Ángulos (páginas )
|
|
|
- Alfonso Macías Franco
- hace 9 años
- Vistas:
Transcripción
1 NOMRE FECH PERÍODO Ángulos (páginas ) Un ángulo está formado de dos rayos o lados, con un extremo o vértice. Los ángulos se miden en unidades llamadas grados. Los ángulos se clasifican según sus medidas. Ángulo recto Ángulo llano Esta marca se usa para indicar un ángulo recto. Tipos de ángulos exactamente 90 exactamente 180 Ángulo agudo Ángulo obtuso menos de 90 entre 90 y 180 Clasifiquen cada ángulo como agudo, obtuso, recto o llano Clasifica cada ángulo como agudo, obtuso, recto o llano Dibuja un ángulo con cada una de las siguientes medidas Prueba estandarizada de práctica Cuál ángulo no es agudo? C 48 D 65 Respuestas: 1. obtuso 2. agudo llano agudo 5. obtuso 6. recto agudo recto 9. obtuso 10. agudo 11-1 Ver clave de respuestas. 15. Glencoe/McGraw-Hill 79 Matemáticas: plicaciones y conceptos, Curso 2
2 NOMRE FECH PERÍODO Traza gráficas circulares (páginas ) Puedes usar una gráfica circular para comparar las partes de un todo. De todos los encuestados, un 24% prefirió al cadidato, un 58% prefirió al candidato y un 18% prefirió al candidato C. Expresa esta información con una gráfica circular. Calcula el número de grados para cada parte de la gráfica. Paso 1 Candidato 24% de Candidato 58% de Candidato C 18% de Paso 2 Usa un compás para dibujar un círculo. Luego dibuja un radio. Puedes comenzar con el número menor de grados, en este Paso 3 caso, 68. Usa tu transportador para dibujar un ángulo de 68. Repite este paso para cada parte. Paso 4 Rotula cada sección de la gráfica con la categoría y el porcentaje. Titula tu gráfica. Candidatos preferidos 24% 58% C 18% 1. Población Usa la tabla. a. Escribe una razón que compare cada número con el total. Escribe en forma decimal redondeando en milésimas. b. Calcula el número de grados para cada sección de la gráfica. Redondea en décimas. c. Haz una gráfica circular de la población mundial. Estima la población mundial, 2001 Región Población (millones) Norteamérica 316 Latinoamérica 525 Sudamérica 350 Europa 727 sia 3,720 África 818 Oceanía 31 Fuente: Population Reference ureau 2. Prueba estandarizada de práctica Si 85 de los 170 encuestados respondieron "sí", cuál es el número de grados para la parte "sí" en la gráfica circular? C 85 D 180 Respuestas: 1a b. Norteamérica: 0.049, 16 ; Latinoamérica: 0.081, 29.2 ; Sudamérica: 0.054, 19.4 ; Europa: 0.112, 40.3 ; sia: 0.573, ; África: 0.126, 45.4 ; Oceanía: 0.005, 1.8 1c. Ver clave de respuestas. 2. D Glencoe/McGraw-Hill 80 Matemáticas: plicaciones y conceptos, Curso 2
3 NOMRE FECH PERÍODO Relaciones angulares (páginas ) Cuando dos rectas se intersecan, forman dos pares de ángulos opuestos llamados ángulos opuestos por el vértice. Los ángulos opuestos por el vértice tienen la misma medida, de modo que son congruentes. Dos ángulos son complementarios si la suma de sus medidas es 90º. Dos ángulos son suplementarios si la suma de sus medidas es 180. Ángulos adyacentes C Ángulos suplementarios D Relaciones m C m CD m D m 1 m angulares Ángulos opuestos por el vértice Ángulos complementarios m 3 m 4 90 Usen el diagrama para indicar un par de ángulos para cada relación. 1. ngulos adyacentes 2. ngulos opuestos por el v rtice ngulos complementarios Identifica la medida del ángulo suplementario y del ángulo complementario al ángulo dado Clasifica cada par de ángulos como suplementarios, complementarios o ninguno de los dos Decoración Darma usa ángulos para crear el borde de un cartel. Ya ha trazado varios ángulos de 35 y ahora quiere dibujar trazar ángulos suplementarios. Serán los ángulos suplementarios agudos, rectos, obtusos o llanos? 12. Prueba estandarizada de práctica Los ángulos r y s son suplementarios. Calcula m r si m s C 48 D 35 Respuestas: 1. Respuesta de ejemplo: 1 y 6 2. Respuesta de ejemplo: 2 y 5 Respuesta de ejemplo: 2 y 3 98, , , , 22 complementario 9. ninguno 10. suplementario 11. obtuso 12. Glencoe/McGraw-Hill 81 Matemáticas: plicaciones y conceptos, Curso 2
