AGRO Examen Final. Nombre:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "AGRO Examen Final. Nombre:"

Transcripción

1 Examen Final Nombre: AGRO Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar las hojas con fórmulas y tablas provistas, el libro y la calculadora. Para obtener crédito parcial las respuestas deben ser consistentes. Tenga en cuenta que algunos de los resultados parciales presentados podrían no ser relevantes al problema en cuestión. Todo acto de deshonestidad académica conllevará una nota de 0 en el examen y la radicación de cargos disciplinarios. El examen dura 2 horas. 1. (25 puntos: 5 cada parte) La clorofila-a es un indicador de la calidad del agua en lagos, ya que altas concentraciones indican mucha densidad de algas, y poca calidad del agua debido al proceso de eutroficación. El fósforo estimula el crecimiento de algas y por lo tanto se espera que altas concentraciones de fósforo causen altas concentraciones de clorofila-a. Se tomaron muestras de 25 lagos y los resultados se analizaron mediante un modelo de regresión lineal simple con x=concentración de fósforo, y=concentración de clorofila-a. Fósforo Clorofila-a Fósforo Clorofila-a Análisis de regresión lineal Variable N R² R² Aj Clorofila-a Coeficientes de regresión y estadísticos asociados Coef Est. EE T valor p const Fósforo <0.0001

2 Clorofila-a Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F valor p Modelo < Fósforo < Error Total Fósforo a. Muestre la ecuación de regresión que permita predecir la concentración de clorofila-a en función de la concentración de fósforo. Use las reglas de redondeo apropiadas. (No realice cálculos adicionales, simplemente muestre la ecuación estimada por Infostat). b. Si es posible, interprete claramente los estimadores del intercepto y de la pendiente en términos de este problema. Si no es posible, justifique. c. Formule y pruebe la hipótesis de relación lineal entre ambas variables. Use =0.05 d. Si es posible, prediga la concentración de clorofila si la cantidad de fósforo es 200. e. Construya un intervalo de confianza del % para 1. (Ayuda: Toda la información ya está disponible en la salida, no es necesario calcular S xx.)

3 VAR2 VAR2 VAR2 VAR2 2. (16 puntos: 4 puntos cada parte) Se muestran cuatro diagramas de dispersión (figuras A-D). Para cada valor del coeficiente de correlación lineal, indique a cuál de las figuras podría corresponder. r = -0.5 Figura r = Figura r = Figura r = Figura Figure A 4 Figure C Figure B 17 Figure D

4 3. (1 puntos: a: 4, b:, c: 7) Se desea planificar un estudio para comparar 3 metodologías de enseñanza en una clase de décimo grado. Para realizar el estudio, cada metodología se probará en 5 salones de clase (es decir, se necesitan 15 salones de clase en total). Las escuelas superiores de los distritos escolares en donde se llevará a cabo no tienen más que tres salones de décimo grado cada una, y es posible que existan diferencias entre escuelas (es decir, independientemente del método de enseñanza, los resultados de una escuela podrían ser distintos a las de otra). El estudio se llevará a cabo de la siguiente manera: al comenzar el año se hará una prueba diagnóstica, luego se enseñará con uno de las tres metodologías (aleatoriamente asignadas a ese salón de clase), y al final del año se hará una postprueba. Se desea comparar cuál de las metodologías presenta resultados mejores en aprovechamiento promedio de los estudiantes del salón. a. Es este un experimento o un estudio observacional? Justifique brevemente. b. Muestre cómo diseñaría este estudio, indicando en cada celda (que representa un salón de clase) la metodología de enseñanza que probaría (A, B o C). Escuela 1 Escuela 2 Escuela 3 Escuela 4 Escuela 5 c. Para el estudio diseñado en la parte b, prepare una esquema de la tabla de ANOVA indicando solamente las fuentes de variación y los grados de libertad asociados a cada una (presente los números, no las letras!)

