estadísticas de
Departamento de Ciencias del Mar y Biología Aplicada Prof. Jose Jacobo Zubcoff
Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Prof. Jose Jacobo Zubcoff Tema 5 Modelos de dos factores-tratamiento. Se continua trabajando
Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables
Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población
Diseño de bloques completos Aleatorizados. Jhon Jairo Padilla Aguilar, PhD.
Diseño de bloques completos Aleatorizados Jhon Jairo Padilla Aguilar, PhD. Introducción Factor perturbador: Factor del diseño que probablemente tenga un efecto sobre la respuesta, pero no existe un interés
Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays)
Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez Cadelga Maíz (Zea mays) Científica Objetivos Medir el Efecto Fisiológico AgCelence del Fungicida
El uso del diseño de bloques aumentados en la selección de clones de camote (Ipomoea batatas L.)
El uso del diseño de bloques aumentados en la selección de clones de camote (Ipomoea batatas L.) VIII Encuentro Científico Internacional de Invierno. 05 agosto 2009 Sergio Contreras Liza Facultad de Ciencias
Diseño de experimentos Hugo Alexer Pérez Vicente
Diseño de experimentos Hugo Alexer Pérez Vicente Recuerdo que Conceptos estadísticos Población y muestra Población es una colección de posibles individuos, especímenes, objetos o medidas de interés sobre
Investigación experimental. L.A. y M.C.E. Emma Linda Diez Knoth
Investigación experimental L.A. y M.C.E. Emma Linda Diez Knoth 1 2 Un experimento tiene como propósito evaluar o examinar los efectos que se manifiestan en la variable dependiente cuando se introduce la
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
Clave Lab 7- Experimentos con dos Factores
Clave Lab 7- Experimentos con dos Factores 1. Se realizó un experimento para estudiar los efectos de tres niveles de ácido sórbico (0, 100 y 200 ppm) y seis niveles de actividad de agua (AW) en la supervivencia
RESPUESTA A LA FERTILIZACIÓN CON BORO EN SOJA EN EL SUR DE SANTA FE
RESPUESTA A LA FERTILIZACIÓN CON BORO EN SOJA EN EL SUR DE SANTA FE Dr Fernando Salvagiotti. Nutrición Vegetal y Fertilidad de suelos EEA Oliveros INTA Introducción La degradación química de los suelos
Diseño de experimentos Hugo Alexer Pérez Vicente
Diseño de experimentos Hugo Alexer Pérez Vicente Métodos complementarios al análisis de varianza Comparaciones múltiples Comparación o pruebas de rangos múltiples Después de que se rechazó la hipótesis
Estadística para las Ciencias Agropecuarias
Estadística para las Ciencias Agropecuarias Séptima Edición Di Rienzo, Julio Alejandro Casanoves, Fernando Gonzalez, Laura Alicia Tablada, Elena Margot Díaz, María del Pilar Robledo, Carlos Walter Balzarini,
Título: Trabajo del riego en el girasol. Autor: Mónica Lorenzo 2. APROVECHAMIENTO DEL AGUA POR EL GIRASOL 3. OBJETIVOS PARA CONSEGUIR UN MEJOR RIEGO
Título: Trabajo del riego en el girasol Autor: Mónica Lorenzo 1. INTRODUCCIÓN 2. APROVECHAMIENTO DEL AGUA POR EL GIRASOL 3. OBJETIVOS PARA CONSEGUIR UN MEJOR RIEGO 4. SISTEMA DE RIEGO A UTILIZAR: PÍVOT
Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos
Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad
Supuestos y comparaciones múltiples
Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución
ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS
ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS Jorge Fallas [email protected] 2010 1 Temario Datos experimentales y distribuciones de referencia Una media poblacional Hipótesis nula, alternativa y nivel de
Pruebas de Hipótesis Multiples
Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ
Incidencia de la aplicación Smartfoil sobre la productividad del cultivo de Maíz.
Incidencia de la aplicación Smartfoil sobre la productividad del cultivo de Maíz. Ing. Agr. Adrián Mitidieri MSc. Protección Vegetal [email protected] Incidencia de la aplicación de
ÍNDICE. Introducción... Capítulo 1. El proceso del control de calidad. Metodologías... 1
ÍNDICE Introducción... XI Capítulo 1. El proceso del control de calidad. Metodologías... 1 El proceso de producción y la calidad... 1 Evolución del control de calidad... 3 Metodologías o modelos para el
Análisis de Covarianza
Capítulo VI Análisis de Covarianza El análisis análisis de covarianza es un procedimiento muy importante en experimentación, pero lamentablemente no se usa con frecuencia. Utiliza el análisis de varianza
El plan de muestreo. Oscar Federico Nave Herrera Coordinador del Programa de Asesoría Estadística para Investigación -Digi-
El plan de muestreo Oscar Federico Nave Herrera Coordinador del Programa de Asesoría Estadística para Investigación -Digi- Y ahora qué? Cuántas muestras debo tomar? Cuántas veces debo realizar los ensayos?
ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA
ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA HIPOTESIS Y PRINCIPIOS Sabemos a quién y qué vamos a estudiar. Ahora hay que decidir cuántos individuos contendrá la muestra. Hipótesis nula (H o )
Análisis de la varianza (ANOVA)
Análisis de la varianza (ANOVA) Mª Isabel Aguilar, Eugenia Cruces y Bárbara Díaz UNIVERSIDAD DE MÁLAGA Departamento de Economía Aplicada (Estadística y Econometría) Parcialmente financiado a través del
4.1 Análisis bivariado de asociaciones
4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis
MEDIDAS DE ASOCIACION
MEDIDAS DE ASOCIACION OBJETIVOS DE LA LECCION Que es asociación Identificar las medidas apropiadas para un diseño de estudio Construir tablas de contingencia Calcular e interpretar las medidas de asociación
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 2)
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 2) - Este examen contiene 15 preguntas con 5 respuestas propuestas cada una. Identificar y marcar la única respuesta correcta en cada caso. - Se aprueba con 9