4 NOMRE FECH PERÍODO Triángulos (páginas ) Puedes clasificar los triángulos según sus ángulos y lados. La suma de los ángulos de un triángulo es siempre 180. acutángulo todos los ángulos agudos rectángulo 1 ángulo recto Tipos de obtusángulo 1 ángulo obtuso escaleno ningún lado triángulos isósceles exactamente 2 lados congruente congruentes equilátero 3 lados congruentes Clasifica cada triángulo según sus ángulos y sus lados. Éste es un triángulo con un ángulo recto, de modo que es un triángulo rectángulo. Ninguno de sus dos lados es congruente, de modo que es un triángulo escaleno. Éste es un triángulo con todos los ángulos agudos, de modo que es un triángulo acutángulo. Tiene dos lados congruentes, de modo que es un triángulo isósceles. Clasifiquen cada triángulo según sus ángulos y según sus lados YUD: Usen la tabla anterior como ayuda para clasificar los triángulos. Calcula la medida del ángulo que falta en cada triángulo. Luego clasifica el triángulo según sus ángulos. 1 15, , , , 54 60, , Álgebra Calcula m E en CDE si m C 65 y m D Prueba estandarizada de práctica Un triángulo tiene lados que miden 5 cm, 5 cm y 8 cm. Clasifica el triángulo según sus lados. isósceles acutángulo C escaleno D equilátero Respuestas: 1. obtusángulo, isósceles 2. obtusángulo, escaleno acutángulo, equilátero 137, obtusángulo 5. 90, rectángulo 6. 24, obtusángulo 54, acutángulo 60, acutángulo 9. 65, rectángulo Glencoe/McGraw-Hill 82 Matemáticas: plicaciones y conceptos, Curso 2
5 NOMRE FECH PERÍODO Cuadriláteros (páginas ) Puedes clasificar cuadriláteros según sus ángulos y según sus lados. Tipos de cuadriláteros paralelogramo lados opuestos paralelos y lados opuestos congruentes rectángulo paralelogramo con 4 ángulos rectos rombo paralelogramo con 4 lados congruentes cuadrado paralelogramo con 4 ángulos rectos y 4 lados congruentes trapecio exactamente un par de lados paralelos Clasifica cada cuadrilátero según sus ángulos y según sus lados. Éste es un paralelogramo con 4 ángulos rectos, de modo que es un rectángulo. Éste es un cuadrilátero con exactamente un par de lados paralelos, de modo que es un trapecio. Clasifiquen cada cuadrilátero según sus ángulos y según sus lados YUD: Usen la tabla de arriba como ayuda para clasificar los cuadriláteros. Indica el cuadrilátero que describe cada figura. Luego subraya el nombre que mejor describe la figura nuncios Molly trabaja en un nuevo anuncio para una compañía de zapatos. Los zapatos vienen en una caja con figuras peculiares. Forma un cuadrilátero con exactamente un par de lados opuestos paralelos. Qué nombre puede Molly usar para describir mejor la caja. Prueba estandarizada de práctica Cuál de los siguientes nombres no puede usarse para describir un cuadrado? trapecio paralelogramo C rombo D rectángulo Respuestas: 1. paralelogramo 2. cuadrado rombo cuadrilátero, trapecio 5. cuadrilátero, paralelogramo, rectángulo 6. cuadrilátero, paralelogramo trapecio Glencoe/McGraw-Hill 83 Matemáticas: plicaciones y conceptos, Curso 2