5 4. (30 puntos; a: 6, b: 5, c:, d: 6, e: 5) Se realizó un experimento para estudiar el efecto de 3 niveles de vitamina B (5,, 20 mg / lb ración) sobre la ganancia de peso promedio diaria de cerditos. Cada nivel de vitamina se usó en 4 cerditos aleatoriamente escogidos. La salida en Infostat sigue a continuación. Análisis de la varianza Variable N R² R² Aj CV aumento diario Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F valor p Modelo vit B Error Total Test:LSD Fisher Alfa:=0.05 DMS:= Error: gl: vit B Medias n Letras distintas indican diferencias significativas(p<= 0.05) a. Complete el cuadro de ANOVA (hay 6 cantidades subrayadas que faltan) b. Formule y pruebe las hipótesis de interés. Presente las hipótesis nula y alternativa, el estadístico de la prueba y sus conclusiones claramente. c. Calcule el valor de DMS y complete las letras en la salida de la prueba de DMS indicando qué medias son significativamente diferentes y qué medias no son significativamente diferentes. d. Según los resultados de la prueba DMS realizada en la parte c, responda CIERTO/FALSO a lo siguiente: i. La dosis que presenta la peor ganancia de peso promedio es 5 mg/ lb ración. ii. No hay diferencias significativas entre los promedios de las dosis 5 y iii.. No hay diferencias significativas entre los promedios de las dosis y 20. e. Construya un intervalo de confianza para la ganancia promedio de cerditos suplementados con 20 mg de vitamina B.

6 5. ( puntos: 5 cada parte) Se realizó un experimento para comparar los porcentajes de renacuajos que llegan a adultos bajo distintos niveles de salinidad del agua. Se pusieron grupos de 20 renacuajos en agua con salinidad de 0 % (control), 0.05% y 0.%. Luego del periodo de metamorfosis, se contó el número de sapos adultos que habían sobrevivido en cada caso. Los resultados y el análisis en Infostat son los siguientes: Salinidad Sobreviven No sobreviven Total 0% % % Total Tablas de contingencia Frecuencias: Cantidad Frecuencias absolutas En columnas:sobrevive Salinidad Si No Total Total Estadístico Valor gl p Chi Cuadrado Pearson < Chi Cuadrado MV-G < Coef.Conting.Cramer 0.47 Coef.Conting.Pearson 0.55 a. Cuál sería la cantidad esperada en cada celda si el porcentaje de sobrevivencia fuese el mismo en las tres salinidades? Complete la tabla con los valores esperados correspondientes. Salinidad Sobreviven No sobreviven 0% 0.05% 0.% b. Formule y pruebe las hipótesis de interés usando =.05 (use la salida de Infostat y las tablas correspondientes: no realice cálculos adicionales).

AGRO Examen Final. Nombre:

AGRO Examen Final. Nombre: Examen Final Nombre: AGRO 5005 2012 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

AGRO Examen Final. Nombre:

AGRO Examen Final. Nombre: PesoSeco (g) Examen Final Nombre: AGRO 5005 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO 5005 Examen Final 2013 Nombre: Número de estudiante:

AGRO 5005 Examen Final 2013 Nombre: Número de estudiante: AGRO 5005 Examen Final 2013 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial

Más detalles

AGRO 5005 Examen Final 2005 Nombre: Número de estudiante:

AGRO 5005 Examen Final 2005 Nombre: Número de estudiante: AGRO 5005 Examen Final 2005 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Se proveen las tablas y las

Más detalles

AGRO 5005 Examen Final 2014 Nombre: Número de estudiante:

AGRO 5005 Examen Final 2014 Nombre: Número de estudiante: AGRO 5005 Examen Final 04 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial

Más detalles

Examen Final. F.V. SC gl CM F p-valor Método Error Total

Examen Final. F.V. SC gl CM F p-valor Método Error Total Examen Final Nombre: AGRO 5005 009 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar

Más detalles

Examen Parcial 1. En la muestra se determinó la concentración de E. coli, en logufc. Se presentan algunos análisis relevantes a continuación.

Examen Parcial 1. En la muestra se determinó la concentración de E. coli, en logufc. Se presentan algunos análisis relevantes a continuación. Examen Parcial 1 Nombre: AGRO 6600 2009 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

AGRO 6600 Segundo Examen Parcial

AGRO 6600 Segundo Examen Parcial AGRO 6600 Segundo Examen Parcial 2014 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO Examen Parcial 1. Nombre:

AGRO Examen Parcial 1. Nombre: Examen Parcial 1 Nombre: AGRO 6600 2008 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

AGRO Examen Parcial 1. Nombre:

AGRO Examen Parcial 1. Nombre: Examen Parcial 1 Nombre: AGRO 6600 2013 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

