AGRO Examen Final. Nombre:
|
|
|
- Raquel Núñez Mendoza
- hace 7 años
- Vistas:
Transcripción
1 Examen Final Nombre: AGRO Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar las hojas con fórmulas y tablas provistas, el libro y la calculadora. Para obtener crédito parcial las respuestas deben ser consistentes. Tenga en cuenta que algunos de los resultados parciales presentados podrían no ser relevantes al problema en cuestión. Todo acto de deshonestidad académica conllevará una nota de 0 en el examen y la radicación de cargos disciplinarios. El examen dura 2 horas. 1. (25 puntos: 5 cada parte) La clorofila-a es un indicador de la calidad del agua en lagos, ya que altas concentraciones indican mucha densidad de algas, y poca calidad del agua debido al proceso de eutroficación. El fósforo estimula el crecimiento de algas y por lo tanto se espera que altas concentraciones de fósforo causen altas concentraciones de clorofila-a. Se tomaron muestras de 25 lagos y los resultados se analizaron mediante un modelo de regresión lineal simple con x=concentración de fósforo, y=concentración de clorofila-a. Fósforo Clorofila-a Fósforo Clorofila-a Análisis de regresión lineal Variable N R² R² Aj Clorofila-a Coeficientes de regresión y estadísticos asociados Coef Est. EE T valor p const Fósforo <0.0001
2 Clorofila-a Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F valor p Modelo < Fósforo < Error Total Fósforo a. Muestre la ecuación de regresión que permita predecir la concentración de clorofila-a en función de la concentración de fósforo. Use las reglas de redondeo apropiadas. (No realice cálculos adicionales, simplemente muestre la ecuación estimada por Infostat). b. Si es posible, interprete claramente los estimadores del intercepto y de la pendiente en términos de este problema. Si no es posible, justifique. c. Formule y pruebe la hipótesis de relación lineal entre ambas variables. Use =0.05 d. Si es posible, prediga la concentración de clorofila si la cantidad de fósforo es 200. e. Construya un intervalo de confianza del % para 1. (Ayuda: Toda la información ya está disponible en la salida, no es necesario calcular S xx.)
3 VAR2 VAR2 VAR2 VAR2 2. (16 puntos: 4 puntos cada parte) Se muestran cuatro diagramas de dispersión (figuras A-D). Para cada valor del coeficiente de correlación lineal, indique a cuál de las figuras podría corresponder. r = -0.5 Figura r = Figura r = Figura r = Figura Figure A 4 Figure C Figure B 17 Figure D
4 3. (1 puntos: a: 4, b:, c: 7) Se desea planificar un estudio para comparar 3 metodologías de enseñanza en una clase de décimo grado. Para realizar el estudio, cada metodología se probará en 5 salones de clase (es decir, se necesitan 15 salones de clase en total). Las escuelas superiores de los distritos escolares en donde se llevará a cabo no tienen más que tres salones de décimo grado cada una, y es posible que existan diferencias entre escuelas (es decir, independientemente del método de enseñanza, los resultados de una escuela podrían ser distintos a las de otra). El estudio se llevará a cabo de la siguiente manera: al comenzar el año se hará una prueba diagnóstica, luego se enseñará con uno de las tres metodologías (aleatoriamente asignadas a ese salón de clase), y al final del año se hará una postprueba. Se desea comparar cuál de las metodologías presenta resultados mejores en aprovechamiento promedio de los estudiantes del salón. a. Es este un experimento o un estudio observacional? Justifique brevemente. b. Muestre cómo diseñaría este estudio, indicando en cada celda (que representa un salón de clase) la metodología de enseñanza que probaría (A, B o C). Escuela 1 Escuela 2 Escuela 3 Escuela 4 Escuela 5 c. Para el estudio diseñado en la parte b, prepare una esquema de la tabla de ANOVA indicando solamente las fuentes de variación y los grados de libertad asociados a cada una (presente los números, no las letras!)
