EXPERIMENTOS FACTORIALES
|
|
|
- María del Pilar Quiroga Cabrera
- hace 7 años
- Vistas:
Transcripción
1 EXPERIMENTOS FCTORILES Generalidades Simbología Diseños Experimentales Ventajas Desventajas nálisis Estadístico Ventajas - Desventajas Ventajas 1. Economía en el material experimental, al obtener información sobre varios factores sin aumentar el tamaño del experimento. Todas las u.e. se utilizan para la evaluación de los efectos.. Se amplía la base de la inferencia en relación a un factor, ya que se estudia en las diferentes condiciones representadas por los niveles de otros factores. Se amplía el rango de validez del experimento. 3. Permite el estudio de la interacción, esto es, estudiar el grado y forma en la cual se modifica el efecto de un factor por los niveles de los otros factores. Desventajas 1. Se requiere un gran número de u.e., sobre todo cuando se prueban muchos factores o muchos niveles de algunos factores, es decir, se tiene un número grande de tratamientos.. El análisis es más complejo, puede ser dificultosa la interpretación, sobre todo cuando las interacciones son significativas 1
2 Modelo Lineal El modelo lineal al cual responde un experimento factorial de factores ( y ) montado en un Diseño Completamente leatorizado (DC) es el siguiente: Y ijk µ + τ + β + ( τβ ) + i j ij ε ijk Donde: Y ijk Observación bajo el i-ésimo nivel del factor, j-ésimo nivel del factor, repetición k. µ Media general del ensayo. τ i Efecto del tratamiento. β j Efecto del tratamiento. (τβ ) ij Efecto de la interacción ( x ). ε ijk Error experimental (factores no controlados). NOV Fuentes de Variación Suma de Cuadrados Grados de Libertad Factor a 1 Factor b 1 Cuadrado Medio F Calculado F D F D Interacción ( x ) x (a 1) (b 1) F D Error Experimental D E ab (r 1) D D E Total T t abr 1
3 Planteo de Hipótesis Hipótesis 1: No hay diferencias entre los niveles del factor Hipótesis : No hay diferencias entre los niveles del factor. Hipótesis 3: No hay interacción entre los factores (independencia) Comparación de medias Interacción No significativa Significativa Estudio los efectos principales Estudio las combinaciones o interacciones Comparación de medias (Si el factor en estudio tiene más de dos niveles) Comparación de medias Efecto Principal: Se define como la diferencia entre los niveles de un mismo factor a todos los niveles de los otros factores Combinaciones o interacciones: Surgen de combinar todos los factores a todos los niveles. 3
4 Test de Tukey Interacciones no significativas Interacciones significativas 1) Para comparar los efectos principales de. q ( α;e ;a ) S rb ) Para comparar los efectos principales de. q ( α;e ;b ).. S ra Para comparar entre sí todas las combinaciones formadas por los niveles de los factores q ( α;e ;ab ). S r Gráfico de Interacciones N 1 N 1 N 0 N Nivel de P 0 1 Nivel de P N 1 N 1 N 0 N Nivel de P 0 1 Nivel de P 4
5 Variantes (DC) Yijk µ + λ + τ + β + ( τβ ) + ε k i j ij ijk Fuentes de Variación Suma de Cuadrados Grados de Libertad Cuadrado Medio F Calculado loque b r 1 Factor a 1 Factor b 1 b F D F D Interacción ( x ) x (a 1) (b 1) F D Error Experimental D E (ab -1) (r 1) D D E Total T Glt abr 1 Ejemplo 1 Deseamos probar dos dosis de nitrógeno y dos de fósforo en un cultivo de maíz. El campo experimental presenta una pendiente pronunciada. Se aconsejan realizar 5 repeticiones por tratamiento. loques Tratamientos N 0P 0 N 1P 0 N 0P 1 N 1P 1 Totales de loque I 1,00 1,50 3,0 3,80 9,50 II 1,60,30 4,50 5,00 13,40 III 1,0 1,10 5,60 6,00 13,90 IV 1,30 1,40 5,50 6,0 14,40 V 1,30 1,60 4,40 4,80 1,10 Totales Tratamientos 6,40 7,90 3,0 5,80 63,30 Media Tratamientos 1,8 1,58 4,64 5,16 Planteo de Hipótesis que se someterán a prueba: Hipótesis 1: No hay diferencias de rendimiento entre los dos niveles de nitrógeno. Hipótesis : No hay diferencias de rendimiento entre los dos niveles de fósforo. Hipótesis 3: No hay interacción entre los factores (independencia). 5