6 NOMRE FECH PERÍODO Figuras semejantes (páginas ) Dos figuras son semejantes si sus ángulos correspondientes son congruentes y sus lados correspondientes son proporcionales. C es semejante a DEF. Cuál es la longitud del segmento que falta? Como los triángulos son semejantes, usa una proporción para calcular la longitud del segmento que falta. C C 6 10 DF EF 3 x Sustituye longitudes. 6x 3(10) Calcula los productos cruzados. 6x Divide cada lado entre 6. 8 m 6 m 10 m C E 4 m D 3 m x m F x 5 EF 5 m Determinen si cada par de figuras es semejante. Justifiquen la respuesta m 2 m 6 cm 6 cm 3 m 8 m 3 cm 3 cm 6 cm 3 cm YUD: Son congruentes los ángulos y son proporcionales los lados correspondientes? Despeja x en cada par de figuras semejantes. 1 pulg 3 pulg 5 pulg x pulg 6 cm x cm 8 cm 12 cm 3 cm 6 cm 5. Prueba estandarizada de práctica Cuál representa mejor un par de figuras semejantes? C D Respuestas: 1. Sí; sus ángulos son congruentes y sus lados son proporcionales. 2. No, sus lados no son proporcionales. 15 pulg 16 cm 5. C Glencoe/McGraw-Hill 84 Matemáticas: plicaciones y conceptos, Curso 2
7 NOMRE FECH PERÍODO Polígonos y teselados (páginas ) Un teselado es un patrón repetitivo de polígonos que encajan sin traslapes o huecos. En un teselado, la suma de las medidas de los ángulos donde se unen los vértices de los polígonos es 360. La suma de las medidas de los ángulos de un triángulo equilátero es 180. Puede un triángulo equilátero formar un teselado? Cada ángulo de un triángulo equilátero tiene una medida de ó 60. Para averiguar si un triángulo equilátero puede formar un teselado, resuelve 60n 360, en donde n es el número de ángulos en el vértice. 60n Divide cada lado entre 60. n 6 La solución es un número entero, de modo que un triángulo equilátero puede formar un teselado. Determinen si cada polígono puede usarse individualmente para formar un teselado. Se da la suma de las medidas de los ángulos de cada polígono. 1. octágono; 1, hexágono; 720 Determina si cada polígono puede usarse individualmente para formar un teselado. Se da la suma de las medidas de los ángulos de cada polígono. triángulo; 180 pentágono; 540 Dibuja los siguientes teselados. 5. triángulos 6. octágonos y cuadrados Computadoras Seth quiere formar un teselado para usarlo como fondo en una página Web. Le gustaría usar dos hexágonos regulares y un cuadrado para formar cada vértice. Funcionará esto? Explica tu respuesta. Prueba estandarizada de práctica Cuál de los siguientes no puede usarse individualmente para formar un teselado? un triángulo un cuadrado C un hexágono D un nonágono Respuestas: 1. no 2. sí sí no 5 6. Ver clave de respuestas. No, la suma de los ángulo de dos hexágonos regulares y un cuadrado es 330, no 360. D Glencoe/McGraw-Hill 85 Matemáticas: plicaciones y conceptos, Curso 2
8 NOMRE FECH PERÍODO Traslaciones (páginas ) Una traslación es una parte deslizante de una figura que se mueve de una posición a otra, sin voltearla. Se cambió el lado izquierdo del cuadrado de la derecha. Para asegurarte de que las piezas, o patrones unitarios, formen un teselado, desliza o traslada el cambio al lado opuesto y cópialo. hora, cambia todos los cuadrados en el teselado de la misma manera. El teselado tiene cualidades como las de las pinturas de M.C. Escher, cuando agregas diferentes colores o diseños. Completen el patrón unitario de la traslación. Luego dibujen el teselado. 1. YUD: En el teselado, todas las piezas deben caber juntas. Completa el patrón unitario de la traslación. Luego dibujen el teselado. 2. Prueba estandarizada de práctica Cuál muestra el patrón unitario completo de la Figura? Figura C D Respuestas: 1 Ver clave de respuestas. Glencoe/McGraw-Hill 86 Matemáticas: plicaciones y conceptos, Curso 2