5 4. (30 puntos; a: 6, b: 5, c:, d: 6, e: 5) Se realizó un experimento para estudiar el efecto de 3 niveles de vitamina B (5,, 20 mg / lb ración) sobre la ganancia de peso promedio diaria de cerditos. Cada nivel de vitamina se usó en 4 cerditos aleatoriamente escogidos. La salida en Infostat sigue a continuación. Análisis de la varianza Variable N R² R² Aj CV aumento diario Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F valor p Modelo vit B Error Total Test:LSD Fisher Alfa:=0.05 DMS:= Error: gl: vit B Medias n Letras distintas indican diferencias significativas(p<= 0.05) a. Complete el cuadro de ANOVA (hay 6 cantidades subrayadas que faltan) b. Formule y pruebe las hipótesis de interés. Presente las hipótesis nula y alternativa, el estadístico de la prueba y sus conclusiones claramente. c. Calcule el valor de DMS y complete las letras en la salida de la prueba de DMS indicando qué medias son significativamente diferentes y qué medias no son significativamente diferentes. d. Según los resultados de la prueba DMS realizada en la parte c, responda CIERTO/FALSO a lo siguiente: i. La dosis que presenta la peor ganancia de peso promedio es 5 mg/ lb ración. ii. No hay diferencias significativas entre los promedios de las dosis 5 y iii.. No hay diferencias significativas entre los promedios de las dosis y 20. e. Construya un intervalo de confianza para la ganancia promedio de cerditos suplementados con 20 mg de vitamina B.
6 5. ( puntos: 5 cada parte) Se realizó un experimento para comparar los porcentajes de renacuajos que llegan a adultos bajo distintos niveles de salinidad del agua. Se pusieron grupos de 20 renacuajos en agua con salinidad de 0 % (control), 0.05% y 0.%. Luego del periodo de metamorfosis, se contó el número de sapos adultos que habían sobrevivido en cada caso. Los resultados y el análisis en Infostat son los siguientes: Salinidad Sobreviven No sobreviven Total 0% % % Total Tablas de contingencia Frecuencias: Cantidad Frecuencias absolutas En columnas:sobrevive Salinidad Si No Total Total Estadístico Valor gl p Chi Cuadrado Pearson < Chi Cuadrado MV-G < Coef.Conting.Cramer 0.47 Coef.Conting.Pearson 0.55 a. Cuál sería la cantidad esperada en cada celda si el porcentaje de sobrevivencia fuese el mismo en las tres salinidades? Complete la tabla con los valores esperados correspondientes. Salinidad Sobreviven No sobreviven 0% 0.05% 0.% b. Formule y pruebe las hipótesis de interés usando =.05 (use la salida de Infostat y las tablas correspondientes: no realice cálculos adicionales).
AGRO Examen Final. Nombre:
Examen Final Nombre: AGRO 5005 2012 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
AGRO Examen Final. Nombre:
PesoSeco (g) Examen Final Nombre: AGRO 5005 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO 5005 Examen Final 2013 Nombre: Número de estudiante:
AGRO 5005 Examen Final 2013 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial
AGRO 5005 Examen Final 2005 Nombre: Número de estudiante:
AGRO 5005 Examen Final 2005 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Se proveen las tablas y las
AGRO 5005 Examen Final 2014 Nombre: Número de estudiante:
AGRO 5005 Examen Final 04 Nombre: Número de estudiante: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial
Examen Final. F.V. SC gl CM F p-valor Método Error Total
Examen Final Nombre: AGRO 5005 009 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar
Examen Parcial 1. En la muestra se determinó la concentración de E. coli, en logufc. Se presentan algunos análisis relevantes a continuación.
Examen Parcial 1 Nombre: AGRO 6600 2009 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
AGRO 6600 Segundo Examen Parcial
AGRO 6600 Segundo Examen Parcial 2014 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO Examen Parcial 1. Nombre:
Examen Parcial 1 Nombre: AGRO 6600 2008 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
AGRO Examen Parcial 1. Nombre:
Examen Parcial 1 Nombre: AGRO 6600 2013 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
Segundo Examen Parcial
Segundo Examen Parcial Nombre: AGRO 6600 2009 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO Examen Final
AGRO 6600 Examen Final 2010 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
AGRO Examen Final
AGRO 6600 Examen Final 2004 Nombre: Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
Segundo Examen Parcial
Nombre: Segundo Examen Parcial AGRO 6600 2010 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO Examen Final. Nombre:
Examen Final Nombre: AGRO 6600 2008 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
Análisis A Variable N R² R² Aj CV pesotejido(g)
Nombre: Segundo Examen Parcial 1 AGRO 6600 2015 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
AGRO Examen Parcial 1. Nombre:
Examen Parcial 1 Nombre: AGRO 6600 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora y la hoja de fórmulas provista. Para obtener
c. (4 puntos) Identifique el factor A (aplicado a nivel de parcela completa) e indique el número de niveles de este factor:
1 AGRO 6600 Examen Final Nombre: 2015 Instrucciones: Apague celulares. Se descontarán 10 puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
Examen Final. Class Level Information Class Levels Values trat Number of Observations Used 15
Examen Final Nombre: AGRO 6600 2013 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden
LAB 13 - Análisis de Covarianza - CLAVE
LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).
