Unidad II: Números pseudoaleatorios
|
|
|
- Esteban Lagos Quintero
- hace 10 años
- Vistas:
Transcripción
1 Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno de los siguientes métodos: 1. Mediante una ruleta. Si estamos interesados en obtener números aleatorios discretos de una cifra (0,1,2,...,9), se hace girar una ruleta numerando los sectores del 0 al 9 y posteriormente se de1tiene anotándose el número de sector. La probabilidad de obtener cualquier número de la secuencia anterior es 1/10. Si en lugar de generar números aleatorios de una cifra, necesitamos generar números aleatorios uniformes de k cifras, con valores de la variable aleatoria en el conjunto, con probabilidad 1/10, no tenemos nada más que partir de una tabla de números aleatorios de una cifra, y agruparlos de en ; los números resultantes son aleatorios de cifras. La generación de números aleatorios de una variable aleatoria uniforme (0, 1) constituye el paso siguiente, ya que esa distribución juega un papel fundamental en la generación de variables aleatorias con otras distribuciones. Supongamos que estamos interesados en la generación de números aleatorios con cifras decimales y uniformes en el intervalo (0, 1). El primer paso será generar números (), uniformes de cifras para posteriormente, a través de una transformación = /10, pasarlos al dominio (0, 1) 2. Mediante una moneda o un dado: Se lanza una moneda o un dado y se anota el resultado. 3. Uso de guías telefónicas: Coger la guía telefónica de una provincia, abrir una página al azar y anotar de cada número de teléfono las cuatro últimas cifras. 4. Recurrir a tablas de números aleatorios.
2 Métodos de generación aritméticos Los procedimientos de generación de números aleatorios más utilizados son de tipo aritmético y suelen ser de tipo recursivo. Cada número aleatorio se obtiene en función del último número obtenido, o de un número relativamente pequeño de los números obtenidos previamente. Si se considera el caso en el que cada número depende exclusivamente del anterior, la fórmula de generación será Método de los cuadrados medios Este método fue planteado por Von Neumann en Se basa en tomar un número, elevarlo al cuadrado y tomar los dígitos del centro como nuevo número, luego repetir el procedimiento. 2.2 Pruebas estadísticas En esta sección se describen 2 de las pruebas estadísticas que se aplican a los números pseudoaleatorios generados por cualquiera de los métodos anteriores; en la primera de ellas, se tratará de verificar la hipótesis de que los números generados provienen de la distribución uniforme en el intervalo cerrado [0,1], en la segunda de ellas, se aplicará la prueba de corrida, misma que sirve para verificar que los números son efectivamente aleatorios. A continuación se detallan ambas pruebas: De uniformidad. (chi cuadrada, kolmogorov-smimov) Prueba de Kolmogorov-Smirnov Esta prueba sirve para verificar o negar la hipótesis que un conjunto de observaciones provienen de una determinada distribución. La estadística D que se utiliza en esta prueba es una medida de la diferencia máxima observada entre la
3 distribución empírica (dada por las observaciones) y la teórica supuesta. La estadística D es obviamente una variable aleatoria. A continuación se detalla cómo se utiliza esta prueba para verificar o negar que un conjunto de números pseudoaleatorios tenga una distribución uniforme en el intervalo cerrado [0, 1] De aleatoriedad. (corridas arriba y debajo de la media y longitud de corridas) Aquí se encuentran los resultados de una encuesta con una serie de cuestiones sobre lo que ocurriría jugando al ajedrez de forma aleatoria, así como los resultados obtenidos de una simulación mediante PC (Método de Monte Carlo) de ésta misma cuestión. Las respuestas a la encuesta se obtuvieron a través de Internet y de un BBS local. Las líneas marcadas con dos asteriscos son las respuestas verdaderas de acuerdo con los resultados de la simulación. El resumen de los resultados de la simulación al azar, muestra en la primera tabla, los datos parciales y acumulados que se obtuvieron después de simular de partidas. Una segunda tabla muestra los resultados cuando se introduce la regla de los 50 movimientos, que no resultó significativa, ya que de las tablas resultantes de la misma, también lo hubiesen sido sin la aplicación de la regla. La tabla tercera muestra el porcentaje de veces que cada uno de los tipos de piezas aparece en la posición final del bando vencedor (naturalmente de las partidas que no fueron tablas). La cuarta tabla muestra el número de casillas que por término medio bate cada una de las piezas durante el desarrollo de las partidas. Como es bien conocido, esta es una medida del poder de cada pieza.