6 NOV Fuentes de Variación Suma de cuadrados Cuadrados Medios loque 3, ,963 F Calculado Factor (N) 0, ,8405,134 Factor (P) 60, ,045 15,836 * Interacción (N x P) 0, ,0605 0,154 Dentro Error Experimental 4,77 1 0,3939 Total 69, Suma de cuadrado total Yi i j k T Y i jk C Y,, i j k N i, j, k i, j, k j k Suma de cuadrado para cada factor Y + + Y a 1 L C rb Y1 + L + Yb C ra Suma de cuadrado para la interacción x x E Suma de cuadrado de tratamientos (E) Y11 + L + Y ab E C r Suma de cuadrado del error (D) D T x NOV Obtención de los F tabulados Fuentes de Variación del numerador del denominador Nivel de significancia F Tabulado F Cabulado Nitrógeno 1 1 0,05 4,75,134 Fósforo 1 1 0,05 4,75 15,836 * Interacción 1 1 0,05 4,75 0,154 Conclusión parcial Hipótesis 3: No hay interacción entre los factores (independencia). NO ES RECHZD Hipótesis 1: No hay diferencias de rendimiento entre los dos niveles de nitrógeno. NO ES RECHZD Hipótesis : No hay diferencias de rendimiento entre los dos niveles de fósforo. ES RECHZD 6
7 Gráfico de Interacción Rend P 1 P N Test de Tukey S 0,3939 d. m. s5 % 5% q5% 3,08 0,6113 ra 5x Tratamiento Media Significancia Significancia P 0 1,43 X a P 1 4,90 X b 7
8 Ejemplo Cuadro de nálisis de la Varianza F.V. F p-valor Modelo 18,00 3 6,00 6,00 0,0061 Variedad 5,00 1 5,00 5,00 0,0399 Epoca 0,0 1 0,0 0,0 0,6607 Variedad*Epoca 1,80 1 1,80 1,80 0,005 Error 16, ,00 Total 34, ,7 Gráfico de Interacción Rendimiento 6,58 5,89 5,0 Varied ad Variedad Tukey lfa0,05 DMS1,80943 Error: 1,0000 : 16 Variedad Epoca Medias n,00 4,60 5 1,00 5,80 5 1,00 6,40 5,00 7,0 5 4,51 1 Ep oca Ejemplo 3 Cuadro de nálisis de la Varianza F.V. F p-valor Modelo 101,50 5 0,30 33, <0,0001 Hibrido 39,00 19,50 31,91 <0,0001 Densidad 1,50 1 1,50,45 0,1346 Hibrido*Densidad 61,00 30,50 49,91 <0,0001 Error 11, ,61 Total 11,50 3 Gráfico de Interacción 10,3 Densidad 8,54 Producción 6,75 Densidad 1 4,96 3,17 C Hibrido 8
EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION
EXPERIMENTOS FCTORILES CON RESTRICCIONES DE LETORIZCION Diseño de Parcela Dividida Diseño de Bloques Divididos o en Franjas Características generales de estos diseños Esquemas a campo y aleatorización
Diseños Factoriales. Diseño de experimentos p. 1/18
Diseños Factoriales Diseño de experimentos p. 1/18 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de
Diseños Factoriales. Diseño de experimentos p. 1/25
Diseños Factoriales Diseño de experimentos p. 1/25 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de
Diseño de Experimentos. Diseños Factoriales
Diseño de Experimentos Diseños Factoriales Luis A. Salomón Departamento de Ciencias Matemáticas Escuela de Ciencias, EAFIT Luis A. Salomón (EAFIT) Inspira Crea Transforma Curso 2016 Índice 1 Introducción
Diseño Factorial. Introducción
Diseño Factorial Introducción n un experimento factorial se analizan todas las posibles combinaciones de los niveles de los factores en cada réplica del experimento. Por ejemplo, si el factor tiene a niveles
DISEÑO EN PARCELAS DIVIDIDAS
DISEÑO EN PARCELAS DIVIDIDAS Este es un diseño experimental combinado que resulta útil cuando al estudiar simultáneamente varios factores, alguno o algunos de ellos deben ser aplicados sobre unidades experimentales
DISEÑOS DE PARCELAS DIVIDIDAS