AGRO 6600 Segundo Examen Parcial
AGRO 6600 Segundo Examen Parcial Nombre: 2012 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.
CLAVE - LAB 13 (Regresión y correlación lineal)
CLAVE - LAB 13 (Regresión y correlación lineal) 1. Se condujo un experimento para examinar el efecto de diferentes concentraciones de pectina sobre la firmeza de batata enlatada. Se usaron tres concentraciones
CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados
CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados 1. Digamos que estamos interesados en conducir un experimento para comparar los efectos de tres insecticidas diferentes en habichuela. Pensamos
CLAVE Lab 11 - Regresión Lineal Simple y Polinomial
Escala común CLAVE Lab 11 - Regresión Lineal Simple y Polinomial 1. A mano, construya los siguientes gráficos: a. Grafique la línea recta correspondiente a la ecuación y 2x 1 b. Grafique la línea recta
AGRO Examen Parcial 2 Nombre:
Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben
AGRO Examen Parcial 2. Nombre:
1 Nombre: Examen Parcial 2 AGRO 5005 2015 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples
Potencia Revisado_febrero_2016_LWB/CL CLAVE - LAB 4 - Determinación de Tamaño Muestral y Comparaciones Múltiples 1. Considere el problema 2 del laboratorio 2. Se está planificando realizar de nuevo este
AGRO Examen Parcial 2. Nombre:
Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la
Examen Parcial 1. The GLM Procedure Class Level Information Class Levels Values trat
Examen Parcial 1 Nombre: AGRO 6600 2011 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
Clave Lab 7- Experimentos con dos Factores
Clave Lab 7- Experimentos con dos Factores 1. Se realizó un experimento para estudiar los efectos de tres niveles de ácido sórbico (0, 100 y 200 ppm) y seis niveles de actividad de agua (AW) en la supervivencia
Examen Final. a. Identifique los factores en estudio, y si éstos son fijos o aleatorios.
AGRO 6600 Examen Final 2002 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben
Regresión múltiple. Efecto de varias variables ambientales sobre una especie de ganso migratorio. Luz
Nombre: AGRO 6600 LAB 12 Regresión múltiple Los datos adjuntos se tomaron para estudiar el efecto de varias variables ambientales sobre el tiempo en el que una especie de ganso migratorio deja su nido
AGRO Examen Parcial 2. Nombre:
1 Nombre: Examen Parcial 2 AGRO 5005 2016 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
CLAVE - LAB 12 - Regresión Múltiple y Selección de Variables
Revisado_May_2018_LW B CLAVE - LAB 12 - Regresión Múltiple y Selección de Variables Para estudiar la relación entre ciertas características del suelo y la producción de biomasa (g) de una planta forrajera
CLAVE - Laboratorio 11: Análisis de la Varianza
CLAVE - Laboratorio 11: Análisis de la Varianza 1. Se está diseñando un experimento para comparar 4 variedades de habichuela. Se usarán 6 parcelas con cada una de las variedades en un diseño completamente
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.
ANÁLISIS DE LA VARIANZA. PASO 1: Planilla de toma de datos.
Autores: de la Torre, Ma. Virginia; Chiappero, Ma. Carolina Colaboradores: Biasutti, Carlos A.; Conrero, Juan M.; Nazar, Ma. Cristina; Carreras, Julia ; Allende, Ma. José y Mansilla, Pablo. MEJORAMIENTO
AGRO Examen Parcial 1
AGRO 5005 2012 Examen Parcial 1 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas
U ED Tudela Introducción al Análisis de Datos - Tema 4
I TRODUCCIÓ AL A ÁLISIS DE DATOS TEMA 4: Análisis conjunto de dos variables. 1.- Cuando se dice que dos variables están correlacionadas positivamente, se tiene que interpretar que: A) un aumento en una
AGRO Examen Parcial 2 Nombre:
Examen Parcial 2 Nombre: AGRO 5005 Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro y la calculadora. Para obtener crédito parcial las respuestas deben
AVISOS. Diseño Factorial 30/03/2015. Bioestadística II. Diseño Factorial. El miércoles 1 Abril no hay clases de BIO II
Facultad de Ciencias EYactas, Físicas y Naturales Universidad Nacional de Córdoba AVISOS Bioestadística II 2015 El miércoles 1 Abril no hay clases de BIO II http://estadisticaybiometria.wordpress.com seguir
CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques
CLAVE - LAB 2 - Diseños Completamente Aleatorizado y en Bloques 1. Se realizó un experimento para determinar si cinco fuentes de nitrógeno difirieron en sus efectos sobre la producción de arroz. El diagrama
Unidad Temática 3: Estadística Analítica. Unidad 9 Regresión Lineal Simple Tema 15
Unidad Temática 3: Estadística Analítica Unidad 9 Regresión Lineal Simple Tema 15 Estadística Analítica CORRELACIÓN LINEAL SIMPLE Indica la fuerza y la dirección de una relación lineal proporcional entre
14 horas. 20 horas
EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:
Segunda Prueba Parcial Lapso 7-746 /6 Universidad Nacional Abierta Estadística Aplicada (Cód. 746) Vicerrectorado Académico Cód. Carrera: 6-6 - 6 Fecha: --8 MODELO DE RESPUESTAS Objetivos 5 al 8 OBJ 5
Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.
NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido
Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1
Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1 Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas [email protected] 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
U.N.P.S.J.B. FACULTAD DE INGENIERÍA Cátedra de ESTADÍSTICA Cátedra ESTADISTICA
U.N.P.S.J.B. FACULTAD DE INGENIERÍA Cátedra de ESTADÍSTICA Cátedra ESTADISTICA TRABAJOS PRÁCTICOS Facultad de Ingeniería Universidad Nacional de La Patagonia S. J. B. Comodoro Rivadavia TEMA Nº.. REGRESIÓN
INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica
INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables
Capitulo. Describir la relación entre dos variables Pearson Prentice Hall. All rights reserved
Capitulo 34 Describir la relación entre dos variables Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta fundamental debe ser si podemos utilizar el valor
REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE
UNIDAD 3 REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE Relación entre variables de interés 1 Relación entre variables de interés Muchas decisiones gerenciales se basan en la relación entre 2 o
CLAVE - Lab 5 - Contrastes
CLAVE - Lab 5 - Contrastes 1. Se realizó un experimento para comparar cuatro conservadore diferentes para fresas congeladas (C1, C2, C3, C4). Se cosecharon suficientes fresas para obtener 32 muestras de
Regresión. Instituto Tecnológico de Ciudad Victoria Maestría en Ciencias en Biología Sesión de Cómputo. Modelo I
Regresión La regresión lineal estima la relación de una variable con respecto a otra, por medio de la expresión de una variable en términos de una función lineal de otra variable. Existen dos modelos de
EXPERIMENTOS FACTORIALES CON RESTRICCIONES DE ALEATORIZACION
EXPERIMENTOS FCTORILES CON RESTRICCIONES DE LETORIZCION Diseño de Parcela Dividida Diseño de Bloques Divididos o en Franjas Características generales de estos diseños Esquemas a campo y aleatorización
Lucila Finkel Temario
Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión
3. RELACION ENTRE DOS CONJUNTOS DE DATOS.
3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. 1 Introducción En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre variables. Para lo cual existen
Prefacio... xvii. 1 La imaginación estadística... 1
ÍNDICE Prefacio... xvii 1 La imaginación estadística... 1 Introducción... 1 Pensamiento proporcional... 3 La imaginación estadística... 8 Enlace de la imaginación estadística con la imaginación sociológica...
U ED Tudela Introducción al Análisis de Datos - Tema 5
I TRODUCCIÓ AL A ÁLISIS DE DATOS TEMA 5: Relación entre variables (II) 1.- Cuál de las siguientes afirmaciones es verdadera? A) Una correlación de 0 78 entre dos variables X e Y tiene la misma intensidad
Universidad de Sonora Unidad Regional Centro División de Ciencias Biológicas y de la Salud Departamento que imparte la materia: Matemáticas
Materia: Bioestadística I Universidad de Sonora Unidad Regional Centro División de Ciencias Biológicas y de la Salud Departamento que imparte la materia: Matemáticas Eje de Formación: Básica Carácter:
Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística
Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012
Nota de los autores... vi
ÍNDICE Nota de los autores... vi 1 Qué es la estadística?... 1 1.1 Introducción... 2 1.2 Por qué se debe estudiar estadística?... 2 1.3 Qué se entiende por estadística?... 4 1.4 Tipos de estadística...
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4)
EXAMEN FINAL ESTADÍSTICA GENERAL (Ejemplo 4) Apellido y nombre: - Este examen contiene 15 preguntas con 5 respuestas propuestas cada una. Identificar y marcar la única respuesta correcta en cada caso.
ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación
TEMA V ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación Análisis de la covarianza (ANCOVA) Modelos alternativos de análisis DISEÑO DE GRUPO CONTROL NO
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
X Y Realice la predicción de Y cuando X= 6 y X=11.
CENTRO UNIVERSITARIO DE OCCIDENTE UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DIVISION DE CIENCIAS DE LA SALUD CURSO DE BIOESTADISTICA HOJA DE TRABAJO SEMANA 21 Contenido: Ecuación de Regresión lineal simple
Pasos. i Aplicar la prueba X 2 para determinar la significación estadística de las proporciones entre ambas variables (no son iguales)
Relación entre variables cualitativas Pasos Construir una tabla de contingencia Crear una tabla con las frecuencias esperadas f ei (frecuencias teóricas en caso de que X e Y fueran independientes), calculadas
Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes
Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
Ing. MSc. Luis Fernando Restrepo Gómez
Ing. MSc. Luis Fernando Restrepo Gómez Introducción a la Valuación Masiva METODOLOGÍA VALUATORIA Sigue los pasos de la metodología científica, y se apoya en el análisis estadístico de datos comparables.
Modelo de Regresión Lineal
Modelo de Regresión Lineal Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Introducción Un ingeniero, empleado por un embotellador de gaseosas,
ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez https://torrezcesar.wordpress.com
ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez [email protected] https://torrezcesar.wordpress.com 0416-2299743 Programa de Estadística II UNIDAD IV: REGRESIÓN Y CORRELACIÓN MÚLTIPLE LINEAL TANTO
Folleto de Estadísticas. Teoría del 2do Parcial
Folleto de Estadísticas Teoría del 2do Parcial 2012 Variables aleatorias conjuntas continuas: Sean X y Y dos variables aleatorias continuas con ellas se asocia una función denominada función de densidad
Pruebas estadís,cas para evaluar relaciones
Pruebas estadís,cas para evaluar relaciones Asociación entre dos variables categóricas Hipótesis: frecuencias de ocurrencias en las categorías de una variable son independientes de los frecuencias en la
DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.
completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos
Estadística I Solución Examen Final- 19 de junio de Nombre y Apellido:... Grupo:...
Estadística I Examen Final- 19 de junio de 2009 Nombre y Apellido:... Grupo:... (1) La siguiente tabla muestra las distribuciones de frecuencias absolutas de la variable altura (en metros) de n = 500 estudiantes
Al nivel de confianza del 95%, las puntuaciones típicas son: 2- La hipótesis alternativa es; A) ; B) ; C).
A continuación se presentan 4 situaciones. Cada situación viene seguida por una serie de preguntas referidas a la misma así como de preguntas teóricas generales. SITUACIÓN 1: La empresa SND's de sondeos
Tema 4. Regresión lineal simple
Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias
EVALUACIÓN DE LA EFICACIA DE UN INSECTICIDA BIOLÓGICO MEDIANTE ANÁLISIS PROBIT
EVALUACIÓN DE LA EFICACIA DE UN INSECTICIDA BIOLÓGICO MEDIANTE ANÁLISIS PROBIT Nereida Delgado Puchi Instituto de Zoología Agrícola Facultad de Agronomía Universidad Central de Venezuela Introducción Estudios
Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple
Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción
CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes
(revisado_oct 15_LWB/RS) CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes 1. Calcule las siguientes probabilidades usando la tabla t e InfoStat. Incluya un diagrama en cada caso. a.
INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS
Febrero 2011 EXAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: 62011037 EXAMEN MODELO B DURACION: 2 HORAS X Ciudad A Ciudad B 17-20 10 17 13-16 20 27 9-12 25 15 5-8 15
Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis
Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis VDC Prof. Mª JOSÉ PRIETO CASTELLÓ MÉTODOS ESTADÍSTICOS. TÉCNICAS ESTADÍSTICA DESCRIPTIVA TEORÍA DE LA PROBABILIDAD
10 Modelo de regresión lineal
0 Modelo de regresión lineal La relación matemática determinística más simple entre dos variables x e y, es una relación lineal y = 0 + x. El conjunto de pares (x; y) que veri can esta relación, determinan
Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables
Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población
Prueba t para muestras independientes
Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C=
EXAMEN FINAL CONJUNTO DE ESTADÍSTICA 6 de diciembre de 2010 NOMBRE: GRUPO C= Se permite el uso de calculadora, UNA hoja con las fórmulas escrita a mano y las tablas de distribuciones: normal, t student,
EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X 2 )
Jesús Eduardo Pulido Guatire, marzo 010 EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X ) EJEMPLO PRÁCTICO DE CORRELACIÓN Con base en la fundamentación teórica de la correlación lineal y el Archivo de
Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández
Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema
