Segundo Examen Parcial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Segundo Examen Parcial"

Transcripción

1 Segundo Examen Parcial Nombre: AGRO Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, la calculadora, y las tablas y fórmulas provistas. Para obtener crédito parcial las respuestas deben ser consistentes. Tenga en cuenta que algunos de los resultados parciales presentados podrían no ser relevantes al problema en cuestión. Todo acto de deshonestidad académica conllevará una nota de 0 en el examen y la radicación de cargos disciplinarios. El examen dura 1 hora. 1. (44 puntos) Se realizó un estudio para determinar si había diferencias en el porcentaje de frutos maduros de café cosechados en dos zonas y tres épocas diferentes. Se consideraron las dos localizaciones donde comúnmente se cultiva café en Puerto Rico (medianía y altura), y tres épocas de cosecha (principio, en agosto-septiembre; pico, en octubre-noviembre; y final, en diciembre-enero). En cada combinación de zona y época se escogieron 4 fincas aleatoriamente, y de cada finca se obtuvo una muestra aleatoria de 1 kg de la cosecha antes de llevarla al beneficiado. Los frutos en esa muestra se clasificaron según su grado de madurez, y se determinó el porcentaje de frutos maduros. Las tablas que se acompañan contienen el análisis en InfoStat. Análisis de la varianza Variable N R² R² Aj CV maduro Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F Localizacion Epoca Localizacion*Epoca Error Total Localizacion Medias n Altura Mediania Epoca Medias n Principio Pico Final

2 % de frutos maduros Localizacion Epoca Medias n Altura Principio Mediania Principio Altura Pico Mediania Pico Altura Final Mediania Final Principio Pico Final Epoca Altura Mediania USE LA PRÓXIMA PÁGINA PARA RESPONDER A LAS SIGUIENTES PREGUNTAS a) (13 puntos) Complete la tabla de ANOVA provista (hay 13 cantidades que Ud. debe completar). b) (9 puntos) Usando los resultados en la salida, indique clara y brevemente sus conclusiones. Mencione tanto los resultados de las pruebas F que aceptan y rechazan la hipótesis nula. c) (5 puntos) Interprete el gráfico provisto. Indique sus conclusiones respecto a interacción y efectos principales. d) (4 puntos) De acuerdo a los resultados, tiene interpretación práctica la prueba de efecto principal de localización? Justifique su respuesta basándose en el gráfico. e) (9 puntos) Calcule el error estándar de la diferencia entre el promedio del porcentaje de frutos maduros en medianía y en altura al principio de la cosecha. Construya un intervalo de confianza del 90% para esta diferencia. Use este intervalo para decidir si esta diferencia es significativamente distinta de cero. f) (4 puntos) Cuál de los siguientes efectos representa esta diferencia? Circule la respuesta correcta. i. efecto principal de época ii. efecto principal de localización iii. efecto simple de localización para la época principio iv. efecto simple de época para la localización altura

3 PÁGINA EN BLANCO

4 2. (26 puntos) Cuando se desarrollan nuevos alimentos, es importante estudiar la aceptabilidad de los mismos mediante un panel de jueces que prueban estos alimentos sin que haya ninguna identificación de los mismos (blind taste panel). Se desean comparar tres nuevas preparaciones a base de harina de plátano (A, B, C) y estudiar si los jueces evalúan similarmente a estas preparaciones. Para ello se eligen 15 jueces (aleatoriamente), y a cada juez se le dan a probar las tres preparaciones, dos veces cada una, en un orden aleatorio. El juez asigna una puntuación a cada uno de los 6 platos que le asignaron (sin conocer cuál de las preparaciones corresponde a cada plato). a) (10 puntos) Mencione el/los factor/es en este estudio, indicando si son fijos o aleatorios y el número de niveles de cada uno de ellos. b) (4 puntos) Indique si los factores están anidados (diseño anidado) o cruzados (experimento factorial). c) (12 puntos) Presente una tabla de ANOVA con las fuentes de variación, los grados de libertad y los estadísticos F. Indique los números (no las letras) cuando sea posible.