9 NOMRE FECH PERÍODO Reflexiones (páginas ) Las figuras que coinciden exactamente cuando se doblan por la mitad tienen simetría lineal. Las figuras de la derecha tienen simetría lineal. lgunas figuras pueden doblarse de más de una manera para mostrar simetría. Cada doblez se llama eje de simetría. Puedes usar una reflexión para crear figuras que tienen simetría lineal. Una reflexión es un tipo de transformación en donde una figura se voltea sobre un eje de simetría. Dibujen todos los ejes de simetría de cada figura YUD: Piensen en todas las maneras de doblar las figuras por la mitad. Cuántos ejes de simetría tiene un hexágono regular? 5. Ciencia biológica Muchas flores tienen ejes de simetría. Cuántos ejes de simetría tiene una flor con forma de estrella? 6. Prueba estandarizada de práctica Cuál de los siguientes muestra los ejes de simetría de la figura que se muestra a la derecha? C D Respuestas: 1 Ver clave de respuestas D Glencoe/McGraw-Hill 87 Matemáticas: plicaciones y conceptos, Curso 2
10 NOMRE FECH PERÍODO Repaso del capítulo Código de polígonos Los alumnos del club de matemáticas inventaron un código secreto para enviar mensajes. El código está basado en el número de lados de diferentes polígonos, así como también en los símbolos de adición y sustracción. Usa la siguiente tabla como ayuda para descifrar el mensaje. Cada caja es una letra representada por los polígonos sombreados que están debajo de la misma Número Letra Número Letra Número Letra Número Letra 1 8 H 15 O 21 U 2 9 I 16 P 22 V 3 C 10 J 17 Q 23 W 4 D 11 K 18 R 24 X 5 E 12 L 19 S 25 Y 6 F 13 M 20 T 26 Z 7 G 14 N Las respuestas se encuentran en la página 10 Glencoe/McGraw-Hill 88 Matemáticas: plicaciones y conceptos, Curso 2
Ángulos (páginas 506 509)
A NOMRE FECHA PERÍODO Ángulos (páginas 506 509) Las rectas que forman las artistas de una caja se juntan en un punto llamado vértice. Dos rectas que se juntan en un vértice forman un ángulo. Los ángulos
FIGURAS PLANAS. Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos:
FIGURAS PLANAS Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos: Y esto, una línea poligonal cerrada en la que se unen el extremo inicial del primer segmento
Relaciones entre rectas y ángulos (páginas 256 260)
A NMRE FECHA PERÍD Relaciones entre rectas y ángulos (páginas 256 260) Las rectas paralelas son rectas en un plano que nunca se intersecan. Si la recta p es paralela a la recta q, entonces escribe p q.
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
11-A-1/8. Nombre: Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser:
11-A-1/8 Geometría (polígonos) Líneas poligonales. Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser: Abierta Cerrada El trozo de plano que hay dentro de una línea poligonal cerrada,
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
7. TRIÁNGULOS Y CIRCUNFERENCIAS
7. TRIÁNGULOS Y CIRCUNFERENCIAS Triángulos Los triángulos son figuras planas, polígonos formados por tres lados. Los podemos clasificar fijándonos en sus lados o como son sus ángulos. Los triángulos según
Lección 17: Polígonos básicos
Lección 17: Polígonos básicos Un polígono es una figura cerrada formada por segmentos de recta que no se cruzan entre sí. Los segmentos se llaman lados del polígono. Los polígonos pueden ser convexos,
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL *. Responde a las siguientes preguntas en tu cuaderno. a) Qué es una recta? Dibújala. Recta: sucesión infinita de puntos (no tiene principio ni fin). Las rectas
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.
Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos
Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.
Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO 1. POLÍGONOS: DEFINÍCIÓN, ELEMENTOS Y CLASIFICACIÓN. 2. POLÍGONOS REGULARES E IRREGULARES. 3. TRIÁNGULOS Y CUADRILÁTEROS: CLASIFICACIÓN. 4.
Área de paralelogramos, triángulos y trapecios (páginas 314 318)
NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de
Cuadrados y raíces cuadradas (páginas 470 473)
A NOMRE FECHA PERÍODO Cuadrados y raíces cuadradas (páginas 470 473) Cuando calculas el producto de un número multiplicado por sí mismo, estás calculando el cuadrado de ese número. Por ejemplo, 5 5 5 2
UNIDAD IV ÁREAS DE FIGURAS PLANAS
UNIDAD IV ÁREAS DE FIGURAS PLANAS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica las áreas de figuras planas, volumen y superficie. CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro
1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 20 5. EJERCICIOS DE REFUERZO Página 36 1 1. ESQUEMA - RESUMEN Página 1.1. POLÍGONOS 2 1.2. TRIÁNGULOS
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 255 EJERCICIOS Construcciones y ejes de simetría 1 a) Halla el ángulo central de un octógono regular. b) Dibuja un octógono regular inscrito en una circunferencia de 5 cm de radio, construyendo
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas.
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. 1.- Escribe el nombre de las siguientes líneas. 2.- Qué ángulos forman dos rectas perpendiculares?
Propiedades y clasificación de triángulos
MT-22 Clase Propiedades y clasificación de triángulos Síntesis de la clase Ángulos Polígonos convexos Clasificación de ángulos Relaciones angulares Regulares Irregulares 0º < Agudo < 90 Recto = 90 90º
RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental
Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es
Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica
EL PUNTO Geometría Básica El punto es la entidad geométrica más pequeña y finita. Se puede definir por intersección de 2 rectas. En un plano, se puede definir por medio de 2 coordenadas. En el espacio,
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
1.- ÁNGULOS Y TRIÁNGULOS
OBJETIVOS MÍNIMOS DE LAS UNIDADES 10 y 11 1.- Usar el teorema de Pitágoras para determinar la medida desconocida en figuras geométricas en casos muy simples.- Determinar el área de figuras geométricas
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
Clasificando triángulos de acuerdo a sus lados
Bitácora del Estudiante Clasificando triángulos de acuerdo a sus lados Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El peso total de Dígito y el planeador es de libras. 2.
5. POLÍGONOS. 5.1 Definición y notación de polígonos
5. POLÍGONOS 5.1 Definición y notación de polígonos Un polígono es una figura geométrica limitada por segmentos de recta denominados lados, donde el extremo de un segmento es el origen del otro. E D Etimológicamente,
Ejercicios Resueltos
Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=
GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.
1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.
Área de paralelogramos (páginas 546 549)
A NOMRE FECHA PERÍODO Área de paralelogramos (páginas 546 549) Un paralelogramo es un cuadrilátero con dos pares de lados paralelos. La base es cualquiera de los lados y la altura es la distancia más corta
Unidad 3 Lección 1. Unidad 3 Lección 1 Nombre
Unidad 3 Lección 1 Prueba A 1. Un segmento dibujado desde el centro de un círculo hasta el borde del mismo, se llama un. 2. Todos los radios de un círculo tienen el mismo. 3. Escriba una ecuación que represente
FIGURAS GEOMÉTRICAS PLANAS
FIGURAS GEOMÉTRICAS PLANAS 1.- Es posible construir un triángulo equilátero y rectángulo? Razona tu respuesta. 2.- Dibuja un triángulo equilátero. Cómo son sus ángulos? 3.- Construye, con regla, compás
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
POLÍGONOS 8.2.1 8.2.2
POLÍGONOS 8.2.1 8.2.2 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos, con particular atención a los polígonos regulares, que son equiláteros
POLÍGONOS. α3 α 4 α 5. α 7 α 6. 1. Definición. Sean: A 1, A 2,...A n, n distintos puntos del plano. Trazamos los segmentos: A 1A 2,
A 7 A 6 A 8 α 7 α 8 α A 5 α 6 A α α α α 5 A A A Un agricultor contrata a una compañía constructora para que realice el cálculo del área de un terreno que se encuentra en una explanada y que desea adquirir.
SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.
CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO
Colegio BOLIVAR. ÁREA DE MATEMÁTICAS Geometría. Lady Arismandy. Cohete - AVANZAR GRADO 8 PRIMER PERIODO
Colegio BOLIVAR ÁREA DE Lady Arismandy Cohete - AVANZAR GRADO 8 PRIMER PERIODO 2008 PRIMER periodo GEOMETRÍA PRESABERES ALGEBRA Aproximación histórica. La historia del origen de la geometría está asociada
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo
8. Elementos de geometría plana
8. Elementos de geometría plana 1. Elementos básicos de la geometría 2. Ángulos 2.1. El sistema sexagesimal 2.1.1. Suma de ángulos 2.1.2. Resta de ángulos 2.1.3. Multiplicar por un número 2.1.4. Dividir
MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES
MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES OBJETIVOS Reconocer las unidades decimales: décima, centésima y milésima Leer y escribir números decimales. Diferenciar la parte entera y decimal de un
Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II
Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de
Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.
Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,
Actividades. Tangram chino. Alumno Fecha. Grupo CRISPELU. Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras.
Actividades Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras. Dibuja el contorno. Qué figura has formado? A qué se parece lo que has hecho? Dibujamos los contornos
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
Colegio Universitario Boston. Geometría
34 Conceptos ásicos Triángulo: Se define como la figura geométrica plana, cerrada de tres lados. Triángulo equilátero: Es el triángulo que tiene sus tres lados iguales y sus tres ángulos internos iguales,
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón: Calcula el perímetro y el área de esta figura: Calcula el perímetro y el área de esta figura:
Recuerda lo fundamental
11 Rectas y ángulos Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un
TRIANGULOS. La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos.
TRIANGULOS La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos. CLASIFICACION DE LOS TRIANGULOS Los triángulos se pueden clasificar por la relación entre las
El segmento, parte de una recta comprendida entre dos puntos. Mediatriz: recta perpendicular que corta un segmento en su punto medio.
CONTENIDOS 1º ESO A, B Y C. 2º EVALUACIÓN. Educación Plástica y visual. Pilar Martínez Carnicer. ELEMENTOS FUNDAMENTALES DE LA EXPRESIÓN PLÁSTICA 1. El punto, es el elemento de expresión plástica más simple
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón: 2 ) Calcula el perímetro y el área de esta figura: 3 ) Calcula el perímetro y el área de
Conceptos Básicos. Las líneas rectas podemos encontrarlas en el doblez de una hoja de papel, en un hilo estirado, en la arista de una puerta, etc.
3. Geometría Desde el jardinero que traza un jardín, el navegante que fija y traza la ruta del próximo viaje, el arquitecto que hace los planos para la construcción de un grandioso edificio, el ingeniero
7.1.2. Cuadriláteros cóncavos y convexos. 7.1.3. Cuadriláteros idénticos, iguales y semejantes.
7. CUADRILÁTEROS 7.1. CARACTERÍSTICAS GENERALES Un cuadrilátero ABCD es una figura plana limitada por cuatro lados y cuatro vértices. Puede ser cóncavo o convexo, inscriptible o circunscriptible. La denominación
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 241 EJERCICIOS Clasificación. Propiedades 1 Observa el siguiente diagrama: cuadriláteros 4 rectángulos trapecios rombos 2 1 3 5 paralelogramos 6 Qué figura geométrica corresponde al recinto?
Problemas + PÁGINA 231
PÁGINA 231 Pág. 1 Problemas + 14 Queremos alicatar una pared de 4,6 m 3 m con azulejos cuadrados de 20 cm de lado como este: a) Completa, en tu cuaderno, un mosaico de 7 7 azulejos. b) Averigua cuántos
I Parte. Identificación. (25 puntos) Identifico la respuesta correcta, de acuerdo con la indicación.
Periodo: II Nombre: Tema 13: Los cuadriláteros y su clasificación Habilidades: Prueba: Matemática 4 Puntos obtenidos: Valor: 47 puntos Identificar diversos elementos de los cuadriláteros (lado, vértice,
SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA
SOLUCIONES MINIMOS º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA Ejercicio nº 1.- Los lados de un triángulo miden, respectivamente, 9 cm, 1 cm y 15 cm. Averigua si el triángulo es rectángulo. Según el teorema
XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...
TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 19 REFLEXIONA Las cajas, los contenedores y la caseta son poliedros. También es un poliedro la figura que forma la caja que pende de la grúa con las cuatro cuerdas que la sostienen. Cuántas
Guía del estudiante. Observe cada una de las siguientes formas. Luego, marque con un 4 en el espacio correspondiente si es un polígono o no. 2. 4.
MATEMÁTICAS Grado Séptimo Bimestre II Semana 3 Número de clases 11-15 Clase 11 Tema: Polígonos Actividad 1 Observe cada una de las siguientes formas. Luego, marque con un 4 en el espacio correspondiente
Primaria Cuarto Grado Matemáticas (con QuickTables)
Primaria Cuarto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios
GEOMETRÍA DEL TRIÁNGULO
GEOMETRÍA DEL TRIÁNGULO ROCÍO MÉNDEZ MENDOZA 1.- Las Matemáticas en Educación Primaria Las Matemáticas son un conjunto de saberes asociados en una primera aproximación a los números y las formas, que van
EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente.
1. Supongamos una circunferencia de radio 90/ð cms. y un ángulo cuyo vértice coincida con el centro de la circunferencia. Halla: a) La longitud de arco de circunferencia que abarca un ángulo de 501. b)
Clasificación de ángulos. a) Por su magnitud los ángulos se clasifican en: Nombre y definición Figura Característica Ángulo agudo.
I.- INSTRUCCIONES: Define cada concepto de la tabla y dibuja la figura que representa el ángulo que se menciona. Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Donde: = Ángulo O = Vértice OA = Lado inicial
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS En un triángulo rectángulo, los lados menores son los que forman el ángulo
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. II Nivel I Eliminatoria
OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría II Nivel I Eliminatoria bril, 015 ontenido 1 II Nivel (8 y 9 ) - Geometría 1.1 Presentación.........................................
1 Indica cuál es el valor de los ángulo Â, Bˆ. en las siguientes figuras: a) b) 2 Calcula los ángulos dados por letras:
1 Indica cuál es el valor de los ángulo Â, Bˆ y Ĉ en las siguientes figuras: a) b) Calcula los ángulos dados por letras: 3 Calcula el valor del ángulo A. 4 Dados los ángulos los mismos. a 45 0 30.y b 6
Pensamiento: Lógico matemático. Docente: ANDREA TORRES Grado: Séptimo B, C
Guía No: 2 Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED GUIA DE APRENDIZAJE Pensamiento: Lógico matemático Fecha: ABRIL Asignatura: GEOMETRIA Docente: ANDREA
La Circunferencia y el círculo
La ircunferencia y el círculo La ircunferencia es una curva cerrada cuyos puntos están en un mismo plano y a igual distancia de otro punto interior fijo que se llama centro de la circunferencia. l círculo
I.E.S VICENTE ALEIXANDRE BARBATE
1. Calcula el área y el perímetro de estas figuras:. Un sector circular mide 80 y tiene 10 de radio. Cuál es su área y su perímetro? 3. El área de la zona sombreada es de 35. Cuál es la superficie del
Ejercicios de geometría
Ejercicios de geometría Ejercicio nº 1.- Los lados de un triángulo miden 16 cm, 11 cm y 8 cm. Comprueba si es un triángulo rectángulo. Ejercicio nº 2.- Calcula el área y el perímetro de estas figuras:
TEOREMA DE PITÁGORAS. SEMEJANZA. (http://profeblog.es/blog/luismiglesias)
Cuestiones 1. Qué polígonos son semejantes cuando tienen los lados proporcionales? a) Todos. c) Ninguno. b) Los cuadriláteros. d) Los triángulos. 2. La razón entre los perímetros de dos figuras semejantes
Nombrando y midiendo ángulos
itácora del studiante Nombrando y midiendo ángulos Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Un transportador se utiliza para. 2. Los ángulos se miden en unidades llamadas.
1. Líneas poligonales. 2. Triángulos. Definición y tipos. Polígonos. Elementos y clasificación
1. Líneas poligonales Definición y tipos. Polígonos Una linea poligonal es un conjunto de segmentos concatenados, (cada uno empieza donde acaba el anterior), y pueden ser: abiertas o cerradas. La superficie
Trigonometría, figuras planas
El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama
TRIÁNGULOS. TEOREMA DE PITÁGORAS.
TRIÁNGULOS. TEOREMA DE PITÁGORAS. Un triángulo ABC es la figura geométrica del plano formada por 3 segmentos llamados lados cuyos extremos se cortan a en 3 puntos llamados vértices. Los vértices se escriben
Conjetura de la suma de los ángulos de un polígono
LECCIÓN CONDENSADA 5.1 Conjetura de la suma de los ángulos de un polígono En esta lección Descubrirás una fórmula para encontrar la suma de las medidas de los ángulos de cualquier polígono Usarás el razonamiento
ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.-
ÁNGULOS EN POLÍGONOS Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c Ejercicio nº.- Halla el valor del ángulo en cada uno de estos casos: a b c Ejercicio nº 3.- Halla el
ELEMENTOS QUE FORMAN UN POLÍGONO
ELEMENTOS QUE FORMAN UN POLÍGONO Los lados son los segmentos que forman el polígono. Los ángulos son las zonas que forman los lados al cortarse. Las diagonales son los segmentos que unen dos vértices no
UNIDAD X - GEOMETRIA. Ejercitación
UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.
TRIÁNGULOS: PROPIEDADES Y POSTULADOS.
04 1 TRIÁNGULOS: PROPIEDADES Y POSTULADOS. Comprende los tipos y las propiedades de los triángulos. En Presentación de Contenidos se repasa la clasificación de triángulos de acuerdo a sus lados y a sus
Funciones lineales y no lineales (páginas 560 563)
A NOMRE FECHA PERÍODO Funciones lineales y no lineales (páginas 560 563) Las funciones lineales tienen gráficas que son líneas rectas. Estas gráficas representan tasas de cambio constantes. Las funciones
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 8 PROBLEMAS MÉTRICOS DEL PLANO
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 8 PROBLEMAS MÉTRICOS DEL PLANO Ejercicio nº 1.- Calcula la medida de los ángulos desconocidos: a) b) a) A ˆ = 180 35 = 145 Por ser opuestos por el vértice: Bˆ =
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
EJERCICIOS. ÁREAS Y VOLÚMENES.
EJERCICIOS. ÁREAS Y VOLÚMENES. Teorema de Tales 1. Sean los triángulos ABC, AB'C'.Calcula el valor desconocido x. 2. Dos triángulos semejantes tienen una superficie de 20cm 2 y 30cm 2 respectivamente.
8. Si Â, Ê e Î son los ángulos de un triángulo, completa en tu cuaderno la siguiente tabla:
5. Clasifica según sus lados los siguientes triángulos: a) Equilátero. b) Escaleno. c) Isósceles. 6. Clasifica según sus ángulos los siguientes triángulos: a) Acutángulo. b) Obtusángulo. c) Rectángulo.
Dibujo Técnico Triángulos 9. TRIÁNGULOS. Según los lados.
9. TRIÁNGULOS 9.1. Características generales. Un triángulo es una figura plana limitada por tres rectas que se cortan dos a dos, determinando los segmentos que son los lados del triángulo. Para que tres
A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C
8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide
POSICIÓN DE DOS RECTAS
POSICIÓN DE DOS RECTAS Un punto divide a una recta en dos semirrectas. Rectas paralelas son las que nunca se cortan por mucho que se prolonguen. Rectas secantes son las que se cortan. Rectas perpendiculares
Proporcionalidad geométrica
TEMA 9: Proporcionalidad geométrica INTRODUCCIÓN: THALES DE MILETO Thales, filósofo, astrónomo y matemático griego nació en Mileto en el año 624 a. de C. y murió a la edad de 78 años durante la quincuagésima
Ángulo llano: Es la mitad de un ángulo completo.
70 Capítulo 10: Figuras planas. Matemáticas 1º de ESO 1. ELEMENTOS DEL PLNO 1.1. Puntos, rectas, semirrectas, segmentos. El elemento más sencillo del plano es el punto. El signo de puntuación que tiene
INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 4 AREA: MATEMÁTICAS AGISNATURA: GEOMETRÍA GRADO: SEXTO
INSIUIÓN EDUIV INSIUO GIOL JOND DIUN GUÍ DE JO # 4 E: MEMÁIS GISNU: GEOMEÍ GDO: SEXO Instrucciones. Lee cuidadosamente los conceptos, los ejemplos y desarrolla los ejercicios propuestos. No olvides guardar
GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 6. Preparado por: Héctor Muñoz
GUÍS DE TRJO Material de trabajo para los estudiantes UNIDD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo N 1
