Segundo Examen Parcial
|
|
|
- Martín Rico Tebar
- hace 7 años
- Vistas:
Transcripción
1 Segundo Examen Parcial Nombre: AGRO Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, la calculadora, y las tablas y fórmulas provistas. Para obtener crédito parcial las respuestas deben ser consistentes. Tenga en cuenta que algunos de los resultados parciales presentados podrían no ser relevantes al problema en cuestión. Todo acto de deshonestidad académica conllevará una nota de 0 en el examen y la radicación de cargos disciplinarios. El examen dura 1 hora. 1. (44 puntos) Se realizó un estudio para determinar si había diferencias en el porcentaje de frutos maduros de café cosechados en dos zonas y tres épocas diferentes. Se consideraron las dos localizaciones donde comúnmente se cultiva café en Puerto Rico (medianía y altura), y tres épocas de cosecha (principio, en agosto-septiembre; pico, en octubre-noviembre; y final, en diciembre-enero). En cada combinación de zona y época se escogieron 4 fincas aleatoriamente, y de cada finca se obtuvo una muestra aleatoria de 1 kg de la cosecha antes de llevarla al beneficiado. Los frutos en esa muestra se clasificaron según su grado de madurez, y se determinó el porcentaje de frutos maduros. Las tablas que se acompañan contienen el análisis en InfoStat. Análisis de la varianza Variable N R² R² Aj CV maduro Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F Localizacion Epoca Localizacion*Epoca Error Total Localizacion Medias n Altura Mediania Epoca Medias n Principio Pico Final
2 % de frutos maduros Localizacion Epoca Medias n Altura Principio Mediania Principio Altura Pico Mediania Pico Altura Final Mediania Final Principio Pico Final Epoca Altura Mediania USE LA PRÓXIMA PÁGINA PARA RESPONDER A LAS SIGUIENTES PREGUNTAS a) (13 puntos) Complete la tabla de ANOVA provista (hay 13 cantidades que Ud. debe completar). b) (9 puntos) Usando los resultados en la salida, indique clara y brevemente sus conclusiones. Mencione tanto los resultados de las pruebas F que aceptan y rechazan la hipótesis nula. c) (5 puntos) Interprete el gráfico provisto. Indique sus conclusiones respecto a interacción y efectos principales. d) (4 puntos) De acuerdo a los resultados, tiene interpretación práctica la prueba de efecto principal de localización? Justifique su respuesta basándose en el gráfico. e) (9 puntos) Calcule el error estándar de la diferencia entre el promedio del porcentaje de frutos maduros en medianía y en altura al principio de la cosecha. Construya un intervalo de confianza del 90% para esta diferencia. Use este intervalo para decidir si esta diferencia es significativamente distinta de cero. f) (4 puntos) Cuál de los siguientes efectos representa esta diferencia? Circule la respuesta correcta. i. efecto principal de época ii. efecto principal de localización iii. efecto simple de localización para la época principio iv. efecto simple de época para la localización altura
3 PÁGINA EN BLANCO
4 2. (26 puntos) Cuando se desarrollan nuevos alimentos, es importante estudiar la aceptabilidad de los mismos mediante un panel de jueces que prueban estos alimentos sin que haya ninguna identificación de los mismos (blind taste panel). Se desean comparar tres nuevas preparaciones a base de harina de plátano (A, B, C) y estudiar si los jueces evalúan similarmente a estas preparaciones. Para ello se eligen 15 jueces (aleatoriamente), y a cada juez se le dan a probar las tres preparaciones, dos veces cada una, en un orden aleatorio. El juez asigna una puntuación a cada uno de los 6 platos que le asignaron (sin conocer cuál de las preparaciones corresponde a cada plato). a) (10 puntos) Mencione el/los factor/es en este estudio, indicando si son fijos o aleatorios y el número de niveles de cada uno de ellos. b) (4 puntos) Indique si los factores están anidados (diseño anidado) o cruzados (experimento factorial). c) (12 puntos) Presente una tabla de ANOVA con las fuentes de variación, los grados de libertad y los estadísticos F. Indique los números (no las letras) cuando sea posible.