Experimentos Factoriales: Diseño de parcelas divididas y de bloques divididos 1 DISEÑOS DE PRCELS DIVIDIDS Este tipo de diseños se utiliza frecuentemente en experimentos factoriales cuando uno de los factores
DISEÑO EXPERIMENTAL FACTORIAL DE GRUPOS
TEMA III ESQUEMA GENERAL Definición del diseño factorial Clasificación del diseño factorial Efectos estimables en un diseño factorial Diseño factorial A x B completamente al azar: Estructura Diseño factorial
Diseño de Experimentos Experimentos factoriales
Diseño de Experimentos Experimentos factoriales Dr. Héctor Escalona Definición El termino genérico de diseño factorial se aplica a aquellos experimentos donde se desea evaluar el efecto de 2 o mas factores
Métodos de Diseño y Análisis de Experimentos
1 / 16 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM mayo 2018 Ejemplo Modelos Mixtos 2 / 16 3 / 16 Ejemplo 1 (2 factores
En clases anteriores hemos estudiado diseños aleatorizados a un factor (con y sin bloqueo), introduciendo el modelo de Análisis de la Varianza
Bioestadística II Bioestadística II En clases anteriores hemos estudiado diseños aleatorizados a un factor (con y sin bloqueo), introduciendo el modelo de Análisis de la Varianza Bioestadística II Bioestadística
Métodos de Diseño y Análisis de Experimentos
1 / 28 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM marzo 2018 Ideas básicas del diseño experimental Capítulo 4 de Analysis
2013-B. Diseño y análisis de experimentos. El chocomilk ideal
2013-B El chocomilk ideal Nadia Berenice Haro Mares Ulises Guadalupe Herrera Sillas Violeta María Isabel Martínez Mercado Angélica Rivera Pulido Proyecto Final Angélica, Nadia, Violeta y Ulises, acaban
ESQUEMA GENERAL DISEÑO FACTORIAL
TEMA III ESQUEMA GENERAL Definición Clasificación Efectos estimables en un diseño factorial Diseño factorial A x B completamente al azar Representación de la interacción DISEÑO FACTORIAL Definición El
4. DISEÑOS MULTIFACTORIALES O FACTORIALES
4. DISEÑOS MULTIFACTORIALES O FACTORIALES 4.1 PRINCIPIOS Y DEFINICIONES BASICAS Los arreglos factoriales se utilizan cuando en una investigación se pretende estudiar simultáneamente la influencia del cambio
DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN. Diseños en bloques completos aleatorizados con dos tratamientos
DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN Los diseños en bloques utilizan una restricción en la aleatorización. Los cuadrados latinos utilizan dos restricciones en la aleatorización.
AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II
Facultad de Ciencias EYactas, Físicas y Naturales Universidad Nacional de Córdoba AVISOS Bioestadística II 2015 El miércoles 1 Abril no hay clases de BIO II http://estadisticaybiometria.wordpress.com seguir
Diseño de Experimentos
Diseño de Experimentos Estudios experimentales vs observacionales Experimento vs Muestreo La palabra experimento se utiliza en un sentido preciso, implicando una investigación donde un sistema bajo estudio
Ideas básicas del diseño experimental
Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,
Diseño de Experimentos con varios factores. Jhon Jairo Padilla Aguilar, PhD.
Diseño de Experimentos con varios factores Jhon Jairo Padilla Aguilar, PhD. Experimento Factorial En cada ensayo completo o réplica del experimento se investigan todas las combinaciones posibles de los
DISEÑO DE CUADRADOS LATINOS
DISEÑO DE CUADRADOS LATINOS a vimos que el diseño de bloques al azar, era el diseño apropiado cuando se conocía de antemano algún factor que fuera fuente de variabilidad entre las unidades experimentales.
Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN
Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa
Diseño de experimentos - Experimentos multifactoriales.
Diseño de experimentos - Experimentos multifactoriales http://www.academia.utp.ac.pa/humberto-alvarez/diseno-deexperimentos-y-regresion Introducción Los casos anteriores explicaban los diseños en bloques
DISEÑO EN BLOQUES ALEATORIZADOS
DISEÑO EN BLOQUES ALEATORIZADOS DISEÑO EN BLOQUES ALEATORIZADOS COMPLETOS DISEÑO EN BLOQUES INCOMPLETOS ALEATORIZADOS DISEÑO EN CUADRADOS LATINOS DISEÑO EN CUADRADOS GRECO-LATINOS DISEÑO EN CUADRADOS DE
Diferentes tamaños de u.e. Diseño de experimentos p. 1/24
Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Introducción Los diseños experimentales que tienen varios tamaños de u.e. son: diseños de mediciones repetidas, diseños de parcelas divididas,
DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.
completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos
Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías
ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis
Experimentos con factores aleatorios. Diseño de experimentos p. 1/36
Experimentos con factores aleatorios Diseño de experimentos p. 1/36 Introducción Hasta ahora hemos supuesto que los factores de un experimento son factores fijos, esto es, los niveles de los factores usados
DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO)
DISEÑO FACTORIAL Niveles de B Niveles de A 1 2 3 4 5 1 y 11 y 12 y 13 y 14 y 15 2 y 21 y 22 y 23 y y 3 y 31 y 32 y 33 y 34 y 35 4 y 41 y 42 y 43 y 44 y 45 Todos los niveles de cada factor están combinados
APLICACIÓN DEL SISTEMA FLOWDRILL EN PLACAS DE ACERO INOXIDABLES
APLICACIÓN DEL SISTEMA FLOWDRILL EN PLACAS DE ACERO INOXIDABLES Autores Alberto Gallegos Araya, Ramon Araya Gallardo Departamento Mecánica. Universidad de Tarapacá. 8 Septiembre Arica -e-mail: [email protected]
Tema 4. Análisis multivariante de la varianza
Máster en Técnicas Estadísticas Análisis Multivariante Año 2008 2009 Profesor: César Sánchez Sellero Tema 4 Análisis multivariante de la varianza 4 Presentación del modelo Se trata de comparar las medias
ANOVA de dos factores Tema Objetivo. Concepto de interacción
AOVA de dos factores ema 7. Objetivo. Concepto de interacción. AOVA de dos factores, efectos fijos, completamente aleatoriazado (AOVA-AB-EF-CA). Comparaciones múltiples . Objetivo: estudiar si los valores
DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO
TEMA II ESQUEMA GENERAL Definición y clasificación del diseño experimental de grupos Diseño experimental de dos grupos: definición y clasificación Diseño experimental de dos grupos: análisis estadístico
ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto
TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto DISEÑOS DE MEDIDAS REPETIDAS Definición En el diseño medidas
CENTRO UNIVERSITARIO UAEM ZUMPANGO LIC. DE INGENIERO AGRONOMO EN PRODUCCIÓN DISEÑO DE BLOQUES AL AZAR PRESENTA. DR en EDU. JOSÉ LUIS GUTIÉRREZ LIÑÁN
CENTRO UNIVERSITARIO UAEM ZUMPANGO LIC. DE INGENIERO AGRONOMO EN PRODUCCIÓN DISEÑO DE BLOQUES AL AZAR PRESENTA DR en EDU. JOSÉ LUIS GUTIÉRREZ LIÑÁN SEPTIEMBRE, 2015 INTRODUCCIÓN Los diseños experimentales
5. DISEÑO FACTORIALES 2 k
5. DISEÑO FACTORIALES 2 k Los diseños factoriales son ampliamente utilizados en experimentos en los que intervienen varios factores para estudiar el efecto conjunto de éstos sobre una respuesta. Un caso
ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación
TEMA V ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación Análisis de la covarianza (ANCOVA) Modelos alternativos de análisis DISEÑO DE GRUPO CONTROL NO
Diseños con dos o más fuentes de variación (III): Otros diseños clásicos de experimentos
Diseños con dos o más fuentes de variación (III): Otros diseños clásicos de experimentos Tema 4 (III) Estadística 2 Curso 08/09 Tema 4 (III) (Estadística 2) ANOVA multifactorial Curso 08/09 1 / 17 ANOVA
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos
Diseño y análisis de experimentos
