Tema V. EL ANOVA multifactorial
|
|
|
- Virginia Rubio Ferreyra
- hace 8 años
- Vistas:
Transcripción
1 5.1. El ANOVA de múltiples factores: - Factorial (ortogonal): los no ortogonales no los veremos - Factores fijos, aleatorios y mixtos (consecuencias prácticas) - El Anova encajado La variable que vamos a estudiar (dependiente) = valor de HDL en sangre Los factores: / /No fumador Igual número de réplicas en cada combinación de los dos factores: No fumador 5 casos 5 casos 5 casos 5 casos Porcentage de HDL en sangre No fumador Muestra 1 (10 enfermos): 120, 116, 114, 117, 114, 112, 107, 110, 111, 113 Muestra 2 (10 sanos): 107,, 105, 107, 106, 111, , 111, 110 1
2 HDL HDL HDL Tema V. EL ANOVA multifactorial 5.2. El ANOVA de dos factores fijos: - Ejemplo y datos - Interpretación unifactorial versus multifactorial (las interacciones) - La importancia de las interacciones Porcentage de HDL en sangre No fumador Muestra 1 (10 enfermos): 120, 116, 114, 117, 114, 112, 107, 110, 111, 113 Muestra 2 (10 sanos): 107,, 105, 107, 106, 111, , 111, 110 Factor I.C. 95% 116 Los 2 factores y la interacción No Factor no F unifactorial = 12,14** F enfermedad = 135,17 *** F vicio = 0,03 ns F interacción = 35,17 *** F unifactorial = 0,20 ns 2
3 HDL HDL HDL HDL HDL HDL Tema V. EL ANOVA multifactorial 5.2. El ANOVA de dos factores fijos: - Descripción de los posibles efectos:. (E); (V) e interacción (I) 116 No 116 No 116 No E NS V NS I NS E *** V NS I NS E NS V NS I *** No 116 No E NS V *** I NS No E *** V *** I NS E NS V *** I *** 3
4 5.2. El ANOVA de dos factores fijos: - Las fórmulas son una extensión del ANOVA unifactorial - Se aplican igual para dos o más factores No fumador (1) s (1): x ab1, x ab2, x ab3, x abn s (a): x ab1, x ab2, x ab3, x abn (b) x ab1, x ab2, x ab3, x abn x ab1, x ab2, x ab3, x abn 4
5 5.2. El ANOVA de dos factores fijos: - Los componentes de varianza y el test estadísticos:. La mayoría de los PROGRAMAS aplican el modelo III (no se corrigen). Realización del test No fumador (1) s (1): x ab1, x ab2, x ab3, x abn s (a): x ab1, x ab2, x ab3, x abn (b) x ab1, x ab2, x ab3, x abn x ab1, x ab2, x ab3, x abn Factores Componentes Test (E) CM E = σ 2 w + bnσ2 E /(a-1) CM E /CM w (V) CM V = σ 2 w + anσ2 V /(b-1) CM V /CM w Interacción (EV) CM EV = σ 2 w + nσ2 EV CM EV /CM w Residuo (w) CMw = σ 2 w Gl SC CM Test F (E) /3,3 = 35 *** (V) 1 3,2 3,2 3,2/3,3 = 0,9 ns Interacción (I= ExV) /3,3 = 35 *** Residuo 16 52,4 3,27 Total 19 5
6 5.2. El ANOVA de dos factores fijos: - El test estadístico (modelo I):. Salida de software especializado (SPSS/PC) Variable dependiente: HDL Suma de Fuente cuadrados tipo I gl Media cuadrática F Significación Modelo corregido a Intersección * Error Total Total corregida a. R cuadrado =.817 (R cuadrado corregida =.782) En cualquier caso la interacción es importante! 6
7 5.2. El ANOVA de dos factores fijos: - La magnitud de los efectos (uso de los eta 2) :. Comparación de dos factores significativos * Error Factores Componentes Test eta 2 EV = (CMEV CMw) = 22,4 n (E) CM E = σ 2 w + bnσ2 E /(a-1) CM E /CM w (V) CM V = σ 2 w + anσ2 V /(b-1) CM V /CM w Interacción (EV) CM EV = σ 2 w + nσ2 EV CM EV /CM w Residuo (w) CMw = σ 2 w eta 2 E = (CME CMw)(a-1) = 11,2 bn Efecto EV >> Efecto E 112 HDL116 La interacción es de hecho LO MÁS IMPORTANTE! 7
8 5.3. El ANOVA de dos factores aleatorios y mixto: - Si imaginamos otro ejemplo con distintos factores:. Aleatorio: la evaluación de los componentes E (aleatorio) V (aleatorio). Mixto: la evaluación de los componentes E (fijo) V (aleatorio) - Se pueden deducir los componentes de cualquier ANOVA, a partir del sencillo - Los software comerciales realizan estos cálculos automáticamente - Se pueden estimar los componentes de la varianza (de forma parecida a los eta 2 ) ANOVA aleatorio Factores Componentes Test (E) CM E = σ 2 w + nσ2 EV + bnσ2 E /(b-1) CM E /CM EV (V) CM V = σ 2 w + nσ2 EV + anσ2 V /(a-1) CM V /CM EV Interacción (EV) CM EV = σ 2 w + nσ2 EV CM EV /CM w Residuo (w) CMw = σ 2 w ANOVA mixto Factores Componentes Test (E) CM E = σ 2 w + nσ2 EV + bnσ2 E /(a-1) CM E /CM EV (V) CM V = σ 2 w +anσ2 V CM V /CM w Interacción (EV) CM EV = σ 2 w + nσ2 EV CM EV /CM w Residuo (w) CMw = σ 2 w 8
9 5.3. El ANOVA de dos factores aleatorio y mixto: - El ejemplo anterior pero analizado mediante modelos mixto ó aleatorio: Porcentage de HDL en sangre No fumador Muestra 1 (10 enfermos): 120, 116, 114, 117, 114, 112, 107, 110, 111, 113 Muestra 2 (10 sanos): 107,, 105, 107, 106, 111, , 111, 110 p Fuente Intersección * a. b. c. MS() Hipótesis Error Hipótesis Error Hipótesis Error Hipótesis Error MS( * ) MS(Error) ANOVA aleatorio Suma de cuadrados Media tipo I gl cuadrática F Significación a b b c El mixto es muy parecido F V = 3,2/3,27 9
10 5.4. El ANOVA de dos factores encajado: - En algunos casos interesa la variación de un factor superpuesta a la variación en otro - Factores encajados: los niveles dentro de cada tratamiento no son idénticos Datos Antiguos No fumador s: 120, 116, 114, 117, 114, 112, 107, 110, 111, 113 s: 107,, 105, 107, 106, 111, , 111, 110 s Datos Nuevos s Año 1 Año 2 Año 1 Año Año 1 y Año 2 no serían los mismos, necesariamente, en s y s. 10
11 5.4. El ANOVA de dos factores encajado: - La partición de un ANOVA encajado: (Fijo), Año (encajado) E (FIJO) y A (FIJO) Factores G.L. S.C. Componentes Test (E) a-1 SC E CM E = σ 2 w + bnσ2 E /(a-1) CM E /CM w Año (A) b-1 SC A CM A = σ 2 w + anσ2 A /(b-1) CM A /CM w Interacción (EA) (a-1)(b-1) SC EA CM EA = σ 2 w + nσ2 EA CM EA /CM w Residuo (w) ab(n-1) SC w CMw = σ 2 w E (FIJO) y A (ENCAJADO) Factores G.L. S.C. Componentes Test (E) a-1 SCE CM E = σ 2 w + nσ2 A +bnσ2 E /(a-1) CM E /CM A Año (A(E)) a(b-1) SCA+SCEA CM A = σ 2 w + nσ2 A CM A /CM w Residuo (w) ab(n-1) SCw CMw= σ 2 w 11
12 5.4. El ANOVA de dos factores encajado: - El ejemplo Datos Nuevos s s Año 1 Año 2 Año 1 Año Año * Año Error Gl SC CM Test F (E) /59,2 = 1,9 ns Año (A(E)) 2 118,4 59,2 59,2/3,3 = 18,1 *** Residuo 16 52,4 3,27 Total 19 Los efectos de la enfermedad no son reales si se promedian en años diferentes 12
13 5.5. El ANOVA de más de dos factores: - No hay límite teórico, pero muchos diseños no son prácticos - Hay que evaluar los grados de libertad del numerador y denominador (test F) 13
14 Referencias Bibliográficas LIBROS: Sokal,R.R., Rohlf, F.J Biometry. Freeman and co., New York Underwood, A.J Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Ann. Rev., 19: PÁGINAS WEB: (Ejemplo de software aplicado de estadística que se puede descargar gratis por 30 días) 14
Tema IX. El diseño experimental
9.1. El problema: - Necesidades Prácticas:. Tiempo y recursos limitados. Obtención de resultados claros y repetibles - Esfuerzo experimental versus diseño experimental:. Metodológico. Estadístico 1 9.2.
Tema IV. EL ANOVA de un factor
4.1. La estrategia del Análisis de varianza: - Los test t múltiples (múltiples tratamientos); corrección a posteriori - La mejora del ANOVA: necesidad de análisis a posteriori C Test t A versus B A versus
Tema I. Introducción. Ciro el Grande ( A.C.)
1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente
Tema II. Las muestras y la teoría paramétrica
2.1. Muestras y muestreos: - La muestra:. Subconjunto de elementos de la población. Necesidad práctica:. Motivos económicos. Imposibilidad (práctica/teórica) de estudiar TODA la población. Inconveniencia
ANEXO I. ANÁLISIS DE LA VARIANZA.
ANEXO I. ANÁLISIS DE LA VARIANZA. El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias. Cuando se quiere comparar más de dos medias es incorrecto utilizar
Tipo de punta (factor) (bloques)
Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.
ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ
ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ Presentado a: MARIA ESTELA SEVERICHE CORPORACION UNIVERSITARIA
Análisis de Componentes de la Varianza
Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable
Análisis de la varianza ANOVA
Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación
AGRO 6600 Segundo Examen Parcial
AGRO 6600 Segundo Examen Parcial Nombre: 2012 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays)
Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez Cadelga Maíz (Zea mays) Científica Objetivos Medir el Efecto Fisiológico AgCelence del Fungicida
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:
Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial
bloques SC Suma de Cuadrados k trat bloques
Análisis de un diseño en bloques aleatorios Cuando sólo hay dos tratamientos, el análisis de varianza de una vía equivale al test t de Student para muestras independientes. A su vez, el análisis de varianza
Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple
Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción
TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN
TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación
Métodos estadísticos aplicados para la Ingeniería Informática
Grado en Ingeniería Informática Métodos estadísticos aplicados para la Ingeniería Informática Rosa Mª Alcover Arándiga Departamento de Estadística e Investigación Operativa Aplicadas y Calidad Objetivo
Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016
Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
ÍNDICE INTRODUCCIÓN... 21
INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...
Modelo de diseños factoriales y diseños 2 k
Modelo de diseños factoriales y diseños 2 k Introducción En el tema anterior se analizaron la posible influencia de un factor sobre la variable respuesta, aleatorizando las observaciones para eliminar
PRÁCTICA 3: Ejercicios del capítulo 5
PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable
DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA
2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...
www.atalayadecristo.org
Marzo 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo
Diseño de Bloques al azar. Diseño de experimentos p. 1/25
Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un
EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS
EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS Las soluciones a estos ejercicios y los outputs del SPSS se encuentran al final. EJERCICIO 1. Comparamos dos muestras de 10
Estadísticos Aplicados en el SPSS 2008
PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías
Diseño Estadístico de Experimentos
Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible
ANÁLISIS DISCRIMINANTE
DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis
EJERCICIOS DE DISEÑO DE INVESTIGACIÓN EXPERIMENTAL (Práctica)
EJERCICIOS DE DISEÑO DE INVESTIGACIÓN EXPERIMENTAL (Práctica) Curso 1999/000 Contenido: i) Respuestas ejercicios apuntes teoría ii) 8 Ejercicios prácticos (resueltos) Prof. Manuel Perea RESPUESTAS A LOS
ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso
ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta
Pruebas de Hipótesis Multiples
Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.
Diseño completamente aleatorizado: análisis de la varianza con un solo factor.
Tema 4 Diseño de experimentos Introducción. Qué es el diseño experimental? Diseño completamente aleatorizado: análisis de la varianza con un solo factor. Diseño en bloques aleatorizados. Diseño factorial
Método de cuadrados mínimos
REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,
6. DISEÑOS FACTORIALES 2 K NO REPLICADOS
6. DISEÑOS FACTORIALES 2 K NO REPLICADOS 6.1 INTRODUCCION El aumentar el numero de factores en un diseño 2 k crece rápidamente el numero de tratamientos y por tanto el numero de corridas experimentales.
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Asignación 5. Problema 1
Asignación 5 Problema 1 Consider the four factor factorial experiment where factor A is at a levels, factor B is at b levels, factor C is at c levels, factor D is at d levels, and there are n replicates.
CAPÍTULO 9 INTRODUCCIÓN AL ANÁLISIS DE LA VARIANZA
CAPÍTULO 9 INTRODUCCIÓN AL ANÁLISIS DE LA VARIANZA 9.1 COMPARACIÓN DE 2 POBLACIONES 9.1.1 Ejemplos En el tema anterior se ha estudiado el problema más sencillo de Inferencia Estadística: el de sacar conclusiones
Cómo se hace la Prueba t a mano?
Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0
Facultad de Ciencias Sociales - Universidad de la República
Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura
ANOVA Multifactorial. StatFolio Muestra: anova.sgp
ANOVA Multifactorial Resumen El procedimiento ANOVA Multifactorial está diseñado para construir un modelo estadístico describiendo el impacto de dos o más factores categóricos X j de una variable dependiente
PATRONES DE DISTRIBUCIÓN ESPACIAL
PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de
LAB 13 - Análisis de Covarianza - CLAVE
LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos
Contrastes de Hipótesis paramétricos y no-paramétricos.
Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por
EVALUACIÓN DEL EFECTO DE NEUTOX SOBRE LOS EFECTOS TOXICOLÓGICOS DE AFLATOXINAS EN PIENSO DE POLLOS
Fatro Ibérica Constitución 1, Planta Baja 3 08960 SAN JUST DESVERN Barcelona (España) Tel. 934 802 277 Fax. 934 735 544 www.fatroiberica.es EVALUACIÓN DEL EFECTO DE NEUTOX SOBRE LOS EFECTOS TOXICOLÓGICOS
EXPERIMENTACIÓN. Eduardo Jiménez Marqués
EXPERIMENTACIÓN Eduardo Jiménez Marqués 1 CONTENIDO: 1. Experimentación...3 1.1 Concepto...3 1. Definición...4 1.3 Dificultad...4 1.4 Ventaja...5 1.5 Planificación...5 1.6 Aplicaciones...5 1.7 Metodología...6
Factores no controlables
Acepto la Ho y ιj μ α ι β j ε ιj Dr. Alfredo Matos Ch. Universidad Peruana Unión [email protected] Factores Controles Entradas PROCESO FUNCION ACTIVIDAD Salidas Factores no controlables 2 1 Se entiende
Conceptos del contraste de hipótesis
Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de
Diseños factoriales con tres factores
Capítulo 6 Diseños factoriales con tres factores SupongamosquehayanivelesparaelfactorA,bnivelesdelfactorBycnivelespara el factor C y que cada réplica del experimento contiene todas las posibles combinaciones
ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS
TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño de medidas parcialmente repetidas DISEÑOS DE MEDIDAS REPETIDAS Definición
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA
Introducción al análisis de la varianza (ANOVA)
Introducción al análisis de la varianza (ANOVA) Albert Sorribas Departament de Ciències Mèdiques Bàsiques Universitat de Lleida [email protected] última versión: 6 de febrero de 2014 Índice 1.