5 3. (30 puntos) Se desea comparar el contenido de oxígeno del agua en el área de la desembocadura del Río Grande de Añasco (bahía de Mayagüez) en cuatro épocas diferentes. Para ello se escogen seis sitios en posiciones aleatoriamente elegidas dentro del área de interés, en los meses de febrero, mayo, agosto y noviembre de 2008 (es decir, hay un total de 24 sitios). En cada sitio se recogen cuatro muestras, que se analizan para determinar el contenido de oxígeno de cada una. d) (10 puntos) Mencione el/los factor/es en este estudio, indicando si son fijos o aleatorios y el número de niveles de cada uno de ellos. e) (4 puntos) Indique si los factores están anidados (diseño anidado) o cruzados (experimento factorial). f) (4 puntos) Mencione el diseño de este estudio e indique el número de repeticiones. g) (12 puntos) Presente una tabla de ANOVA con las fuentes de variación, los grados de libertad y los estadísticos F. Indique los números (no las letras) cuando sea posible.
AGRO 6600 Segundo Examen Parcial
AGRO 6600 Segundo Examen Parcial 2014 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
Análisis A Variable N R² R² Aj CV pesotejido(g)
Nombre: Segundo Examen Parcial 1 AGRO 6600 2015 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
Segundo Examen Parcial
Nombre: Segundo Examen Parcial AGRO 6600 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO Examen Final. Nombre:
PesoSeco (g) Examen Final Nombre: AGRO 5005 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO Examen Final. Nombre:
Examen Final Nombre: AGRO 5005 2012 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
AGRO Examen Parcial 1. Nombre:
Examen Parcial 1 Nombre: AGRO 6600 2008 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
AGRO 5005 Examen Final 2014 Nombre: Número de estudiante:
AGRO 5005 Examen Final 04 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial
AGRO Examen Parcial 1. Nombre:
Examen Parcial 1 Nombre: AGRO 6600 2013 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
AGRO Examen Final. Nombre:
Examen Final Nombre: AGRO 5005 20 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar
AGRO 6600 Segundo Examen Parcial
AGRO 6600 Segundo Examen Parcial Nombre: 2012 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO 5005 Examen Final 2005 Nombre: Número de estudiante:
AGRO 5005 Examen Final 2005 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Se proveen las tablas y las
AGRO 5005 Examen Final 2013 Nombre: Número de estudiante:
AGRO 5005 Examen Final 2013 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial
Examen Parcial 1. En la muestra se determinó la concentración de E. coli, en logufc. Se presentan algunos análisis relevantes a continuación.
Examen Parcial 1 Nombre: AGRO 6600 2009 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
Examen Final. F.V. SC gl CM F p-valor Método Error Total
Examen Final Nombre: AGRO 5005 009 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar
AGRO Examen Parcial 1. Nombre:
Examen Parcial 1 Nombre: AGRO 6600 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora y la hoja de fórmulas provista. Para obtener
c. (4 puntos) Identifique el factor A (aplicado a nivel de parcela completa) e indique el número de niveles de este factor:
1 AGRO 6600 Examen Final Nombre: 2015 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
AGRO Examen Final. Nombre:
Examen Final Nombre: AGRO 6600 2008 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
AGRO Examen Final
AGRO 6600 Examen Final 2004 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
AGRO Examen Final
AGRO 6600 Examen Final 2010 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados
CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados 1. Digamos que estamos interesados en conducir un experimento para comparar los efectos de tres insecticidas diferentes en habichuela. Pensamos
Examen Parcial 1. The GLM Procedure Class Level Information Class Levels Values trat
Examen Parcial 1 Nombre: AGRO 6600 2011 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
Examen Final. Class Level Information Class Levels Values trat Number of Observations Used 15
Examen Final Nombre: AGRO 6600 2013 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
AGRO Examen Parcial 2. Nombre:
1 Nombre: Examen Parcial 2 AGRO 5005 2016 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
AGRO Examen Parcial 2. Nombre:
Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la
AGRO Examen Parcial 2. Nombre:
1 Nombre: Examen Parcial 2 AGRO 5005 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
AGRO Examen Parcial 2 Nombre:
Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben
AGRO Examen Parcial 2 Nombre:
Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben
Examen Final. a. Identifique los factores en estudio, y si éstos son fijos o aleatorios.
AGRO 6600 Examen Final 2002 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben
AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II
Facultad de Ciencias EYactas, Físicas y Naturales Universidad Nacional de Córdoba AVISOS Bioestadística II 2015 El miércoles 1 Abril no hay clases de BIO II http://estadisticaybiometria.wordpress.com seguir
CLAVE - Laboratorio 11: Análisis de la Varianza
CLAVE - Laboratorio 11: Análisis de la Varianza 1. Se está diseñando un experimento para comparar 4 variedades de habichuela. Se usarán 6 parcelas con cada una de las variedades en un diseño completamente
CLAVE - LAB 13 (Regresión y correlación lineal)
CLAVE - LAB 13 (Regresión y correlación lineal) 1. Se condujo un experimento para examinar el efecto de diferentes concentraciones de pectina sobre la firmeza de batata enlatada. Se usaron tres concentraciones
AGRO Examen Parcial 1
AGRO 5005 2012 Examen Parcial 1 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples
Potencia Revisado_febrero_2016_LWB/CL CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples 1. Considere el problema 2 del laboratorio 2. Se está planificando realizar de nuevo este
Clave Lab 7- Experimentos con dos Factores
Clave Lab 7- Experimentos con dos Factores 1. Se realizó un experimento para estudiar los efectos de tres niveles de ácido sórbico (0, 100 y 200 ppm) y seis niveles de actividad de agua (AW) en la supervivencia
LAB 13 - Análisis de Covarianza - CLAVE
LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).
En clases anteriores hemos estudiado diseños aleatorizados a un factor (con y sin bloqueo), introduciendo el modelo de Análisis de la Varianza
Bioestadística II Bioestadística II En clases anteriores hemos estudiado diseños aleatorizados a un factor (con y sin bloqueo), introduciendo el modelo de Análisis de la Varianza Bioestadística II Bioestadística
ESQUEMA GENERAL DISEÑO FACTORIAL
TEMA III ESQUEMA GENERAL Definición Clasificación Efectos estimables en un diseño factorial Diseño factorial A x B completamente al azar Representación de la interacción DISEÑO FACTORIAL Definición El
DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.
completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos
CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques
CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques 1. Se realizó un experimento para determinar si cinco fuentes de nitrógeno difirieron en sus efectos sobre la producción de arroz. El diagrama
DISEÑO EXPERIMENTAL FACTORIAL DE GRUPOS
TEMA III ESQUEMA GENERAL Definición del diseño factorial Clasificación del diseño factorial Efectos estimables en un diseño factorial Diseño factorial A x B completamente al azar: Estructura Diseño factorial
Pruebas t para muestras pareadas
AGRO 55 LAB 1 Pruebas t para muestras pareadas PARTE I. Incluya en cada caso todos los pasos necesarios para probar las hipótesis correspondientes, una gráfica con t tab (t crítico), el cálculo del t obs
ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes
ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar
CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes
(revisado_oct 15_LWB/RS) CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes 1. Calcule las siguientes probabilidades usando la tabla t e InfoStat. Incluya un diagrama en cada caso. a.
Métodos de Diseño y Análisis de Experimentos
1 / 16 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM mayo 2018 Ejemplo Modelos Mixtos 2 / 16 3 / 16 Ejemplo 1 (2 factores
DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero Código asignatura: MODELO A DURACION: 2 HORAS
DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero 2014. Código asignatura: 62012054 MODELO A DURACION: 2 HORAS Material: Formulario, Tablas y calculadora no programable Calificación= (0,4 x Aciertos)
U ED Tudela Diseños de Investigación y Análisis de Datos - Tema 7
Diseños de Investigación y Análisis de Datos Preguntas de exámenes TEMA 7: A OVA PARA MUESTRAS I DEPE DIE TES (2 FACTORES) 1.- Se dice que un diseño bifactorial es equilibrado si: A) Los grupos tienen
Experimentos con factores aleatorios. Diseño de experimentos p. 1/36
Experimentos con factores aleatorios Diseño de experimentos p. 1/36 Introducción Hasta ahora hemos supuesto que los factores de un experimento son factores fijos, esto es, los niveles de los factores usados
Diferentes tamaños de u.e. Diseño de experimentos p. 1/24
Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Introducción Los diseños experimentales que tienen varios tamaños de u.e. son: diseños de mediciones repetidas, diseños de parcelas divididas,
CLAVE - Lab 5 - Contrastes
CLAVE - Lab 5 - Contrastes 1. Se realizó un experimento para comparar cuatro conservadore diferentes para fresas congeladas (C1, C2, C3, C4). Se cosecharon suficientes fresas para obtener 32 muestras de
MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.
UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Diseño de experimentos - Experimentos multifactoriales.
Diseño de experimentos - Experimentos multifactoriales http://www.academia.utp.ac.pa/humberto-alvarez/diseno-deexperimentos-y-regresion Introducción Los casos anteriores explicaban los diseños en bloques
Prueba t para muestras independientes
Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
5. DISEÑO FACTORIALES 2 k
5. DISEÑO FACTORIALES 2 k Los diseños factoriales son ampliamente utilizados en experimentos en los que intervienen varios factores para estudiar el efecto conjunto de éstos sobre una respuesta. Un caso
Regresión. Instituto Tecnológico de Ciudad Victoria Maestría en Ciencias en Biología Sesión de Cómputo. Modelo I
Regresión La regresión lineal estima la relación de una variable con respecto a otra, por medio de la expresión de una variable en términos de una función lineal de otra variable. Existen dos modelos de
MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.
MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En
Diseño de Experimentos Experimentos factoriales
Diseño de Experimentos Experimentos factoriales Dr. Héctor Escalona Definición El termino genérico de diseño factorial se aplica a aquellos experimentos donde se desea evaluar el efecto de 2 o mas factores
Práctica. Diseño factorial 2 x 2
Práctica Diseño factorial x Supuesto 1: Refuerzo positivo y nivel de impulso Tanto la variable intensidad del refuerzo como nivel del impulso han sido repetidamente analizadas en relación al aprendizaje
EXPERIMENTOS FACTORIALES
EXPERIMENTOS FCTORILES Generalidades Simbología Diseños Experimentales Ventajas Desventajas nálisis Estadístico Ventajas - Desventajas Ventajas 1. Economía en el material experimental, al obtener información
Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F
Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa
= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =
SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden
CLAVE Lab 11 - Regresión Lineal Simple y Polinomial
Escala común CLAVE Lab 11 - Regresión Lineal Simple y Polinomial 1. A mano, construya los siguientes gráficos: a. Grafique la línea recta correspondiente a la ecuación y 2x 1 b. Grafique la línea recta
4. DISEÑOS MULTIFACTORIALES O FACTORIALES
4. DISEÑOS MULTIFACTORIALES O FACTORIALES 4.1 PRINCIPIOS Y DEFINICIONES BASICAS Los arreglos factoriales se utilizan cuando en una investigación se pretende estudiar simultáneamente la influencia del cambio
Métodos de Diseño y Análisis de Experimentos
1 / 28 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM marzo 2018 Ideas básicas del diseño experimental Capítulo 4 de Analysis
Ideas básicas del diseño experimental
Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,
DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO)
DISEÑO FACTORIAL Niveles de B Niveles de A 1 2 3 4 5 1 y 11 y 12 y 13 y 14 y 15 2 y 21 y 22 y 23 y y 3 y 31 y 32 y 33 y 34 y 35 4 y 41 y 42 y 43 y 44 y 45 Todos los niveles de cada factor están combinados
un valor de prueba conocido y sea X y SX
5. PRUEBAS DE HIPÓTESIS PARAMÉTRICAS CONTENIDOS: OBJETIVOS: 5... Prueba de hipótesis para una media. 5.. Prueba de hipótesis para una proporción. 5..3 Prueba de hipótesis para la varianza. 5..4 Prueba
1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología
Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera
Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes
Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
Tema V. EL ANOVA multifactorial
5.1. El ANOVA de múltiples factores: - Factorial (ortogonal): los no ortogonales no los veremos - Factores fijos, aleatorios y mixtos (consecuencias prácticas) - El Anova encajado La variable que vamos
14 horas. 20 horas
EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado
1. Realice la prueba de homogeneidad de variancias e interprete los resultados.
1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis
Diseños Factoriales. Diseño de experimentos p. 1/18
Diseños Factoriales Diseño de experimentos p. 1/18 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de
Escribir el modelo. Evaluar los efectos de los factores y la interacción entre ellos.
Ejercicio 1: Se aplican pinturas tapaporos para aeronaves en superficies de aluminio, con dos métodos: inmersión y rociado. La finalidad del tapaporos es mejorar la adhesión de la pintura, y puede aplicarse
Examen Final 22 de mayo de 2009 (16 a 19 horas) Diseño de Experimentos y Teoría de Muestreo (80/100 puntos) SOLUCIONES
Examen Final 22 de mayo de 2009 (16 a 19 horas) Diseño de Experimentos y Teoría de Muestreo (80/100 puntos) SOLUCIONES 1.- [Correcta: 0.8 puntos, Incorrecta: -0.2 puntos] Se está interesado en el efecto
Experimentos factoriales con factores aleatorios
Experimentos factoriales con factores aleatorios Hasta el momento hemos presumido que los factores en nuestros experimentos eran de naturaleza fija; esto es los niveles en que los factores fueron evaluados
ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación
TEMA V ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación Análisis de la covarianza (ANCOVA) Modelos alternativos de análisis DISEÑO DE GRUPO CONTROL NO
Escribir el modelo. Evaluar los efectos de los factores y la interacción entre ellos.
Ejercicio 1: Se aplican pinturas tapaporos para aeronaves en superficies de aluminio, con dos métodos: inmersión y rociado. La finalidad del tapaporos es mejorar la adhesión de la pintura, y puede aplicarse
Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:
Segunda Prueba Parcial Lapso 7-746 /6 Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: 6-6 - 6 Fecha: --8 MODELO DE RESPUESTAS Objetivos 5 al 8 OBJ 5
DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO
TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo
DISEÑO DE CUADRADOS LATINOS
DISEÑO DE CUADRADOS LATINOS a vimos que el diseño de bloques al azar, era el diseño apropiado cuando se conocía de antemano algún factor que fuera fuente de variabilidad entre las unidades experimentales.
VIII Parcelas Divididas Experimentación en localidades
VIII Parcelas Divididas Experimentación en localidades Dr. Jesús Mellado 3 8.1 Características del diseño El diseño parcelas divididas se puede aplicar en diferentes modelos de experimentos, pero su mayor
Diseños Factoriales. Diseño de experimentos p. 1/25
Diseños Factoriales Diseño de experimentos p. 1/25 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos
Estadística II Ejercicios Tema 2
Estadística II Ejercicios Tema 2 1. Una empresa farmacéutica está preocupada por controlar el nivel de impurezas en uno de sus productos; su objetivo es que la concentración de las impurezas no supere
Planeación experimental
Planeación experimental Diseño de Experimentos Diseño de Experimentos Ventajas Identifica uno o más factores influyen dentro de la variable de respuesta. Permite establecer la combinación adecuada de tratamientos
aceptar o rechazar evidencia hipótesis nula y la hipótesis alternativa enunciado que se probará "no hay efecto" o "no hay diferencia"
PRUEBA DE HIPOTESIS Técnica estadística que se sigue para decidir si rechazamos o no una hipótesis estadística en base a la información de la muestra. Es una afirmación de lo que creemos sobre una población.
TEMA 2 Diseño de experimentos: modelos con varios factores
TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial
EVALUACIÓN DE PHOSTRON K EN TRIGO
EVALUACIÓN DE PHOSTRON K EN TRIGO INFORMACIÓN DE SIEMBRA DE LAS PARCELAS TRATAMIENTOS ESTABLECIDOS DISEÑO EXPERIMENTAL Y EVALUACIONES REALIZADAS Diseño en bloques aleatorizados con 4 repeticiones: MOMENTO
EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION
EXPERIMENTOS FCTORILES CON RESTRICCIONES DE LETORIZCION Diseño de Parcela Dividida Diseño de Bloques Divididos o en Franjas Características generales de estos diseños Esquemas a campo y aleatorización
EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C=
EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C= Se permite el uso de calculadora, UNA hoja con las fórmulas escrita a mano y las tablas de distribuciones: normal, t student,
Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA
Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Prueba de hipotesis de muestra pequeña para μ 1) Hipotesis nula: H 0 = μ = μ 0 2) Hipótesis alternativa: Prueba de
ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto
TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto DISEÑOS DE MEDIDAS REPETIDAS Definición En el diseño medidas