Diseño y análisis de experimentos Universidad Nacional de Colombia Sede Medelĺın Kenneth Roy Cabrera Torres 06 de febrero de 2018 1 / 16 Un factor Familia de diseños Modelos Supuestos Prueba de Hipótesis
Modelos mixtos. Diseño de experimentos p. 1/26
Modelos mixtos Diseño de experimentos p. 1/26 Introducción Cuando en la estructura de tratamientos de un experimento se tienen tanto factores fijos como aleatorios, el modelo que describe tales experimentos
ANOVA Análisis de la Varianza en diseño de experimentos
ANOVA Análisis de la Varianza en diseño de experimentos NATURALEZA DEL DISEÑO EXPERIMENTAL El diseño experimental tiene sus orígenes en los trabajos de Ronald Aylmer Fisher (1890 1962) desarrollados en
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Diseños experimentales con los mismos sujetos. Diseños experimentales con los mismos sujetos. Diseños experimentales con los mismos sujetos
Diseños experimentales con los mismos Una de las constantes que aparecen en todas las variantes experimentales expuestas hasta el momento es que el experimentador presenta tareas diferentes, s diferentes,
Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA
ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos
Diseño de Bloques al azar. Diseño de experimentos p. 1/25
Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un
CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS
CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular
DISEÑOS EXPERIMENTALES EN LAS CIENCIAS AGRÍCOLAS
DISEÑOS EXPERIMENTALES EN LAS CIENCIAS AGRÍCOLAS EXPERIMENTOS FACTORIALES PRINCIPIOS FUNDAMENTALES CONCEPTOS IMPORTANTES 1 } Experimentos factoriales se refiere al arreglo de los tratamientos, no es un
Estadística III. Carrera: FOR Participantes Representante de las academias de Ingeniería Forestal de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística III Ingeniería Forestal FOR - 0619 2 1 5 2. HISTORIA DEL PROGRAMA Lugar
Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011
Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños
Factoriales 1 EXPERIMENTOS CON FACTORIALES
Factoriales 1 EXPERIMENTOS CON FACTORIALES Los factoriales son combinaciones de factores (nitrógeno, fósforo, variedades, sustancias, niveles de concentrado, etc.) para formar tratamientos, los cuales
DISEÑO PARCELAS DIVIDIDAS
DISEÑO PARCELAS DIVIDIDAS Este es un diseño experimental combinado que resulta útil cuando al estudiar simultáneamente varios factores, alguno o algunos de ellos deben ser aplicados sobre unidades experimentales
DESCRIPCIÓN DE DATOS POR MEDIO DE GRÁFICAS
ÍNDICE Introducción: Entrene su cerebro para la estadística... 1 La población y la muestra... 3 Estadísticas descriptivas e inferenciales... 4 Alcanzar el objetivo de estadísticas inferenciales: los pasos
Métodos de Diseño y Análisis de Experimentos
1 / 30 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM abril 2018 Diseño de Bloques al azar 2 / 30 3 / 30 Introducción En
ANOVA mul)factorial. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff
ANOVA mul)factorial Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Se puede examinar más de un factor simultáneamente (ANOVA de 2 factores, de 3 factores, etc.) Por qué un único análisis
Soluciones a los ejercicios propuestos del Tema 6
Soluciones a los ejercicios propuestos del Tema 6 1 Soluciones a los ejercicios propuestos del Tema 6 6.1. Es un diseño de un factor (la estirpe). La tabla ANOVA es: actor (entre tratamientos) Error (dentro
Diseño de Experimentos
Diseño de Experimentos Mejoramiento Continuo de Deming DOE Sí el análisis expuso una serie de factores de entrada para el proceso que deben ser controlados para maximizar o minimizar un resultado, entonces
NOTAS SOBRE DISEÑO DE EXPERIMENTOS
INTRODUCCIÓN DISEÑO DE EXPERIMENTOS El Diseño de Experimentos tuvo su inicio teórico a partir de 1935 por Sir Ronald A. Fisher, quién sentó la base de la teoría del Diseño Experimental y que a la fecha
DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO
TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo
Experimento Gauge R & R.
Experimento Gauge R & R. Este tipo de experimento se usa para estudiar los componentes de variabilidad en un sistema de medida. Los componentes de usual interés son repetibilidad y reproducibilidad. La
BASES DEL DISEÑO EXPERIMENTAL EN CIENCIA ANIMAL
BASES DEL DISEÑO EXPERIMENTAL EN CIENCIA ANIMAL ETAPAS DE UNA INVESTIGACION a. Planteamiento y formulación del PROBLEMA b. Justificación c. Objetivos d. Hipótesis e. Procedimiento / diseño experimental
Folleto de Estadísticas. Teoría del 2do Parcial
Folleto de Estadísticas Teoría del 2do Parcial 2012 Variables aleatorias conjuntas continuas: Sean X y Y dos variables aleatorias continuas con ellas se asocia una función denominada función de densidad
Pruebas de Hipótesis Multiples
Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ
Diseños Factoriales. Existen situaciones en la que se esta interesado en estudiar el efecto conjunto de dos
Capítulo 3 Diseños Factoriales 3.1. Introducción. Existen situaciones en la que se esta interesado en estudiar el efecto conjunto de dos omásfactores sobre la respuesta. Si esta es la situación ninguno
El diseño factorial: efecto de la interacción. (Modelo no aditivo)
El diseño factorial: efecto de la interacción (Modelo no aditivo) La comprensión de los fenómenos psicológicos supone en muchas ocasiones analizar el efecto conjunto de varias variables dado que sólo su
Modelo de Análisis de la Covarianza. Introducción al modelo de Medidas Repetidas
Modelo de Análisis de la Covariza. Introducción al modelo de Medidas Repetidas Modelo de Análisis de la Covariza Introducción El diseño por bloques se considera para eliminar el efecto de los factores
ANÁLISIS DE LA VARIANZA MULTIFACTORIALES
Instituto Valenciano de Investigaciones Agrarias Seminario MÉTODOS ESTADÍSTICOS PARA LA INVESTIGACIÓN AGRONÓMICA Tema 7 ANÁLISIS DE LA VARIANZA MULTIFACTORIALES Análisis de la Varianza Multifactoriales
DISEÑO DE EXPERIMENTOS
DISEÑO DE EXPERIMENTOS Dr. Héctor Escalona [email protected] [email protected] Diseño de 1. Introducción al diseño de 2. Herramientas de inferencia estadística 3. para la comparación de dos tratamientos
Diseño de Experimentos
Diseño de Experimentos Tema 6. Validación de Supuestos JAIME MOSQUERA RESTREPO VERIFICACIÓN DE LA ADECUACIÓN DEL MODELO Los procedimientos estudiados son validos únicamente bajo el cumplimiento de 4 supuestos
Diseño de experimentos. Introducción
Diseño de experimentos Introducción Objetivo: Introducción Es estudiar la influencia de FACTORES en la RESPUESTA RESPUESTA Variable de interés FACTOR(ES) Pueden ser controlados OTRAS VARIABLES Que pueden
VIII Parcelas Divididas Experimentación en localidades
VIII Parcelas Divididas Experimentación en localidades Dr. Jesús Mellado 3 8.1 Características del diseño El diseño parcelas divididas se puede aplicar en diferentes modelos de experimentos, pero su mayor
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4)
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4) Apellido y nombre: - Este examen contiene 15 preguntas con 5 respuestas propuestas cada una. Identificar y marcar la única respuesta correcta en cada caso.
3.1. Diseño en Cuadrado Latino
3.1. Diseño en Cuadrado Latino Para el diseño de Cuadro Latino, se supone que es necesario comparar tres tratamientos A, B y C en presencia de otras dos fuentes de variabilidad. Por ejemplo, los tres tratamientos
Diseño de experimentos
Diseño de experimentos Quimiometría Por qué diseñar experimentos? Exploración: cuáles factores son importantes para realizar exitosamente un proceso Optimización: cómo mejorar un proceso Ahorro de tiempo:
En el pasado, en la realización de experimentos que envolvían más de un factor, y cada
Capitulo 4. Planeamiento Factorial (Convencionales) 4.1 Introducción. En el pasado, en la realización de experimentos que envolvían más de un factor, y cada factor con más de una variable, se adoptaba
DISEÑOS EXPERIMENTALES EN LAS CIENCIAS AGRÍCOLAS
DISEÑOS EXPERIMENTALES EN LAS CIENCIAS AGRÍCOLAS EXPERIMENTOS FACTORIALES PRINCIPIOS FUNDAMENTALES CONCEPTOS IMPORTANTES 1 } Experimentos factoriales se refiere al arreglo de los tratamientos, no es un
Departamento de Ciencias del Mar y Biología Aplicada Prof. Jose Jacobo Zubcoff
Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Prof. Jose Jacobo Zubcoff Tema 5 Modelos de dos factores-tratamiento. Se continua trabajando
TEMA 2 Diseño de experimentos: modelos con varios factores
TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial
TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN
TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN 1 DISEÑO DE INVESTIGACIÓN Y 1 A = a 1 a Y 1 A = 3 a 1 a a Hipótesis específicas de la investigación Cuando la variable independiente tiene
ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes
ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar
SOLUCIONES EJERCICIOS MISCELANEA. Problema 1. Dagoberto Salgado Horta Página 1
SOLUCIONES EJERCICIOS MISCELANEA Problema 1 Dagoberto Salgado Horta Página 1 Como se observa en la tabla la Fcal es mayor que la Ftab por lo que podemos concluir diciendo que existen diferencias significativas
Tema V. EL ANOVA multifactorial
5.1. El ANOVA de múltiples factores: - Factorial (ortogonal): los no ortogonales no los veremos - Factores fijos, aleatorios y mixtos (consecuencias prácticas) - El Anova encajado La variable que vamos
ESTADÍSTICA APLICADA A LA MEDICINA LABORAL
ESTADÍSTICA APLICADA A LA MEDICINA LABORAL ---oo--- II Curso 29/ Pedro Femia Marzo Bioestadística - Facultad de Medicina http://www.ugr.es/local/bioest Un esquema general de comparación de medias 2 Asumible
Experimentos factoriales con factores aleatorios
Experimentos factoriales con factores aleatorios Hasta el momento hemos presumido que los factores en nuestros experimentos eran de naturaleza fija; esto es los niveles en que los factores fueron evaluados
EXPERIMENTOS FACTORIALES
EXPERIMENTOS FACTORIALES En los modelos de los experimentos factoriales los parámetros τi que hacen referencia a los efectos de tratamientos se descompone en un conjunto de parámetros que dan cuenta de
(DERIVADAS DE LA NORMAL)
DISTRIBUCIÓN NORMAL MULTIVARIANTE (DERIVADAS DE LA NORMAL) INTRODUCCIÓN PROPIEDADES LINEALIDAD DISTRIBUCIONES DERIVADAS DE LA NORMAL χ 2 DE PEARSON t DE STUDENT F DE SNEDECOR DISTRIBUCIÓN NORMAL MULTIVARIANTE
Diseños en cuadrados de Youden
Capítulo 9 Diseños en cuadrados de Youden 9.1. Introducción Hemosestudiadoqueeneldiseñoencuadradolatinosetienequeverificarquelos tres factores tenganelmismo númerodeniveles,es decir quehaya elmismonúmerode
U ED Tudela Diseños de Investigación y Análisis de Datos - Tema 7
Diseños de Investigación y Análisis de Datos Preguntas de exámenes TEMA 7: A OVA PARA MUESTRAS I DEPE DIE TES (2 FACTORES) 1.- Se dice que un diseño bifactorial es equilibrado si: A) Los grupos tienen
Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F
Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa
Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays)
Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez Cadelga Maíz (Zea mays) Científica Objetivos Medir el Efecto Fisiológico AgCelence del Fungicida
Segundo Examen Parcial
Segundo Examen Parcial Nombre: AGRO 6600 2009 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
Análisis de la Varianza
Análisis de la Varianza El Análisis de la Varianza -ANOVA- es una herramienta del área de la inferencia estadística, utilizada en las investigaciones científico-técnicas. Objetivo: probar hipótesis referidas