4 Una última tabla muestra los resultados de simular tandas de de simulaciones desde posiciones iniciales que solo contiene el material de los mates elementales De independencia. (Autocorrelación, prueba de huecos, prueba del póquer, prueba de Yule) La prueba Póquer, prueba grupos de números juntos como una mano de poker y compara cadamano con la mano esperada usando la prueba Chi-cuadrada. La prueba de corrida arriba abajo es generalment. La prueba POKER se utiliza para analizar la frecuencia con la que se repiten los dígitos en números aleatorios individuales. Para determinar si los números aleatorios generados cumplen con las propiedades especificadas ( uniformidad e independencia ) se tendrán las hipótesis siguientes: 2.3 Método de Monte Carlo Características La simulación de Montecarlo es un método especialmente útil para analizar situaciones que involucran riesgo con el propósito de obtener respuestas aproximadas cuando el realizar un experimento físico o el aplicar métodos analíticos no es posible o resulta muy difícil o costoso. La simulación de Montecarlo hace referencia a experimentos que involucran el uso de números pseudoaleatorios. El requisito clave de esta técnica es que los resultados de todas las variables de interés deben ser seleccionados aleatoriamente. La simulación de Montecarlo ha tenido una gran aceptación en la vida real debido al poder analítico que presenta sin la necesidad de matemáticas complejas.
5 2.3.2 Aplicaciones Sistemas de computación: redes de ordenadores, componentes, programación, bases de datos, fiabilidad. Fabricación: manejo de materiales, líneas de montaje, equipos de almacenamiento, control de inventario, mantenimiento, distribución en planta, diseño de máquinas. Negocios: análisis de existencias, política de precios, estrategias de marketing, estudios de adquisición, análisis de flujo de caja, predicción, alternativas del transporte, planificación de mano de obra. Gobierno: armamento y su uso, tácticas militares, predicción de la población, uso del suelo, prevención de incendios, servicios de policía, justicia criminal, diseño de vías de comunicación, servicios sanitarios. Ecología y medio ambiente: contaminación y purificación del agua, control de residuos, contaminación del aire, control de plagas, predicción del tiempo, análisis de seísmos y tormentas, exploración y explotación de minerales, sistemas de energía solar, explotación de cultivos. Sociedad y comportamiento: estudios de alimentación de la población, políticas educativas, estructuras organizativas, análisis de sistemas sociales, sistemas de asistencia social, administración universitaria Solución de problemas Supongamos que tenemos un satélite, que para su funcionamiento depende de que al menos 2 paneles solares de los 5 que tiene disponibles estén en funcionamiento, y queremos calcular φ la vida útil esperada del satélite (el tiempo promedio de funcionamiento hasta que falla, usualmente conocido en la literatura
6 como MTTF - Mean Time To Failure). Supongamos que cada panel solar tiene una vida útil que es aleatoria, y está uniformemente distribu ıda en el rango [1000 hrs, 5000 hrs] (valor promedio: 3000 hrs).
Generación de Números Pseudo-Aleatorios
Números Aleatorios Son un ingrediente básico en la simulación de sistemas Los paquetes de simulación generan números aleatorios para simular eventos de tiempo u otras variables aleatorias Una secuencia
Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J.
Generación de Números Aleatorios Números elegidos al azar son útiles en diversas aplicaciones, entre las cuáles podemos mencionar: Simulación o métodos de Monte Carlo: se simula un proceso natural en forma
SIMULACION. Formulación de modelos: solución obtenida de manera analítica
SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar
UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS
UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias
Probabilidad y Simulación
Probabilidad y Simulación Estímulo del Talento Matemático Real Academia de Ciencias 4 de febrero de 2006 Entendiendo el azar Queremos entender un fenómeno aleatorio (azar, incertidumbre). Entenderlo lo
Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos
Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay
SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio [email protected]
SIMULACION Modelos de http://www.javeriana.edu.co/decisiones/julio [email protected] Julio A. Sarmiento S. Profesor - investigador Departamento de Administración Pontificia Universidad Javeriana
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)
Capítulo 7: Distribuciones muestrales
Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.
Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS
.. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS Ser: Describir el método de construcción del diagrama de tallo, tabla de frecuencias, histograma y polígono. Hacer: Construir
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).
Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL
1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en
Introducción a la Estadística con Excel
Introducción a la Estadística con Excel En el siguiente guión vamos a introducir el software Excel 2007 y la manera de trabajar con Estadística Descriptiva. Cargar o importar datos En Excel 2007 podemos
Universidad TecMilenio: Profesional IO04002 Investigación de Operaciones II
IO04002 Investigación de Operaciones II Tema #4 Generación de números pseudo aleatorios y Objetivo de aprendizaje del tema Al finalizar la sesión serás capaz de: Calcular números pseudo aleatorios. Determinar
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
Indicaciones específicas para los análisis estadísticos.
Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por
1.1. Introducción y conceptos básicos
Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................
Unidad II: Números pseudoalealeatorios
1 Unidad II: Números pseudoalealeatorios Generación de números aleatorios Un Número Aleatorio se define como un número al azar comprendido entre cero y uno. Su característica principal es que puede suceder
Tema 3: Variables aleatorias y vectores aleatorios bidimensionales
Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos
Simulación Monte Carlo
Simulación Monte Carlo Modelado estocástico Cuando se realiza un análisis estático a un proyecto, una serie de supuestos y variables producen un resultado de valor único. Mientras que un análisis estocástico
MEDIDAS DE TENDENCIA CENTRAL
CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función
CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de
CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.
TEMA 4: Introducción al Control Estadístico de Procesos
TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción
Muestreo estadístico. Relación 2 Curso 2007-2008
Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los
CAPÍTULO 7 7. CONCLUSIONES
CAPÍTULO 7 7. CONCLUSIONES 7.1. INTRODUCCIÓN 7.2. CONCLUSIONES PARTICULARES 7.3. CONCLUSIONES GENERALES 7.4. APORTACIONES DEL TRABAJO DE TESIS 7.5. PROPUESTA DE TRABAJOS FUTUROS 197 CAPÍTULO 7 7. Conclusiones
6. Productividad. Los sectores más productivos
Cuál es el nivel de productividad en la industria? Qué influencia tienen la dimensión de la empresa y la rama de actividad? Cuáles son los sectores industriales más productivos? Qué cambios ha experimentado
INFORME DE ANÁLISIS DE ENCUESTAS DE SATISFACCIÓN DE USUARIOS PERÍODO 2009-2010
INFORME DE ANÁLISIS DE ENCUESTAS DE SATISFACCIÓN DE USUARIOS PERÍODO 2009-2010 UNIDAD FUNCIONAL DE TÉCNICOS DE LABORATORIOS DOCENTES UNIVERSIDAD PABLO DE OLAVIDE. SEVILLA Sevilla, Diciembre de 2010 1 1.
13. Técnicas de simulación mediante el método de Montecarlo
13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que
MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7
Página 1 de 7 1 CRITERIOS DE EVALUACIÓN 1.1 SECUENCIA POR CURSOS DE LOS CRITERIOS DE EVALUACION PRIMER CURSO 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones
Análisis de los datos
Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización
Sistemas para incrementar la capacidad de producción
Revista Énfasis Logística - Junio 2015 Sistemas para incrementar la capacidad de producción A TRAVÉS DE LA GESTIÓN EFECTIVA DEL INVENTARIO, CON EL APOYO DE SISTEMAS INFORMÁTICOS, ES POSIBLE LOGRAR IMPORTANTES
Lección 22: Probabilidad (definición clásica)
LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los
ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO
ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO Por: Pablo Lledó Master of Science en Evaluación de Proyectos (University of York) Project Management Professional (PMP) Profesor de Project Management y Evaluación
"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios
"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios Miguel Alfonso Flores Sánchez 1, Fernando Sandoya Sanchez 2 Resumen En el presente artículo se
Análisis y cuantificación del Riesgo
Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el
Tema 1 con soluciones de los ejercicios. María Araceli Garín
Tema 1 con soluciones de los ejercicios María Araceli Garín Capítulo 1 Introducción. Probabilidad en los modelos estocásticos actuariales Se describe a continuación la Tarea 1, en la que se enumeran un
Introducción. Estadística 1. 1. Introducción
1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia
2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24
2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios
SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3.
LECTURA 6.3 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 3 SIMULACIÓN 3.1 INTRODUCCIÓN Simulación es el desarrollo de un modelo lógico-matemático de
El programa Minitab: breve introducción a su funcionamiento. Para mostrar la facilidad con la que se pueden realizar los gráficos y cálculos
El programa Minitab: breve introducción a su funcionamiento Para mostrar la facilidad con la que se pueden realizar los gráficos y cálculos estadísticos en la actualidad, el libro se acompaña, en todo
5. DISTRIBUCIONES DE PROBABILIDADES
5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
7. Inversión. Concepto y tipos de inversión. La inversión y el sector industrial
Cuánto invierten las empresas del sector industrial? Qué bienes de inversión adquieren las empresas industriales? Cuáles son las actividades más inversoras? Influye el tamaño de la empresa en las decisiones
Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS
Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número
Guía de uso del Cloud Datacenter de acens
guíasdeuso Guía de uso del Cloud Datacenter de Calle San Rafael, 14 28108 Alcobendas (Madrid) 902 90 10 20 www..com Introducción Un Data Center o centro de datos físico es un espacio utilizado para alojar
Instructivo Applet en Geogebra grafica frecuencia relativa Lanzamiento de dos dados n veces
Instructivo Applet en Geogebra grafica frecuencia relativa Lanzamiento de dos dados n veces Por: Jesús Evenson Pérez Arenas Indicador: Introducir el concepto de probabilidad haciendo una cantidad de lanzamientos
Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones
Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica
SISTEMAS Y MANUALES DE LA CALIDAD
SISTEMAS Y MANUALES DE LA CALIDAD NORMATIVAS SOBRE SISTEMAS DE CALIDAD Introducción La experiencia de algunos sectores industriales que por las características particulares de sus productos tenían necesidad
ARCHIVOS CON SERIES DEL BOLETÍN ESTADÍSTICO Manual de Usuario
Dirección General del Servicio de Estudios 04.09.2007 ARCHIVOS CON SERIES DEL BOLETÍN ESTADÍSTICO Manual de Usuario Departamento de Estadística Hoja de Control Título Autor Versión Fecha Registro de Cambios
ANALISIS DE UN FONDO DE INVERSION MEDIANTE LA REGRESION Y LA GENERACION DE NUMEROS ALEATORIOS
V JORNADAS ASEPUMA ANALISIS DE UN FONDO DE INVERSION MEDIANTE LA REGRESION Y LA GENERACION DE NUMEROS ALEATORIOS Rodriguez Aviles, Rafael 1 1. Introducción El origen de esta comunicación está en una entrevista
QUÉ NOS DICE EL ESTADO DE FLUJO DE EFECTIVO?
QUÉ NOS DICE EL ESTADO DE FLUJO DE EFECTIVO? I. INTRODUCCION. Por: Lidia Beatriz Cabrera El Estado de Flujo de Efectivo (variante del denominado Estado de origen y aplicación de fondos, basado en el movimiento
Simulación Computacional. Tema 1: Generación de números aleatorios
Simulación Computacional Tema 1: Generación de números aleatorios Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Contenido 1. Secuencias pseudoaleatorias
ANÁLISIS DE DATOS NO NUMERICOS
ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas
1.1 EL ESTUDIO TÉCNICO
1.1 EL ESTUDIO TÉCNICO 1.1.1 Definición Un estudio técnico permite proponer y analizar las diferentes opciones tecnológicas para producir los bienes o servicios que se requieren, lo que además admite verificar
NORMAS INTERNACIONALES Y ADQUISICION DE DATOS.
CAPITULO II NORMAS INTERNACIONALES Y ADQUISICION DE DATOS. En este capítulo se describirán en forma general las normas internacionales para la medición de variables climatológicas y cómo funciona un sistema
1 Ejemplo de análisis descriptivo de un conjunto de datos
1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos
EL ANÁLISIS DE LA VARIANZA (ANOVA) 1. Comparación de múltiples poblaciones
EL ANÁLISIS DE LA VARIANZA (ANOVA) 1. Comparación de múltiples poblaciones Ricard Boqué, Alicia Maroto Grupo de Quimiometría y Cualimetría. Universitat Rovira i Virgili. Pl. Imperial Tàrraco, 1. 43005Tarragona
SENA: CENTRO BIOTECNOLOGIA INDUSTRIAL PROGRAMA DE FORMACIÓN: TECNOLOGO GESTION LOGISTICA
Por población o universo se entiende como un conjunto de medidas, cuando estas son aplicadas a una característica cuantitativa, o como el recuento de todas las unidades que presentan una característica
MEDICION DEL TRABAJO
MEDICION DEL TRABAJO Habíamos dicho al comenzar el curso que habían 4 técnicas que permiten realizar una medición del trabajo 1 Técnicas Directas: - Estudio de tiempos con cronómetro - Muestreo del trabajo
Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina
Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: [email protected] =========0========= Introducción
LA FUNCIÓN DE LA PRODUCCIÓN
LA FUNCIÓN DE LA PRODUCCIÓN Actividad productiva es la acción necesaria para un producto o servicio. En economía la característica esencial de la actividad productiva es incrementar la utilidad de un producto.
Medidas de tendencia central o de posición: situación de los valores alrededor
Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas
Manual de guía para Clientes Sistema MoTrack
Manual de guía para Clientes Sistema MoTrack Contenido 1) introducción 2) Ingresar 3) Principal 4) Mapas 4.1) Mapa de los Móviles 4.2) Mapa de Flota de Móviles 5) Reportes 5.1) Reportes Detallados Reportes
Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S.
Técnicas De Conteo Si en el experimento de lanzar la moneda no cargada, se lanzan 5 monedas y definimos el evento A: se obtienen 3 caras, cómo calcular la probabilidad del evento A?, si todos los resultados
Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria
Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones
Cifras significativas e incertidumbre en las mediciones
Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela
Estadística descriptiva con Excel (Cálculo de medidas)
Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Miranda José Manuel Siso Martínez Departamento de Ciencias Naturales y Matemáticas Cátedra: Estadística aplicada a la educación Estadística
Por qué interesa suscribir un plan de pensiones?
1 Por qué interesa suscribir un plan de pensiones? 1.1. Cómo se impulsó su creación? 1.2. Será suficiente la pensión de la Seguridad Social? 1.3. Se obtienen ventajas fiscales y de ahorro a largo plazo?
ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos
Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 2, Febrero 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Autor:
Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16
3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una
Operación Microsoft Windows
Entornos de red Concepto de red En el nivel más elemental, una red consiste en dos equipos conectados entre sí mediante un cable de forma tal que puedan compartir datos. Todas las redes, no importa lo
1. INTRODUCCIÓN 1.1 INGENIERÍA
1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
GedicoPDA: software de preventa
GedicoPDA: software de preventa GedicoPDA es un sistema integrado para la toma de pedidos de preventa y gestión de cobros diseñado para trabajar con ruteros de clientes. La aplicación PDA está perfectamente
1.2 SISTEMAS DE PRODUCCIÓN
19 1.2 SISTEMAS DE PRODUCCIÓN Para operar en forma efectiva, una empresa manufacturera debe tener sistemas que le permitan lograr eficientemente el tipo de producción que realiza. Los sistemas de producción
MERCOSUR/GMC/RES Nº 53/96 Estabilidad de productos farmacéuticos VISTO: el Tratado de Asunción, el Protocolo de Ouro Preto, la Decisión 3/94 del
MERCOSUR/GMC/RES Nº 53/96 Estabilidad de productos farmacéuticos VISTO: el Tratado de Asunción, el Protocolo de Ouro Preto, la Decisión 3/94 del Consejo del Mercado Común; las Resoluciones Nº 91/93 y 23/95
El azar y la probabilidad. Un enfoque elemental
El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir
Creación de un Gráfico con OpenOffice.org Calc Presentación de los Datos Asistente para Gráficos
Creación de un Gráfico con OpenOffice.org Calc Los gráficos elaborados con OpenOffice.org son de gran importancia para ver la tendencia de los datos. Es una herramienta de análisis que permite mostrar
Capítulo 5. Cliente-Servidor.
Capítulo 5. Cliente-Servidor. 5.1 Introducción En este capítulo hablaremos acerca de la arquitectura Cliente-Servidor, ya que para nuestra aplicación utilizamos ésta arquitectura al convertir en un servidor
8. Concentración en la industria
8. Concentración en la industria Cuál es el grado de concentración de la industria española? Qué actividades destacan por su mayor o menor concentración? Se han producido cambios significativos en el periodo
Instalación del programa PSPP y obtención de una distribución de frecuencias.
Práctica 2. Instalación del programa PSPP y obtención de una distribución de frecuencias. Con esta práctica instalaremos el programa PSPP. El programa es un software específico para el análisis estadístico
Capítulo 9. Archivos de sintaxis
Capítulo 9 Archivos de sintaxis El SPSS permite generar y editar archivos de texto con sintaxis SPSS, es decir, archivos de texto con instrucciones de programación en un lenguaje propio del SPSS. Esta
Aproximación práctica a ITIL. Proyecto VeredaCS. F07.02.01.00.30.r00
Aproximación práctica a ITIL. Proyecto VeredaCS Introducción En esta presentación pretendemos mostrar una aproximación práctica a la implantación de un modelo de prestación de servicios basado en ITIL
O K. Unidad 5 Autocontrol y APPCC 1 CÓMO SE CONTROLA LA SEGURIDAD ALIMENTARIA?
UNIDAD 5. Autocontrol y APPCC Unidad 5 Autocontrol y APPCC 1 CÓMO SE CONTROLA LA SEGURIDAD ALIMENTARIA? Tradicionalmente, los métodos utilizados para el control de los alimentos se apoyaban en la formación
Técnicas de valor presente para calcular el valor en uso
Normas Internacionales de Información Financiera NIC - NIIF Guía NIC - NIIF NIC 36 Fundación NIC-NIIF Técnicas de valor presente para calcular el valor en uso Este documento proporciona una guía para utilizar
CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA Y ANTECEDENTES. 1.1 Planteamiento del problema: Para qué sirve la modelación de un portafolio
CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA Y ANTECEDENTES 1.1 Planteamiento del problema: Para qué sirve la modelación de un portafolio de seguros? La modelación de un portafolio de seguros es una tarea muy
Organizándose con Microsoft Outlook
Organizándose con Microsoft Outlook Objetivo: Identificar herramientas para organizar los correos electrónicos, administrar tiempos por medio de la agenda y comunicarse con los demás. Destrezas técnicas
Este documento enumera los diferentes tipos de Diagramas Matriciales y su proceso de construcción. www.fundibeq.org
DIAGRAMA MATRICIAL 1.- INTRODUCCIÓN Este documento enumera los diferentes tipos de Diagramas Matriciales y su proceso de construcción. Muestra su potencial, como herramienta indispensable para la planificación
Ejercicio de estadística para 3º de la ESO
Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población
1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA
1. Cuenta de pérdidas y ganancias analítica 1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA La cuenta de pérdidas y ganancias que se recoge en el modelo normal del Plan General de Contabilidad se puede presentar,
Dirección de Planificación Universitaria Dirección de Planificación Universitaria 0819-07289 Panamá, Rep. de Panamá 0819-07289 Panamá, Rep.
Comparación de las tasas de aprobación, reprobación, abandono y costo estudiante de dos cohortes en carreras de Licenciatura en Ingeniería en la Universidad Tecnológica de Panamá Luzmelia Bernal Caballero
TARIFAS DE VENTA Y DESCUENTOS
Manual del módulo TRAZABILIDAD EUROWIN 8.0 SQL TARIFAS DE VENTA Y DESCUENTOS 1 Documento: docew_tarifasventa Edición: 03 Nombre: Tarifas de venta y descuentos Fecha: 06-05-2009 Índice 1. Introducción...
ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS
ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.
Pronósticos. Pronósticos y gráficos Diapositiva 1
Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:
FICHERO DE AYUDA DEL PROGRAMA MEGAEURO
FICHERO DE AYUDA DEL PROGRAMA MEGAEURO Versión MEGAEURO : 1.0 Fecha : 02/10/2010 1. INFORMACION GENERAL Versión completamente gratuita. Entre otras muchas opciones, el programa permite seleccionar cualquier
Copyright 2011 - bizagi. Gestión de Cambios Documento de Construcción Bizagi Process Modeler
Copyright 2011 - bizagi Gestión de Cambios Bizagi Process Modeler Tabla de Contenido Gestión de Cambios... 4 Descripción... 4 Principales factores en la Construcción del Proceso... 5 Modelo de Datos...