Segundo Examen Parcial

Segundo Examen Parcial Segundo Examen Parcial Nombre: AGRO 6600 2009 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO Examen Final

AGRO Examen Final AGRO 6600 Examen Final 2010 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

AGRO Examen Final

AGRO Examen Final AGRO 6600 Examen Final 2004 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

Segundo Examen Parcial

Segundo Examen Parcial Nombre: Segundo Examen Parcial AGRO 6600 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO Examen Final. Nombre:

AGRO Examen Final. Nombre: Examen Final Nombre: AGRO 6600 2008 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

Análisis A Variable N R² R² Aj CV pesotejido(g)

Análisis A Variable N R² R² Aj CV pesotejido(g) Nombre: Segundo Examen Parcial 1 AGRO 6600 2015 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

AGRO Examen Parcial 1. Nombre:

AGRO Examen Parcial 1. Nombre: Examen Parcial 1 Nombre: AGRO 6600 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora y la hoja de fórmulas provista. Para obtener

Más detalles

c. (4 puntos) Identifique el factor A (aplicado a nivel de parcela completa) e indique el número de niveles de este factor:

c. (4 puntos) Identifique el factor A (aplicado a nivel de parcela completa) e indique el número de niveles de este factor: 1 AGRO 6600 Examen Final Nombre: 2015 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

Examen Final. Class Level Information Class Levels Values trat Number of Observations Used 15

Examen Final. Class Level Information Class Levels Values trat Number of Observations Used 15 Examen Final Nombre: AGRO 6600 2013 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden

Más detalles

LAB 13 - Análisis de Covarianza - CLAVE

LAB 13 - Análisis de Covarianza - CLAVE LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).

Más detalles

AGRO 6600 Segundo Examen Parcial

AGRO 6600 Segundo Examen Parcial AGRO 6600 Segundo Examen Parcial Nombre: 2012 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

CLAVE - LAB 13 (Regresión y correlación lineal)

CLAVE - LAB 13 (Regresión y correlación lineal) CLAVE - LAB 13 (Regresión y correlación lineal) 1. Se condujo un experimento para examinar el efecto de diferentes concentraciones de pectina sobre la firmeza de batata enlatada. Se usaron tres concentraciones

Más detalles

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados 1. Digamos que estamos interesados en conducir un experimento para comparar los efectos de tres insecticidas diferentes en habichuela. Pensamos

Más detalles

CLAVE Lab 11 - Regresión Lineal Simple y Polinomial

CLAVE Lab 11 - Regresión Lineal Simple y Polinomial Escala común CLAVE Lab 11 - Regresión Lineal Simple y Polinomial 1. A mano, construya los siguientes gráficos: a. Grafique la línea recta correspondiente a la ecuación y 2x 1 b. Grafique la línea recta

Más detalles

AGRO Examen Parcial 2 Nombre:

AGRO Examen Parcial 2 Nombre: Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: 1 Nombre: Examen Parcial 2 AGRO 5005 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples

CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples Potencia Revisado_febrero_2016_LWB/CL CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples 1. Considere el problema 2 del laboratorio 2. Se está planificando realizar de nuevo este

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la

Más detalles

Examen Parcial 1. The GLM Procedure Class Level Information Class Levels Values trat

Examen Parcial 1. The GLM Procedure Class Level Information Class Levels Values trat Examen Parcial 1 Nombre: AGRO 6600 2011 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

Clave Lab 7- Experimentos con dos Factores

Clave Lab 7- Experimentos con dos Factores Clave Lab 7- Experimentos con dos Factores 1. Se realizó un experimento para estudiar los efectos de tres niveles de ácido sórbico (0, 100 y 200 ppm) y seis niveles de actividad de agua (AW) en la supervivencia

Más detalles

Examen Final. a. Identifique los factores en estudio, y si éstos son fijos o aleatorios.