EVALUACIÓN DE PHOSTRON K EN TRIGO
EVALUACIÓN DE PHOSTRON K EN TRIGO INFORMACIÓN DE SIEMBRA DE LAS PARCELAS TRATAMIENTOS ESTABLECIDOS DISEÑO EXPERIMENTAL Y EVALUACIONES REALIZADAS Diseño en bloques aleatorizados con 4 repeticiones: MOMENTO
CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS
CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
1.- Test de hipótesis de normalidad. 2.- Test de hipótesis para una proporción 6-1
Estadística º curso l Grado en Ciencias la Actividad Física y el Deporte Estadística º Curso l Grado en Ciencias la Actividad Física y el Deporte ---o0o--- Tests hipótesis con una y dos muestras Bioestadística
Experimentos Factoriales Febrero 2010 Apuntes de la Cátedra de Estadística INDICE
Serie Didáctica Nro. 1 Facultad de Ciencias Forestales UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO C Á T E D R A D E ESTADÍSTICA O. F. ANÁLISIS DE LA VARIANCIA EN EXPERIMENTOS FACTORIALES Cátedra de Estadística
Medidas de dispersión
Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia
Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A
Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Técnicas Cuantitativas para el Management y los Negocios
Segundo cuatrimestre - 4 Técnicas Cuantitativas para el Management y los Negocios Mag. María del Carmen Romero 4 [email protected] Módulo III: APLICACIONES Contenidos Módulo III Unidad 9. Análisis
Métodos Estadísticos Multivariados
Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre
OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E.
OPTIMIZACIÓN EXPERIMENTAL Ing. José Luis Zamorano E. Introducción n a la metodología de superficies de respuesta EXPERIMENTACIÓN: Significa variar deliberadamente las condiciones habituales de trabajo
Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor
Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.
ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO. Resumen
ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO RIVAS C., Gerardo A. Escuela de Ingeniería Industrial. Universidad de Carabobo. Bárbula. Valencia. Venezuela Jefe
Práctica 9: Anova (2).
Práctica 9: Anova (2) Dedicamos esta práctica al estudio de modelos bifactoriales del análisis de la varianza Veremos concretamente diseños bifactoriales con y sin interacción, diseño por bloques al azar
Asignaturas antecedentes y subsecuentes
PROGRAMA DE ESTUDIOS Seminario de Investigación Área a la que pertenece: AREA DE FORMACIÓN INTEGRAL PROFESIONAL Horas teóricas: 3 Horas practicas: 0 Créditos: 6 Clave: F0241 Ninguna. Asignaturas antecedentes
Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.
NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido
Tema 7: Modelos de diseños de experimentos
Tema 7: Modelos de diseños de experimentos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Modelos de diseños de experimentos Curso
GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA
GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA DATOS BÁSICOS DE LA ASIGNATURA Nombre: Titulación: Centro: Tipo: Créditos: Curso: Prerrequisitos: Profesor: Dpto.: Estadística Aplicada. Licenciatura
Pruebas para evaluar diferencias
Pruebas para evaluar diferencias Métodos paramétricos vs no paramétricos Mayoría se basaban en el conocimiento de las distribuciones muestrales (t- student, Normal, F): EsFman los parámetros de las poblaciones
b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey.
Ejercicio 1: Se someten 24 muestras de agua a 4 tratamientos de descontaminación diferentes y asignados al azar. Para cada muestra se mide un indicador de la calidad del agua ( cuanto más alto es el indicador,
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
4.1 Análisis bivariado de asociaciones
4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis
Cursos: Jorge Mendoza Illescas Nombre del programa o curso Temas principales del programa o curso Duración del curso en horas Conceptos básicos
1 Calibración de instrumentos para pesar- Nuevas tendencias Cursos: Jorge Mendoza Illescas Conceptos básicos Procedimiento de calibración Modelo actual del mesurando Modelo actual de incertidumbre Nuevo
DIPLOMADO EN ESTADÍSTICA APLICADA
DIPLOMADO EN ESTADÍSTICA APLICADA DIPLOMADO EN ESTADÍSTICA APLICADA FUNDAMENTACIÓN El Diplomado en Estadística Aplicada posibilitará la actualización profesional y el desarrollo de competencias específicas
PRÁCTICA 1: ANÁLISIS DE LA VARIANZA
LADE Y DERECHO Departamento de Estadística Asignatura: Estadística II Curso: 2008/2009 Relación número 1 de prácticas PRÁCTICA 1: ANÁLISIS DE LA VARIANZA 1. Objetivo Esta práctica tiene como objetivo enseñar
Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso.
Programa de Statgraphics TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. AUTOR: JUAN VICENTE GONZÁLEZ OVANDO ANALISIS Y CALCULOS A) Planteamos los
ADONIS. Implementación del ADONIS en QEco
Análisis de varianza multivariado con permutaciones usando matrices de distancia (permutational multivariate analysis of variance using distance matrices) ADONIS Implementación del ADONIS en QEco La rutina
TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística
TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA PARA CIENCIAS ECONÓMICO ADMINISTRATIVAS FECHA DE ELABORACIÓN: ENERO
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques
INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques cuantitativo y cualitativo hacia un modelo integral 3 Qué enfoques se han presentado par
Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11
Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales
PROPORCIONADA POR LA MATRONA HOSPITALARIA EN LA ASISTENCIA A. Mª. Esperanza; Sebastián Viana Tomás.
INFLUENCIA DE LA EDUCACIÓN MATERNAL PROPORCIONADA POR LA MATRONA HOSPITALARIA EN LA ASISTENCIA A URGENCIAS POR PRÓDROMOS DE PARTO AUTORES: Velasco Vázquez Diego; Pérez Martínez Eva; Sanz Díaz Concepción;
UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA
UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA CLAVE: MAT 111; PRE REQ.: BR.; No. CRED.: 4 I. PRESENTACIÓN: Este curso tiene como propósito,
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO
Tema 13 : Intervalos de probabilidad y confianza. Hipótesis y decisiones estadísticas.
Tema 13 : Intervalos de probabilidad y confianza. Hipótesis y decisiones estadísticas. ---Intervalo de probabilidad (IP) Permite predecir el comportamiento de las muestras. Si de una población se sacan
SILABO DEL CURSO TEORÍA DE MUESTREO
FACULTAD DE ESTUDIOS DE LA EMPRESA CARRERA DE MARKETING SILABO DEL CURSO TEORÍA DE MUESTREO 1. DATOS GENERALES 1.1. Carrera Profesional : Marketing 1.2. Departamento : Marketing 1.3. Tipo de Curso : Obligatorio
b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7
EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho
Diseños experimentales e investigación científica (Experimental designs and scientific research)
InnOvaciOnes de NegOciOs 4(): 83 330, 007 007 UANL, Impreso en México (ISSN 665-967) Diseños experimentales e investigación científica (Experimental designs and scientific research) Badii, M.H, J. Castillo,
b. Universidad Nacional-Sede Medellín
Comparación de Intervalos de Confianza para el Coeficiente de Correlación Juan Carlos Correa a, Liliana Vanessa Pacheco b Email: [email protected] a. Universidad Nacional-Sede Medellín b. Universidad