5 3. (30 puntos) Se desea comparar el contenido de oxígeno del agua en el área de la desembocadura del Río Grande de Añasco (bahía de Mayagüez) en cuatro épocas diferentes. Para ello se escogen seis sitios en posiciones aleatoriamente elegidas dentro del área de interés, en los meses de febrero, mayo, agosto y noviembre de 2008 (es decir, hay un total de 24 sitios). En cada sitio se recogen cuatro muestras, que se analizan para determinar el contenido de oxígeno de cada una. d) (10 puntos) Mencione el/los factor/es en este estudio, indicando si son fijos o aleatorios y el número de niveles de cada uno de ellos. e) (4 puntos) Indique si los factores están anidados (diseño anidado) o cruzados (experimento factorial). f) (4 puntos) Mencione el diseño de este estudio e indique el número de repeticiones. g) (12 puntos) Presente una tabla de ANOVA con las fuentes de variación, los grados de libertad y los estadísticos F. Indique los números (no las letras) cuando sea posible.

AGRO 6600 Segundo Examen Parcial

AGRO 6600 Segundo Examen Parcial AGRO 6600 Segundo Examen Parcial 2014 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

Análisis A Variable N R² R² Aj CV pesotejido(g)

Análisis A Variable N R² R² Aj CV pesotejido(g) Nombre: Segundo Examen Parcial 1 AGRO 6600 2015 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

Segundo Examen Parcial

Segundo Examen Parcial Nombre: Segundo Examen Parcial AGRO 6600 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO Examen Final. Nombre:

AGRO Examen Final. Nombre: PesoSeco (g) Examen Final Nombre: AGRO 5005 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO Examen Final. Nombre:

AGRO Examen Final. Nombre: Examen Final Nombre: AGRO 5005 2012 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

AGRO Examen Parcial 1. Nombre:

AGRO Examen Parcial 1. Nombre: Examen Parcial 1 Nombre: AGRO 6600 2008 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

AGRO 5005 Examen Final 2014 Nombre: Número de estudiante:

AGRO 5005 Examen Final 2014 Nombre: Número de estudiante: AGRO 5005 Examen Final 04 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial

Más detalles

AGRO Examen Parcial 1. Nombre:

AGRO Examen Parcial 1. Nombre: Examen Parcial 1 Nombre: AGRO 6600 2013 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

AGRO Examen Final. Nombre:

AGRO Examen Final. Nombre: Examen Final Nombre: AGRO 5005 20 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar

Más detalles

AGRO 6600 Segundo Examen Parcial

AGRO 6600 Segundo Examen Parcial AGRO 6600 Segundo Examen Parcial Nombre: 2012 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO 5005 Examen Final 2005 Nombre: Número de estudiante:

AGRO 5005 Examen Final 2005 Nombre: Número de estudiante: AGRO 5005 Examen Final 2005 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Se proveen las tablas y las

Más detalles

AGRO 5005 Examen Final 2013 Nombre: Número de estudiante:

AGRO 5005 Examen Final 2013 Nombre: Número de estudiante: AGRO 5005 Examen Final 2013 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial

Más detalles

Examen Parcial 1. En la muestra se determinó la concentración de E. coli, en logufc. Se presentan algunos análisis relevantes a continuación.

Examen Parcial 1. En la muestra se determinó la concentración de E. coli, en logufc. Se presentan algunos análisis relevantes a continuación. Examen Parcial 1 Nombre: AGRO 6600 2009 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

Examen Final. F.V. SC gl CM F p-valor Método Error Total

Examen Final. F.V. SC gl CM F p-valor Método Error Total Examen Final Nombre: AGRO 5005 009 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar

Más detalles

AGRO Examen Parcial 1. Nombre:

AGRO Examen Parcial 1. Nombre: Examen Parcial 1 Nombre: AGRO 6600 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora y la hoja de fórmulas provista. Para obtener

Más detalles

c. (4 puntos) Identifique el factor A (aplicado a nivel de parcela completa) e indique el número de niveles de este factor:

c. (4 puntos) Identifique el factor A (aplicado a nivel de parcela completa) e indique el número de niveles de este factor: 1 AGRO 6600 Examen Final Nombre: 2015 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

AGRO Examen Final. Nombre:

AGRO Examen Final. Nombre: Examen Final Nombre: AGRO 6600 2008 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

AGRO Examen Final

AGRO Examen Final AGRO 6600 Examen Final 2004 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

AGRO Examen Final

AGRO Examen Final AGRO 6600 Examen Final 2010 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados 1. Digamos que estamos interesados en conducir un experimento para comparar los efectos de tres insecticidas diferentes en habichuela. Pensamos

Más detalles

Examen Parcial 1. The GLM Procedure Class Level Information Class Levels Values trat

Examen Parcial 1. The GLM Procedure Class Level Information Class Levels Values trat Examen Parcial 1 Nombre: AGRO 6600 2011 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

Examen Final. Class Level Information Class Levels Values trat Number of Observations Used 15

Examen Final. Class Level Information Class Levels Values trat Number of Observations Used 15 Examen Final Nombre: AGRO 6600 2013 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: 1 Nombre: Examen Parcial 2 AGRO 5005 2016 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: 1 Nombre: Examen Parcial 2 AGRO 5005 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

AGRO Examen Parcial 2 Nombre:

AGRO Examen Parcial 2 Nombre: Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben

Más detalles

AGRO Examen Parcial 2 Nombre:

AGRO Examen Parcial 2 Nombre: Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben

Más detalles

Examen Final. a. Identifique los factores en estudio, y si éstos son fijos o aleatorios.

Examen Final. a. Identifique los factores en estudio, y si éstos son fijos o aleatorios. AGRO 6600 Examen Final 2002 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben

Más detalles

AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II

AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II Facultad de Ciencias EYactas, Físicas y Naturales Universidad Nacional de Córdoba AVISOS Bioestadística II 2015 El miércoles 1 Abril no hay clases de BIO II http://estadisticaybiometria.wordpress.com seguir

Más detalles

CLAVE - Laboratorio 11: Análisis de la Varianza

CLAVE - Laboratorio 11: Análisis de la Varianza CLAVE - Laboratorio 11: Análisis de la Varianza 1. Se está diseñando un experimento para comparar 4 variedades de habichuela. Se usarán 6 parcelas con cada una de las variedades en un diseño completamente

Más detalles

CLAVE - LAB 13 (Regresión y correlación lineal)

CLAVE - LAB 13 (Regresión y correlación lineal) CLAVE - LAB 13 (Regresión y correlación lineal) 1. Se condujo un experimento para examinar el efecto de diferentes concentraciones de pectina sobre la firmeza de batata enlatada. Se usaron tres concentraciones

Más detalles

AGRO Examen Parcial 1

AGRO Examen Parcial 1 AGRO 5005 2012 Examen Parcial 1 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples

CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples Potencia Revisado_febrero_2016_LWB/CL CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples 1. Considere el problema 2 del laboratorio 2. Se está planificando realizar de nuevo este

Más detalles

Clave Lab 7- Experimentos con dos Factores

Clave Lab 7- Experimentos con dos Factores Clave Lab 7- Experimentos con dos Factores 1. Se realizó un experimento para estudiar los efectos de tres niveles de ácido sórbico (0, 100 y 200 ppm) y seis niveles de actividad de agua (AW) en la supervivencia

Más detalles

LAB 13 - Análisis de Covarianza - CLAVE

LAB 13 - Análisis de Covarianza - CLAVE LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).

Más detalles

En clases anteriores hemos estudiado diseños aleatorizados a un factor (con y sin bloqueo), introduciendo el modelo de Análisis de la Varianza

En clases anteriores hemos estudiado diseños aleatorizados a un factor (con y sin bloqueo), introduciendo el modelo de Análisis de la Varianza Bioestadística II Bioestadística II En clases anteriores hemos estudiado diseños aleatorizados a un factor (con y sin bloqueo), introduciendo el modelo de Análisis de la Varianza Bioestadística II Bioestadística

Más detalles

ESQUEMA GENERAL DISEÑO FACTORIAL

ESQUEMA GENERAL DISEÑO FACTORIAL TEMA III ESQUEMA GENERAL Definición Clasificación Efectos estimables en un diseño factorial Diseño factorial A x B completamente al azar Representación de la interacción DISEÑO FACTORIAL Definición El

Más detalles

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles. completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos

Más detalles

CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques

CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques 1. Se realizó un experimento para determinar si cinco fuentes de nitrógeno difirieron en sus efectos sobre la producción de arroz. El diagrama

Más detalles

DISEÑO EXPERIMENTAL FACTORIAL DE GRUPOS

DISEÑO EXPERIMENTAL FACTORIAL DE GRUPOS TEMA III ESQUEMA GENERAL Definición del diseño factorial Clasificación del diseño factorial Efectos estimables en un diseño factorial Diseño factorial A x B completamente al azar: Estructura Diseño factorial

Más detalles

Pruebas t para muestras pareadas

Pruebas t para muestras pareadas AGRO 55 LAB 1 Pruebas t para muestras pareadas PARTE I. Incluya en cada caso todos los pasos necesarios para probar las hipótesis correspondientes, una gráfica con t tab (t crítico), el cálculo del t obs

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes

CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes (revisado_oct 15_LWB/RS) CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes 1. Calcule las siguientes probabilidades usando la tabla t e InfoStat. Incluya un diagrama en cada caso. a.

Más detalles

Métodos de Diseño y Análisis de Experimentos

Métodos de Diseño y Análisis de Experimentos 1 / 16 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM mayo 2018 Ejemplo Modelos Mixtos 2 / 16 3 / 16 Ejemplo 1 (2 factores

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero Código asignatura: MODELO A DURACION: 2 HORAS

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero Código asignatura: MODELO A DURACION: 2 HORAS DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero 2014. Código asignatura: 62012054 MODELO A DURACION: 2 HORAS Material: Formulario, Tablas y calculadora no programable Calificación= (0,4 x Aciertos)

Más detalles

U ED Tudela Diseños de Investigación y Análisis de Datos - Tema 7

U ED Tudela Diseños de Investigación y Análisis de Datos - Tema 7 Diseños de Investigación y Análisis de Datos Preguntas de exámenes TEMA 7: A OVA PARA MUESTRAS I DEPE DIE TES (2 FACTORES) 1.- Se dice que un diseño bifactorial es equilibrado si: A) Los grupos tienen

Más detalles

Experimentos con factores aleatorios. Diseño de experimentos p. 1/36

Experimentos con factores aleatorios. Diseño de experimentos p. 1/36 Experimentos con factores aleatorios Diseño de experimentos p. 1/36 Introducción Hasta ahora hemos supuesto que los factores de un experimento son factores fijos, esto es, los niveles de los factores usados

Más detalles

Diferentes tamaños de u.e. Diseño de experimentos p. 1/24

Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Introducción Los diseños experimentales que tienen varios tamaños de u.e. son: diseños de mediciones repetidas, diseños de parcelas divididas,

Más detalles

CLAVE - Lab 5 - Contrastes

CLAVE - Lab 5 - Contrastes CLAVE - Lab 5 - Contrastes 1. Se realizó un experimento para comparar cuatro conservadore diferentes para fresas congeladas (C1, C2, C3, C4). Se cosecharon suficientes fresas para obtener 32 muestras de

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Diseño de experimentos - Experimentos multifactoriales.

Diseño de experimentos - Experimentos multifactoriales. Diseño de experimentos - Experimentos multifactoriales http://www.academia.utp.ac.pa/humberto-alvarez/diseno-deexperimentos-y-regresion Introducción Los casos anteriores explicaban los diseños en bloques

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

5. DISEÑO FACTORIALES 2 k

5. DISEÑO FACTORIALES 2 k 5. DISEÑO FACTORIALES 2 k Los diseños factoriales son ampliamente utilizados en experimentos en los que intervienen varios factores para estudiar el efecto conjunto de éstos sobre una respuesta. Un caso

Más detalles

Regresión. Instituto Tecnológico de Ciudad Victoria Maestría en Ciencias en Biología Sesión de Cómputo. Modelo I

Regresión. Instituto Tecnológico de Ciudad Victoria Maestría en Ciencias en Biología Sesión de Cómputo. Modelo I Regresión La regresión lineal estima la relación de una variable con respecto a otra, por medio de la expresión de una variable en términos de una función lineal de otra variable. Existen dos modelos de

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Diseño de Experimentos Experimentos factoriales

Diseño de Experimentos Experimentos factoriales Diseño de Experimentos Experimentos factoriales Dr. Héctor Escalona Definición El termino genérico de diseño factorial se aplica a aquellos experimentos donde se desea evaluar el efecto de 2 o mas factores

Más detalles

Práctica. Diseño factorial 2 x 2

Práctica. Diseño factorial 2 x 2 Práctica Diseño factorial x Supuesto 1: Refuerzo positivo y nivel de impulso Tanto la variable intensidad del refuerzo como nivel del impulso han sido repetidamente analizadas en relación al aprendizaje

Más detalles

EXPERIMENTOS FACTORIALES

EXPERIMENTOS FACTORIALES EXPERIMENTOS FCTORILES Generalidades Simbología Diseños Experimentales Ventajas Desventajas nálisis Estadístico Ventajas - Desventajas Ventajas 1. Economía en el material experimental, al obtener información

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

CLAVE Lab 11 - Regresión Lineal Simple y Polinomial

CLAVE Lab 11 - Regresión Lineal Simple y Polinomial Escala común CLAVE Lab 11 - Regresión Lineal Simple y Polinomial 1. A mano, construya los siguientes gráficos: a. Grafique la línea recta correspondiente a la ecuación y 2x 1 b. Grafique la línea recta

Más detalles

4. DISEÑOS MULTIFACTORIALES O FACTORIALES

4. DISEÑOS MULTIFACTORIALES O FACTORIALES 4. DISEÑOS MULTIFACTORIALES O FACTORIALES 4.1 PRINCIPIOS Y DEFINICIONES BASICAS Los arreglos factoriales se utilizan cuando en una investigación se pretende estudiar simultáneamente la influencia del cambio

Más detalles

Métodos de Diseño y Análisis de Experimentos

Métodos de Diseño y Análisis de Experimentos 1 / 28 Métodos de Diseño y Análisis de Experimentos Patricia Isabel Romero Mares Departamento de Probabilidad y Estadística IIMAS UNAM marzo 2018 Ideas básicas del diseño experimental Capítulo 4 de Analysis

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO)

DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO) DISEÑO FACTORIAL Niveles de B Niveles de A 1 2 3 4 5 1 y 11 y 12 y 13 y 14 y 15 2 y 21 y 22 y 23 y y 3 y 31 y 32 y 33 y 34 y 35 4 y 41 y 42 y 43 y 44 y 45 Todos los niveles de cada factor están combinados

Más detalles

un valor de prueba conocido y sea X y SX

un valor de prueba conocido y sea X y SX 5. PRUEBAS DE HIPÓTESIS PARAMÉTRICAS CONTENIDOS: OBJETIVOS: 5... Prueba de hipótesis para una media. 5.. Prueba de hipótesis para una proporción. 5..3 Prueba de hipótesis para la varianza. 5..4 Prueba

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes

Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

Tema V. EL ANOVA multifactorial

Tema V. EL ANOVA multifactorial 5.1. El ANOVA de múltiples factores: - Factorial (ortogonal): los no ortogonales no los veremos - Factores fijos, aleatorios y mixtos (consecuencias prácticas) - El Anova encajado La variable que vamos

Más detalles

14 horas. 20 horas

14 horas. 20 horas EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/18

Diseños Factoriales. Diseño de experimentos p. 1/18 Diseños Factoriales Diseño de experimentos p. 1/18 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

Escribir el modelo. Evaluar los efectos de los factores y la interacción entre ellos.

Escribir el modelo. Evaluar los efectos de los factores y la interacción entre ellos. Ejercicio 1: Se aplican pinturas tapaporos para aeronaves en superficies de aluminio, con dos métodos: inmersión y rociado. La finalidad del tapaporos es mejorar la adhesión de la pintura, y puede aplicarse

Más detalles

Examen Final 22 de mayo de 2009 (16 a 19 horas) Diseño de Experimentos y Teoría de Muestreo (80/100 puntos) SOLUCIONES

Examen Final 22 de mayo de 2009 (16 a 19 horas) Diseño de Experimentos y Teoría de Muestreo (80/100 puntos) SOLUCIONES Examen Final 22 de mayo de 2009 (16 a 19 horas) Diseño de Experimentos y Teoría de Muestreo (80/100 puntos) SOLUCIONES 1.- [Correcta: 0.8 puntos, Incorrecta: -0.2 puntos] Se está interesado en el efecto

Más detalles

Experimentos factoriales con factores aleatorios

Experimentos factoriales con factores aleatorios Experimentos factoriales con factores aleatorios Hasta el momento hemos presumido que los factores en nuestros experimentos eran de naturaleza fija; esto es los niveles en que los factores fueron evaluados

Más detalles

ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación

ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación TEMA V ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación Análisis de la covarianza (ANCOVA) Modelos alternativos de análisis DISEÑO DE GRUPO CONTROL NO

Más detalles

Escribir el modelo. Evaluar los efectos de los factores y la interacción entre ellos.

Escribir el modelo. Evaluar los efectos de los factores y la interacción entre ellos. Ejercicio 1: Se aplican pinturas tapaporos para aeronaves en superficies de aluminio, con dos métodos: inmersión y rociado. La finalidad del tapaporos es mejorar la adhesión de la pintura, y puede aplicarse

Más detalles

Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Segunda Prueba Parcial Lapso 7-746 /6 Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: 6-6 - 6 Fecha: --8 MODELO DE RESPUESTAS Objetivos 5 al 8 OBJ 5

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

DISEÑO DE CUADRADOS LATINOS

DISEÑO DE CUADRADOS LATINOS DISEÑO DE CUADRADOS LATINOS a vimos que el diseño de bloques al azar, era el diseño apropiado cuando se conocía de antemano algún factor que fuera fuente de variabilidad entre las unidades experimentales.

Más detalles

VIII Parcelas Divididas Experimentación en localidades

VIII Parcelas Divididas Experimentación en localidades VIII Parcelas Divididas Experimentación en localidades Dr. Jesús Mellado 3 8.1 Características del diseño El diseño parcelas divididas se puede aplicar en diferentes modelos de experimentos, pero su mayor

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/25

Diseños Factoriales. Diseño de experimentos p. 1/25 Diseños Factoriales Diseño de experimentos p. 1/25 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Estadística II Ejercicios Tema 2

Estadística II Ejercicios Tema 2 Estadística II Ejercicios Tema 2 1. Una empresa farmacéutica está preocupada por controlar el nivel de impurezas en uno de sus productos; su objetivo es que la concentración de las impurezas no supere

Más detalles

Planeación experimental

Planeación experimental Planeación experimental Diseño de Experimentos Diseño de Experimentos Ventajas Identifica uno o más factores influyen dentro de la variable de respuesta. Permite establecer la combinación adecuada de tratamientos

Más detalles

aceptar o rechazar evidencia hipótesis nula y la hipótesis alternativa enunciado que se probará "no hay efecto" o "no hay diferencia"

aceptar o rechazar evidencia hipótesis nula y la hipótesis alternativa enunciado que se probará no hay efecto o no hay diferencia PRUEBA DE HIPOTESIS Técnica estadística que se sigue para decidir si rechazamos o no una hipótesis estadística en base a la información de la muestra. Es una afirmación de lo que creemos sobre una población.

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

EVALUACIÓN DE PHOSTRON K EN TRIGO

EVALUACIÓN DE PHOSTRON K EN TRIGO EVALUACIÓN DE PHOSTRON K EN TRIGO INFORMACIÓN DE SIEMBRA DE LAS PARCELAS TRATAMIENTOS ESTABLECIDOS DISEÑO EXPERIMENTAL Y EVALUACIONES REALIZADAS Diseño en bloques aleatorizados con 4 repeticiones: MOMENTO

Más detalles

EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION

EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION EXPERIMENTOS FCTORILES CON RESTRICCIONES DE LETORIZCION Diseño de Parcela Dividida Diseño de Bloques Divididos o en Franjas Características generales de estos diseños Esquemas a campo y aleatorización

Más detalles

EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C=

EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C= EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C= Se permite el uso de calculadora, UNA hoja con las fórmulas escrita a mano y las tablas de distribuciones: normal, t student,

Más detalles

Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA

Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Prueba de hipotesis de muestra pequeña para μ 1) Hipotesis nula: H 0 = μ = μ 0 2) Hipótesis alternativa: Prueba de

Más detalles

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto DISEÑOS DE MEDIDAS REPETIDAS Definición En el diseño medidas

Más detalles