Examen Final. a. Identifique los factores en estudio, y si éstos son fijos o aleatorios. AGRO 6600 Examen Final 2002 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben

Más detalles

Regresión múltiple. Efecto de varias variables ambientales sobre una especie de ganso migratorio. Luz

Regresión múltiple. Efecto de varias variables ambientales sobre una especie de ganso migratorio. Luz Nombre: AGRO 6600 LAB 12 Regresión múltiple Los datos adjuntos se tomaron para estudiar el efecto de varias variables ambientales sobre el tiempo en el que una especie de ganso migratorio deja su nido

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: 1 Nombre: Examen Parcial 2 AGRO 5005 2016 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

CLAVE - LAB 12 - Regresión Múltiple y Selección de Variables

CLAVE - LAB 12 - Regresión Múltiple y Selección de Variables Revisado_May_2018_LW B CLAVE - LAB 12 - Regresión Múltiple y Selección de Variables Para estudiar la relación entre ciertas características del suelo y la producción de biomasa (g) de una planta forrajera

Más detalles

CLAVE - Laboratorio 11: Análisis de la Varianza

CLAVE - Laboratorio 11: Análisis de la Varianza CLAVE - Laboratorio 11: Análisis de la Varianza 1. Se está diseñando un experimento para comparar 4 variedades de habichuela. Se usarán 6 parcelas con cada una de las variedades en un diseño completamente

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

ANÁLISIS DE LA VARIANZA. PASO 1: Planilla de toma de datos.

ANÁLISIS DE LA VARIANZA. PASO 1: Planilla de toma de datos. Autores: de la Torre, Ma. Virginia; Chiappero, Ma. Carolina Colaboradores: Biasutti, Carlos A.; Conrero, Juan M.; Nazar, Ma. Cristina; Carreras, Julia ; Allende, Ma. José y Mansilla, Pablo. MEJORAMIENTO

Más detalles

AGRO Examen Parcial 1

AGRO Examen Parcial 1 AGRO 5005 2012 Examen Parcial 1 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas

Más detalles

U ED Tudela Introducción al Análisis de Datos - Tema 4

U ED Tudela Introducción al Análisis de Datos - Tema 4 I TRODUCCIÓ AL A ÁLISIS DE DATOS TEMA 4: Análisis conjunto de dos variables. 1.- Cuando se dice que dos variables están correlacionadas positivamente, se tiene que interpretar que: A) un aumento en una

Más detalles

AGRO Examen Parcial 2 Nombre:

AGRO Examen Parcial 2 Nombre: Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben

Más detalles

AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II

AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II Facultad de Ciencias EYactas, Físicas y Naturales Universidad Nacional de Córdoba AVISOS Bioestadística II 2015 El miércoles 1 Abril no hay clases de BIO II http://estadisticaybiometria.wordpress.com seguir

Más detalles

CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques

CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques 1. Se realizó un experimento para determinar si cinco fuentes de nitrógeno difirieron en sus efectos sobre la producción de arroz. El diagrama

Más detalles

Unidad Temática 3: Estadística Analítica. Unidad 9 Regresión Lineal Simple Tema 15

Unidad Temática 3: Estadística Analítica. Unidad 9 Regresión Lineal Simple Tema 15 Unidad Temática 3: Estadística Analítica Unidad 9 Regresión Lineal Simple Tema 15 Estadística Analítica CORRELACIÓN LINEAL SIMPLE Indica la fuerza y la dirección de una relación lineal proporcional entre

Más detalles

14 horas. 20 horas

14 horas. 20 horas EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Segunda Prueba Parcial Lapso 7-746 /6 Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: 6-6 - 6 Fecha: --8 MODELO DE RESPUESTAS Objetivos 5 al 8 OBJ 5

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1

Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1 Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1 Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas [email protected] 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

U.N.P.S.J.B. FACULTAD DE INGENIERÍA Cátedra de ESTADÍSTICA Cátedra ESTADISTICA

U.N.P.S.J.B. FACULTAD DE INGENIERÍA Cátedra de ESTADÍSTICA Cátedra ESTADISTICA U.N.P.S.J.B. FACULTAD DE INGENIERÍA Cátedra de ESTADÍSTICA Cátedra ESTADISTICA TRABAJOS PRÁCTICOS Facultad de Ingeniería Universidad Nacional de La Patagonia S. J. B. Comodoro Rivadavia TEMA Nº.. REGRESIÓN

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Capitulo. Describir la relación entre dos variables Pearson Prentice Hall. All rights reserved

Capitulo. Describir la relación entre dos variables Pearson Prentice Hall. All rights reserved Capitulo 34 Describir la relación entre dos variables Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta fundamental debe ser si podemos utilizar el valor

Más detalles

REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE

REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE UNIDAD 3 REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE Relación entre variables de interés 1 Relación entre variables de interés Muchas decisiones gerenciales se basan en la relación entre 2 o

Más detalles

CLAVE - Lab 5 - Contrastes

CLAVE - Lab 5 - Contrastes CLAVE - Lab 5 - Contrastes 1. Se realizó un experimento para comparar cuatro conservadore diferentes para fresas congeladas (C1, C2, C3, C4). Se cosecharon suficientes fresas para obtener 32 muestras de

Más detalles

Regresión. Instituto Tecnológico de Ciudad Victoria Maestría en Ciencias en Biología Sesión de Cómputo. Modelo I

Regresión. Instituto Tecnológico de Ciudad Victoria Maestría en Ciencias en Biología Sesión de Cómputo. Modelo I Regresión La regresión lineal estima la relación de una variable con respecto a otra, por medio de la expresión de una variable en términos de una función lineal de otra variable. Existen dos modelos de

Más detalles

EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION

EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION EXPERIMENTOS FCTORILES CON RESTRICCIONES DE LETORIZCION Diseño de Parcela Dividida Diseño de Bloques Divididos o en Franjas Características generales de estos diseños Esquemas a campo y aleatorización

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

3. RELACION ENTRE DOS CONJUNTOS DE DATOS.

3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. 1 Introducción En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre variables. Para lo cual existen

Más detalles

Prefacio... xvii. 1 La imaginación estadística... 1

Prefacio... xvii. 1 La imaginación estadística... 1 ÍNDICE Prefacio... xvii 1 La imaginación estadística... 1 Introducción... 1 Pensamiento proporcional... 3 La imaginación estadística... 8 Enlace de la imaginación estadística con la imaginación sociológica...

Más detalles

U ED Tudela Introducción al Análisis de Datos - Tema 5

U ED Tudela Introducción al Análisis de Datos - Tema 5 I TRODUCCIÓ AL A ÁLISIS DE DATOS TEMA 5: Relación entre variables (II) 1.- Cuál de las siguientes afirmaciones es verdadera? A) Una correlación de 0 78 entre dos variables X e Y tiene la misma intensidad

Más detalles

Universidad de Sonora Unidad Regional Centro División de Ciencias Biológicas y de la Salud Departamento que imparte la materia: Matemáticas

Universidad de Sonora Unidad Regional Centro División de Ciencias Biológicas y de la Salud Departamento que imparte la materia: Matemáticas Materia: Bioestadística I Universidad de Sonora Unidad Regional Centro División de Ciencias Biológicas y de la Salud Departamento que imparte la materia: Matemáticas Eje de Formación: Básica Carácter:

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

Nota de los autores... vi

Nota de los autores... vi ÍNDICE Nota de los autores... vi 1 Qué es la estadística?... 1 1.1 Introducción... 2 1.2 Por qué se debe estudiar estadística?... 2 1.3 Qué se entiende por estadística?... 4 1.4 Tipos de estadística...

Más detalles

EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4)

EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4) EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4) Apellido y nombre: - Este examen contiene 15 preguntas con 5 respuestas propuestas cada una. Identificar y marcar la única respuesta correcta en cada caso.

Más detalles

ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación

ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación TEMA V ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación Análisis de la covarianza (ANCOVA) Modelos alternativos de análisis DISEÑO DE GRUPO CONTROL NO

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

X Y Realice la predicción de Y cuando X= 6 y X=11.

X Y Realice la predicción de Y cuando X= 6 y X=11. CENTRO UNIVERSITARIO DE OCCIDENTE UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DIVISION DE CIENCIAS DE LA SALUD CURSO DE BIOESTADISTICA HOJA DE TRABAJO SEMANA 21 Contenido: Ecuación de Regresión lineal simple

Más detalles

Pasos. i Aplicar la prueba X 2 para determinar la significación estadística de las proporciones entre ambas variables (no son iguales)

Pasos. i Aplicar la prueba X 2 para determinar la significación estadística de las proporciones entre ambas variables (no son iguales) Relación entre variables cualitativas Pasos Construir una tabla de contingencia Crear una tabla con las frecuencias esperadas f ei (frecuencias teóricas en caso de que X e Y fueran independientes), calculadas

Más detalles

Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes

Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

Ing. MSc. Luis Fernando Restrepo Gómez

Ing. MSc. Luis Fernando Restrepo Gómez Ing. MSc. Luis Fernando Restrepo Gómez Introducción a la Valuación Masiva METODOLOGÍA VALUATORIA Sigue los pasos de la metodología científica, y se apoya en el análisis estadístico de datos comparables.

Más detalles

Modelo de Regresión Lineal

Modelo de Regresión Lineal Modelo de Regresión Lineal Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Introducción Un ingeniero, empleado por un embotellador de gaseosas,

Más detalles

ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez https://torrezcesar.wordpress.com

ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez https://torrezcesar.wordpress.com ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez [email protected] https://torrezcesar.wordpress.com 0416-2299743 Programa de Estadística II UNIDAD IV: REGRESIÓN Y CORRELACIÓN MÚLTIPLE LINEAL TANTO

Más detalles

Folleto de Estadísticas. Teoría del 2do Parcial

Folleto de Estadísticas. Teoría del 2do Parcial Folleto de Estadísticas Teoría del 2do Parcial 2012 Variables aleatorias conjuntas continuas: Sean X y Y dos variables aleatorias continuas con ellas se asocia una función denominada función de densidad

Más detalles

Pruebas estadís,cas para evaluar relaciones

Pruebas estadís,cas para evaluar relaciones Pruebas estadís,cas para evaluar relaciones Asociación entre dos variables categóricas Hipótesis: frecuencias de ocurrencias en las categorías de una variable son independientes de los frecuencias en la

Más detalles

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles. completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos

Más detalles

Estadística I Solución Examen Final- 19 de junio de Nombre y Apellido:... Grupo:...

Estadística I Solución Examen Final- 19 de junio de Nombre y Apellido:... Grupo:... Estadística I Examen Final- 19 de junio de 2009 Nombre y Apellido:... Grupo:... (1) La siguiente tabla muestra las distribuciones de frecuencias absolutas de la variable altura (en metros) de n = 500 estudiantes

Más detalles

Al nivel de confianza del 95%, las puntuaciones típicas son: 2- La hipótesis alternativa es; A) ; B) ; C).

Al nivel de confianza del 95%, las puntuaciones típicas son: 2- La hipótesis alternativa es; A) ; B) ; C). A continuación se presentan 4 situaciones. Cada situación viene seguida por una serie de preguntas referidas a la misma así como de preguntas teóricas generales. SITUACIÓN 1: La empresa SND's de sondeos

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

EVALUACIÓN DE LA EFICACIA DE UN INSECTICIDA BIOLÓGICO MEDIANTE ANÁLISIS PROBIT

EVALUACIÓN DE LA EFICACIA DE UN INSECTICIDA BIOLÓGICO MEDIANTE ANÁLISIS PROBIT EVALUACIÓN DE LA EFICACIA DE UN INSECTICIDA BIOLÓGICO MEDIANTE ANÁLISIS PROBIT Nereida Delgado Puchi Instituto de Zoología Agrícola Facultad de Agronomía Universidad Central de Venezuela Introducción Estudios

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes

CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes (revisado_oct 15_LWB/RS) CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes 1. Calcule las siguientes probabilidades usando la tabla t e InfoStat. Incluya un diagrama en cada caso. a.

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS

INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS Febrero 2011 EXAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: 62011037 EXAMEN MODELO B DURACION: 2 HORAS X Ciudad A Ciudad B 17-20 10 17 13-16 20 27 9-12 25 15 5-8 15

Más detalles

Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis

Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis VDC Prof. Mª JOSÉ PRIETO CASTELLÓ MÉTODOS ESTADÍSTICOS. TÉCNICAS ESTADÍSTICA DESCRIPTIVA TEORÍA DE LA PROBABILIDAD

Más detalles

10 Modelo de regresión lineal

10 Modelo de regresión lineal 0 Modelo de regresión lineal La relación matemática determinística más simple entre dos variables x e y, es una relación lineal y = 0 + x. El conjunto de pares (x; y) que veri can esta relación, determinan

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C=

EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C= EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C= Se permite el uso de calculadora, UNA hoja con las fórmulas escrita a mano y las tablas de distribuciones: normal, t student,

Más detalles

EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X 2 )

EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X 2 ) Jesús Eduardo Pulido Guatire, marzo 010 EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X ) EJEMPLO PRÁCTICO DE CORRELACIÓN Con base en la fundamentación teórica de la correlación lineal y el Archivo de

Más detalles

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles