TEMA 3 CLASIFICACIÓN DE LAS SUSTANCIAS INORGÁNICAS. Tipo de Interacción Interacción Tipo de Ejemplo Sólido Intramolecular Intermolecular Estructura

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 3 CLASIFICACIÓN DE LAS SUSTANCIAS INORGÁNICAS. Tipo de Interacción Interacción Tipo de Ejemplo Sólido Intramolecular Intermolecular Estructura"

Transcripción

1 1 TEMA 3 CLASIFICACIÓN DE LAS SUSTANCIAS INORGÁNICAS Tipo de Interacción Interacción Tipo de Ejemplo Sólido Intramolecular Intermolecular Estructura Iónico Iónica Iónica 3D NaCl, CsCl Metálico Metálica Metálica 3D Cu, Li, Pb Covalente Covalente Direccional 3D C(diamante, grafito) Molecular Covalente F. Van der Waals 1D, 2D, 3D H 2 O(s), I 2 (s) Sólidos iónicos Son aquellos en los que los iones constituyentes están unidos entre sí por fuerzas electrostáticas. Algunas de sus propiedades características son las siguientes: a.- Estereoquímica: Los enlaces iónicos son bastante fuertes y omnidireccionales. Las fuerzas iónicas se extienden a través del espacio y son igualmente fuertes en todas las direcciones. b.- Puntos de fusión y de ebullición: En virtud de las fuerzas electrostáticas fuertes catiónanión, que se extienden a través de toda la red cristalina, los compuestos iónicos presentan altos puntos de fusión y de ebullición, altos calores de fusión y de vaporización. c.- Dureza: Debido a las fuerzas de atracción electrostáticas multivalentes dentro del cristal iónico, el cristal es duro. La dureza se incrementa con la disminución de las distancias interiónicas y aumenta con la carga iónica. d.- Fragilidad: Si se suministra suficiente energía a la capa cristalina de una celda unitaria, las fuerzas de atracción se hacen de repulsión, debido a las repulsiones anión-anión y catióncatión, y el cristal se quiebra. De ahí que los cristales iónicos, aún cuando son duros, son quebradizos y se les puede convertir con facilidad en polvos al martillearlos. e.- Solubilidad: Los compuestos iónicos se disuelven en disolventes polares que poseen altas constantes dieléctricas debido (i) la disminución en las fuerzas de atracción entre los iones en un medio dieléctrico y (ii) las interacciones dipolares ión-disolvente, las cuales suministran una energía considerables capaz de romper la red cristalina iónica. f.- Conductancia: En estado sólido, los compuestos iónicos poseen una conductancia muy baja, puesto que los iones se mantienen fuertemente unidos en sus posiciones en la red cristalina. En estado fundido y en solución, los compuestos iónicos conducen la electricidad debido a la formación de iones libres móviles, los cuales pueden desplazarse libremente en un campo eléctrico y de esta forma pueden portar la corriente.

2 2 Relación entre los radios y números de coordinación Puesto que los cationes y los aniones en los compuestos iónicos se mantienen unidos sólo mediante las fuerzas electrostáticas, tienden a ordenarse en un arreglo geométrico tal que las repulsiones entre las cargas similares sean mínimas y la atracción entre las cargas opuestas máxima. El arreglo más estable es aquél en donde los aniones se tocan entre sí y en forma simultánea también al cation [Figura 5.1(b)]. Si el tamaño del anión disminuye, los aniones no pueden tocar a los otros aniones, aún cuando estén en contacto con el catión [Figura 5.1(a)]. Si el tamaño relativo del catión sigue aumentando, un mayor número de aniones pueden acomodarse alrededor de él, dando lugar a una mayor estabilización con el cambio del número de coordinación y la estructura. Por otra parte, si el tamaño del anión aumenta, ya no pueden tocar al catión y el incremento en las repulsiones interelectrónicas, que sacará a uno de los aniones de la esfera de coordinación del catión, alterará la estructura. Las redes cristalinas iónicas más estables y más comunes son la tetraédrica, octaédrica y cúbica, que corresponden respectivamente a los números de coordinación 4, 6 y 8 [Figura 5.2]. Cálculo de la relación entre los radios 1.- Red cristalina cúbica En el caso de una red cristalina cúbica, los aniones se encuentran en los vértices de un cubo y los cationes en el centro. En el caso en donde los aniones se tocas entre sí, y en forma simultánea al catión (caso límite), la arista del cubo es igual que el doble del catión (= 2r c ). La diagonal más larga es igual que el radio de dos aniones en los vértices de la diagonal (= 2r a ) más el diámetro del catión (=2r c ), en donde r a y r c son respectivamente los radios del anión y

3 del catión (Figura 5.5). Si el tamaño del cubo es b, su diagonal más larga es b(3) 1/2, de tal forma que: 3 b= 2r a y b(3) 1/2 = 2r a + 2r c por lo cual [(2r a + 2r c ) / 2r a ] = (3)1/2 lo cual al simplificar conduce a (r a / r c ) = En consecuencia, si se considera que los iones son esferas duras que no pueden comprimirse, la relación mínima entre los radios para una red cristalina cúbica es de un cálculo geométrico Red cristalina octaédrica Los cuatro aniones se encuentran en los vértices del cuadrado de la Figura 5.6, el catión en el centro y un anión arriba y otro abajo del plano formado por los cuatro aniones que contienen al catión. Todos los iones se tocan entre si para dar lugar a un arreglo lo más estable posible. En consecuencia, el tamaño de un lado del cuadrado, b, es igual que el doble del radio aniónico r a, y la diagonal del cuadrado, b(2) 1/2, es igual al diámetro del catión (2r c ) más dos veces el radio de los aniones (2r a ). De ahí que:

4 4 b = 2r a y b(2)1/2 = 2r a + 2r c que al dividir, [(2r a + 2r c ) / 2r a ] = (2) 1/2 lo cual al simplificar dal lugar a (r c / r a ) = Esta es la relación mínima calculada para la red cristalina octaédrica en esferas no comprimibles. 3.- Red cristalina tetraédrica En un cubo, cuando se unen los vértices alternados, se obtiene un tetraedro. El centro del tetraedro coincide con el del cubo. Un arreglo tetraédrico estable es aquél en donde los cuatro aniones en los vértices se tocan entre si y en forma simultánea al catión que se encuentra en el centro [Figura 5.7]. En este arreglo, los dos aniones al final de la diagonal de la cara se tocan entre si [b(2) 1/2 = 2r a ]. El catión se encuentra en el centro de la diagonal larga y toca a uno de los aniones en el vértice. La mitad de la longitud de la diagonal larga [b(3) 1/2 ] es igual que la suma de los radios del catión (r c ) y del anión (r a ). De ahí que: {[b(3) 1/2 ] /2 } = r c + r a y b(2) 1/2 = 2ra que al dividir da lugar a [(r c + r a ) / r a ] = [(3) 1/2 / (2) 1/2 ] lo cual al simplificarse produce (r c / r a ) = Este es el límite estable inferior para la red cristalina tetraédrica. 4.- Para un número de coordinación tres, el arreglo más estable es el trigonal plano en donde los tres aniones se tocan unos y otros así como al catión que se encuentra en el centro (Figura 5.8). Se tiene que:

5 5 AD = AB cos 30 = [b(3) 1/2 ] / 2 Si G es el centro del triángulo y en consecuencia del catión: AG = (2/3) AD = (2/3) b (3) 1/2 (1 / 2) = b/(3) 1/2 De tal forma que (r a + r c ) = b/(3) 1/2 Puesto que b = 2r a (r a + r c ) = 2r a / 3(1/2) que al simplificar produce (r c / r a ) = El número de coordinación dos se refiere a un arreglo lineal, en el cual no puede formarse una red cristalina completa. Algunas redes cristalinas y la relación límite entre los radios para dichas redes se presenta en la Tabla 5.3

6 Sólidos metálicos 6 En un sentido estrictamente químico, un metal es un elemento cuyos átomos tienden a formar cationes sencillos por reacción con los átomos altamente electronegativos. Desde esta perspectiva es posible definir un metal en términos de la configuración electrónica del estado fundamental del átomo. Una forma más adecuada de distinguir entre metales y no metales se basa en considerar cuales son las propiedades físicas características de los metales que, de se modo, definen el estado metálico. Este tipo de agregación está caracterizado por un enlace que no es ni iónico ni covalente pero que tiene alguna de las características de cada uno de ellos. Entre estas propiedades singulares, que están restringidas a las fases condensadas, se encuentran las siguientes: a.- Densidades elevadas en comparación con otras sustancias, que son indicativas de estructuras cristalinas empacadas compactamente. b.- Elevada conductividad eléctrica y térmica. Para un metal dado la conductividad eléctrica decrece al aumentar la temperatura, lo que sugiere que el flujo de electrones se ve dificultado a consecuencia del aumento de las frecuencias de vibración atómicas. c.- Capacidad de emitir electrones cuando son excitados: efecto fotoeléctrico. d.- Disolución reversible en disolventes fuertemente básicos sin que tenga lugar una reacción química aparente. Los metales fuertemente electropositivos se disuelven fácilmente en amoníaco líquido. e.- Cuando la superficie está libre de productos de oxidación presentan un brillo intenso característico. El brillo está asociado a la absorción e inmediata emisión de radiación visible en una amplia gama de frecuencias. f.- Son fácilmente deformables en sus tres dimensiones sin experimentar fractura. La maleabilidad, ductilidad y deslizamiento por acción de una presión sugieren la presencia de enlaces no direccionales que, aunque ejercen poca resistencia a la deformación cuando se les somete a una tensión, implican la existencia de fuerzas de cohesión intensas. Estructuras cristalinas de los metales El concepto de empaquetamiento de esferas atómicas rígidas resulta particularmente conveniente para describir las estructuras cristalinas de los metales ya que, para un metal dado, todas las esferas tienen el mismo tamaño y, además, no existen efectos de atracciónrepulsión interiónicos. La mayoría de los metales (aproximadamente el 60 %) tienen estructuras cristalinas compactas (cúbicas o hexagonales), mientras que, aproximadamente, la mitad del 40% restante presenta la estructura cúbica centrada en el cuerpo, más abierta que las anteriores.

7 7 En las dos estructuras compactas los átomos metálicos ocupan aproximadamente el 74% del espacio disponible. El número de coordinación de los átomos metálicos en la estructura cúbica centrada en el cuerpo es 8, ocupándose, aproximadamente, el 67% del espacio disponible. Los huecos tetraédricos en las estructuras compactas admiten átomos cuyo radio no sea superior al 23% del radio del átomo metálico. Por cada N átomos metálicos existen 2N posiciones o huecos tetraédricos. Los huecos octaédricos son de tamaño algo mayor y el radio del átomo que puede acomodarse en ellos no debe exceder del 41% del radio del átomo metálico. El número de huecos octaédricos es igual al de átomos en la red metálica. El orden estructural exacto característico de estos retículos cristalinos se mantiene generalmente sobre regiones de aproximadamente 10-5 cm, es decir, a lo largo de distancias que representan algunos cientos de celdas unidad. De esta forma, un monocristal normal de un metal es un mosaico formado por dominios del tipo descrito que se encuentran ligeramente desplazados unos con respecto a los otros. Sólidos covalentes Los sólidos en los cuales los diversos átomos que los constituyen están enlazados a lo largo de toda la red cristalina mediante enlaces covalentes se denominan sólidos covalentes. A diferencia de la estructura de los metales, en donde los electrones se correlacionan entre sí, estos sólidos tienen por lo menos un enlace sigma localizado por cada átomo constitutivo. Los demás electrones pueden estar deslocalizados o no estarlo, lo cual depende de los estados de valencia de los átomos. Tanto los elementos como los compuestos pueden existir como sólidos covalentes. 1.- Estructura del diamante En una estructura tipo del diamante, que está presente en el diamante, la sílice, los silicatos (Figura 5.15), cada átomo está enlazado en forma tetraédrica a cuatro átomos, y la estructura se extiende en las tres dimensiones del espacio. La estructura del diamante presenta una celda unitaria cúbica.

8 2.- Estructura del grafito 8 El grafito posee una estructura de capas (Figura 5.16) en la cual cada capa está separada por 335 pm. La gran distancia entre las capas indica una interacción pequeña entre las diferentes capas. La blandura y las propiedades lubricantes que manifiesta el grafito se deben a la facilidad con que las capas se deslizan entre sí. En una capa cada átomo de carbono está unido a otros tres átomos de carbono y, en consecuencia, utiliza orbitales híbridos sp 2 para formar tres enlaces σ con cada uno de sus átomos contiguos. Cada átomo de carbono presenta un electrón más en el orbital p z no hibridado, el cual forma un sitema ampliamente deslocalizado de enlaces π. El nitruro de boro (BN) presenta una estructura similar. El fósforo negro presenta una estructura de capas dobles (Figura 5.17). Sólidos moleculares Se tienen evidencias de que una fuerza de atracción, completamente independiente de las fuerzas normales de valencia, existe en las moléculas. Algunos hechos pueden resumirse de la forma siguiente: a.- Comportamiento no ideal de los gases reales. b.- El efecto Joule-Thomson, que explica la causa por la cual los gases se enfrían cuando sufren una expansión brusca en virtud del trabajo que se realiza en contra de las fuerzas intermoleculares. c.- Los gases inertes, incapaces de formar un enlace químico estable, pueden condensarse y pasar al estado líquido así como al estado sólido, en donde deben existir fuerzas de cohesión.

9 Las fuerzas de Van der Waals son muy débiles en comparación con las fuerzas normales de valencia: la entalpía de sublimación del Cl 2 (s) es de sólo 21 KJ/mol, mientras que la fuerza del enlace Cl-Cl es de 240 KJ/mol. Las fuerzas de Van der Waals son aditivas y no pueden saturarse, como así sucede con las fuerzas del enlace de valencia. 9 Naturaleza de las fuerzas de Van der Waals Las atracciones intermoleculares débiles pueden deberse a los siguientes tipos de interacciones: 1.- Atracción electrostática simple, E K. Éstas se deben a las interacciones dipolo-dipolo en moléculas polares, como el agua, cloroformo, la acetona, etc. Estas fuerzas están dadas por la siguiente ecuación, en donde µ 1 y µ 2 son los momentos dipolares de las dos moléculas separadas por una distancia r, ε 0 es la permitividad del vacío. Este efecto es inversamente proporcional a T. E K = - [2 µ 1 2 µ 2 2 ] / [3(4πε 0 ) 2 r 6 kt] Las atracciones dipolo-dipolo, también llamadas fuerzas de Keesom, son muy débiles y se abaten de acuerdo a r 6. Estas fuerzas sólo existen en sólidos y en menor importancia en los líquidos. En la fase vapor, la energía térmica a temperatura ambiente es lo suficiente para sobrepasar a las fuerzas de Keesom. 2.- Fuerzas de dipolo inducido, E D Éstas son consecuencia de la polarización de las moléculas neutras por los dipolos del medio circundante y se superponen a las interacciones dipolo-dipolo. E D puede expresarse como: E D = -[2α µ 1 2 ] / [4πε 0 r 6 ] En donde α es la polarizabilidad de la molécula. E D se denomina energía de Debye. Estas fuerzas son extremadamente débiles, su importancia se limita a las soluciones de solutos polares en disolventes no polares. 3.- Fuerzas de London, E L Se producen debido a la existencia de dipolos inducidos temporalmente en un átomo como consecuencia del movimiento electrónico. Se calculan mediante la expresión: E L = -[3I 1 I 2 α 1 α 2 ] / [2(I 1 + I 2 ) r 6 ] En donde I 1 e I 2 son las energías de ionización de las dos moléculas, separadas por una distancia r y que presentan polarizabilidades respectivamente de α 1 y α 2. La polarización instantánea está presente en todos los compuestos y en todos los átomos y es aditiva.

10 Fuerzas de repulsión, E r Estas fuerzas provienen de la repulsión núcleo-núcleo. A distancias internucleares muy cortas, los electrones de las capas internas en los átomos que interaccionan pueden traslaparse, lo cual incluye importantes fuerzas de repulsión de Pauli, que pueden describirse como: E r = + k/r n En donde k es una constante y n una variable que depende del número de electrones presentes. Como consecuencia de estas interacciones, los átomos y las moléculas se unen por fuerzas de Van der Waals, que permanecen a una distancia de equilibrio a la cual las fuerzas de atracción dipolo-dipolo, dipolo-dipolo inducido y las fuerzas de dispersión de London están equilibradas por las fuerzas de repulsión de Pauli, E r. En consecuencia, cada especie puede tener asignado un radio de Van der Waals, que puede considerarse como la mitad de la distancia de acercamiento máxima de dos átomos. Desafortunadamente, los radios de Van der Waals dependen del medio ambiente de las especies y, en consecuencia, no es una cantidad fija. El término fuerzas de Van der Waals tiene significados diferentes según los diversos autores. Algunos describen con este término sólo las fuerzas de dispersión de London. Otros lo utilizan para describir todas las fuerzas que provocan desviaciones al comportamiento ideal de los gases.

EL ENLACE QUÍMICO. La unión consiste en que uno o más electrones de valencia de algunos de los átomos se introduce en la esfera electrónica del otro.

EL ENLACE QUÍMICO. La unión consiste en que uno o más electrones de valencia de algunos de los átomos se introduce en la esfera electrónica del otro. EL ENLACE QUÍMICO Electrones de valencia La unión entre los átomos se realiza mediante los electrones de la última capa exterior, que reciben el nombre de electrones de valencia. La unión consiste en que

Más detalles

Tema 3. Enlace químico

Tema 3. Enlace químico Tema 3. Enlace químico Teoría de Lewis Enlace iónico Enlace covalente Parámetros de enlace Forma de las moléculas Polaridad de las moléculas Teoría del enlace de valencia Enlace químico Modo de combinarse

Más detalles

Las especies químicas están formadas por agregados de átomos o de iones

Las especies químicas están formadas por agregados de átomos o de iones Enlace Químico Enlace químico Las especies químicas están formadas por agregados de átomos o de iones Excepciones: gases nobles y vapores metálicos que son monoatómicos. Se denomina enlace químico a cualquiera

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 QUÍMICA TEMA : ENLACES QUÍMICOS Reserva 1, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Septiembre,

Más detalles

PROPIEDADES PERIÓDICAS

PROPIEDADES PERIÓDICAS PROPIEDADES PERIÓDICAS Propiedades que influyen en el comportamiento químico 1) RADIO ATÓMICO : distancia media entre 2 núcleos de un elemento unidos por un enlace simple. X X r = ½ d Medidas atómicas

Más detalles

Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen.

Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen. Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen. Relacionar las propiedades de las sustancias, con el tipo de enlace que tiene lugar entre los átomos que la constituyen,

Más detalles

ENLACE QUÍMICO. 2.1.1. Aspectos energéticos del enlace iónico

ENLACE QUÍMICO. 2.1.1. Aspectos energéticos del enlace iónico ENLACE QUÍMICO 1. Concepto de enlace La unión entre átomos y la formación de un enlace es un proceso químico que va acompañado de una cierta disminución de energía, la energía potencial electrostática,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio, Opción B Reserva

Más detalles

QUIMICA 1. Comisión B. Comisión B Lunes 10 am 1 pm Miércoles 12 am 2 pm

QUIMICA 1. Comisión B. Comisión B Lunes 10 am 1 pm Miércoles 12 am 2 pm Departamento de Ciencia y Tecnología Departamento de Ciencia y Tecnología QUIMICA 1 Comisión B QUIMICA 1 Comisión B Lunes 10 am 1 pm Miércoles 12 am 2 pm Dra. Silvia Alonso (salonso@unq.edu.ar) Lic. Evelina

Más detalles

Estructura atómica: tipos de enlaces

Estructura atómica: tipos de enlaces Estructura atómica: tipos de enlaces Estructura de los átomos Modelo atómico de Bohr Masa (g) Carga (C) Protón 1.673 x 10-24 1.602 x 10-19 Neutrón 1.675 x 10-24 0 Electrón 9.109 x 10-28 1.602 x 10-19 Los

Más detalles

6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS. Átomos y estructura atómica

6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS. Átomos y estructura atómica 6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS En este epígrafe se desarrollan las características que diferencian a los seres vivos. Una de ellas es la complejidad molecular, que se debe a la inmensa variedad

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a Ciencia Matemática www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! EL ENLACE QUÍMICO CONTENIDOS. 1.- El enlace

Más detalles

El enlace iónico. Los cationes y los aniones están unidos por la fuerza electroestática.

El enlace iónico. Los cationes y los aniones están unidos por la fuerza electroestática. El enlace iónico Los elementos con bajas energías de ionización tienden a formar cationes, en cambio los elementos con alta afinidad electrónicas tienden a formar aniones. Los metales alcalinos (IA) y

Más detalles

ENLACE QUÍMICO Y PROPIEDADES DE LOS MATERIALES OBJETIVO

ENLACE QUÍMICO Y PROPIEDADES DE LOS MATERIALES OBJETIVO ENLACE QUÍMICO Y PROPIEDADES DE LOS MATERIALES OBJETIVO Relacionar el tipo de enlace químico con las principales propiedades de los materiales. 1 INTRODUCIÓN Muchas de las propiedades de los materiales

Más detalles

Fuerzas Intermoleculares

Fuerzas Intermoleculares Fuerzas Intermoleculares 1. Defina los siguientes términos: Fase Fuerzas intermoleculares Fuerzas intramoleculares Densidad Compresibilidad Vibración molecular Propiedad Macroscópica Dipolo Polaridad Momento

Más detalles

Fuerzas intermoleculares y Sólidos

Fuerzas intermoleculares y Sólidos Fuerzas intermoleculares y Sólidos Conceptos Previos Estados de la Materia Líquido, Sólido y Gaseoso. Éstos son los estados principales en que podemos encontrar a la materia Los factores fundamentales

Más detalles

ENLACE QUÍMICO. Química 2º bachillerato Enlace químico 1

ENLACE QUÍMICO. Química 2º bachillerato Enlace químico 1 ENLACE QUÍMICO 1. El enlace químico. 2. El enlace covalente. 3. Geometría de las moléculas covalentes. 4. Polaridad de enlaces. 5. Teoría del enlace de valencia. 6. El orbital molecular. 7. Moléculas y

Más detalles

UNIDAD III: TEORÍA DE ENLACE QUÍMICO

UNIDAD III: TEORÍA DE ENLACE QUÍMICO UNIDAD III: TEORÍA DE ENLACE QUÍMICO 1. Enlace químico 2. Tipos de enlace 3. Estructura de Lewis 4. Geometría molecular 1. Enlace químico Las propiedades y el comportamiento de las sustancias químicas

Más detalles

TEMA 8.- TEORÍA DE ENLACE QUÍMICO Y GEOMETRÍA MOLECULAR.

TEMA 8.- TEORÍA DE ENLACE QUÍMICO Y GEOMETRÍA MOLECULAR. TEMA 8.- TEORÍA DE ENLACE QUÍMICO Y GEOMETRÍA MOLECULAR. 1. Geometría Molecular. Modelo de repulsión de par electrónico en la capa de valencia (VSEPR). 2. Polaridad de las especies químicas polinucleares.

Más detalles

VI. EL ENLACE QUÍMICO

VI. EL ENLACE QUÍMICO Índice 1. Naturaleza del enlace químico 2. Enlace iónico 3. Enlace covalente 4. Fuerzas intermoleculares 5. Enlace metálico 2 1 Naturaleza del enlace químico Un átomo es estable cuando su última capa está

Más detalles

ESTRUCTURA ATÓMICA TABLA PERIÓDICA UNIÓN QUÍMICA

ESTRUCTURA ATÓMICA TABLA PERIÓDICA UNIÓN QUÍMICA ESTRUCTURA ATÓMICA TABLA PERIÓDICA UNIÓN QUÍMICA Teoría Atómica de DALTON 1- Los elementos químicos están constituidos por partículas denominadas átomos 2- Átomos de un mismo elemento, tienen las mismas

Más detalles

31/08/2011. químicos. Polares. Enlaces covalentes. No polares Triple. Estructuras de Lewis

31/08/2011. químicos. Polares. Enlaces covalentes. No polares Triple. Estructuras de Lewis Enlaces iónicos Enlaces iónicos Enlaces No polares Triple Enlaces Se produce la cesión de electrones desde el átomo menos electronegativo al más electronegativo. Se produce entre elementos con diferencia

Más detalles

TEMA 2: DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA.

TEMA 2: DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA. TEMA 2: DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA. 1.- Distribución electrónica. La distribución electrónica o configuración electrónica es el modo en que se sitúan los electrones en la corteza de los

Más detalles

Fuerzas Intermoleculares

Fuerzas Intermoleculares Fuerzas Intermoleculares Mapa conceptual Primer video http://www.youtube.com/watch?v=flxa79uiu5g Que son las fuerzas intermoleculares? Las fuerzas intermoleculares se definen como el conjunto de fuerzas

Más detalles

20.-/ a) Cu: Metálico ; BCl 3 : Covalente ; H 2 O: Covalente ; CsF: Iónico b) BCl 3 : Triangular plana y APOLAR ; H 2 O: Angular y POLAR.

20.-/ a) Cu: Metálico ; BCl 3 : Covalente ; H 2 O: Covalente ; CsF: Iónico b) BCl 3 : Triangular plana y APOLAR ; H 2 O: Angular y POLAR. SOLUCIONES EL Y PROPIEDADES HOJA Nº 7 1.-/ a) Lineal b) Tetraédrica c) Angular d) Angular e) Piramidal trigonal 2.-/ a) Tetraédrica b) Tetraédrica c) Lineal d) Triangular e) Tetraédrica 3.-/ a) 769,2 kj/mol

Más detalles

Enlaces y Propiedades de Cristales con esos Enlaces

Enlaces y Propiedades de Cristales con esos Enlaces Enlaces y Propiedades de Cristales con esos Enlaces Enlaces Enlaces Primarios, participan directamente los electrones de valencia. El rol de estos electrones (ser cedidos, compartidos o captados) depende

Más detalles

EJERCICIOS DE SELECTIVIDAD 99/00

EJERCICIOS DE SELECTIVIDAD 99/00 EJERCICIOS DE SELECTIVIDAD 99/00 1. Tres elementos tienen de número atómico 25, 35 y 38, respectivamente. a) Escriba la configuración electrónica de los mismos. b) Indique, razonadamente, el grupo y periodo

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. Lección 6: Enlaces Químicos. Estructuras de Lewis Molécula de Hidrógeno: H 2 Tipos de enlaces covalentes: Enlace covalente vs Enlace iónico Estructuras de Lewis

Más detalles

Propiedades Tabla Periódica

Propiedades Tabla Periódica Propiedades Tabla Periódica Profesor Gustavo L. Propiedades Tabla Periódica 1 Un poco de historia... 2 En 1869, el químico ruso Dimitri Mendeleev propuso por primera vez que los elementos químicos exhibían

Más detalles

Enlace covalente: Teoría del enlace de valencia. Hibridación.

Enlace covalente: Teoría del enlace de valencia. Hibridación. Enlace covalente: Teoría del enlace de valencia. Hibridación. Valencia covalente o covalencia de un elemento: número de electrones que comparte con otros átomos. Un átomo puede desaparear electrones promocionándolos

Más detalles

FUERZAS INTERMOLECULARES

FUERZAS INTERMOLECULARES FUERZAS INTERMOLECULARES Fuerzas: intramoleculares vs. intermoleculares Fuerzas intramoleculares: Mantienen unidos a los átomos dentro de una molécula. Son el origen de los enlaces químicos. Determinan

Más detalles

Propiedades Periódicas

Propiedades Periódicas Propiedades Periódicas ì Qué son? Las propiedades periódicas se refieren a las variaciones que experimentan las propiedades físicas de los elementos que pertenecen a un mismo grupo o periodo ???????? Y

Más detalles

Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA

Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA Describe los fundamentos de la formación de enlace iónicos y covalentes y su relación con la polaridad de las moléculas resultantes. Mg. Emilio

Más detalles

LA TABLA PERIÓDICA. 2ºbachillerato QUÍMICA

LA TABLA PERIÓDICA. 2ºbachillerato QUÍMICA LA TABLA PERIÓDICA 2ºbachillerato QUÍMICA 1 A lo lo largo de la la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares

Más detalles

Descripción de los 3 estados de la materia. Química General II Estados líquido y sólido. Diagrama de Fases

Descripción de los 3 estados de la materia. Química General II Estados líquido y sólido. Diagrama de Fases Descripción de los 3 estados de la materia Química General II Estados líquido y sólido. Diagrama de Fases Estado Líquido El estado líquido se caracteriza por: Retener su volumen pero no su forma. No poder

Más detalles

Estándar Anual. Ejercicios PSU. Ciencias Básicas Química. Guía práctica: El enlace químico GUICES004CB33-A16V1. Programa

Estándar Anual. Ejercicios PSU. Ciencias Básicas Química. Guía práctica: El enlace químico GUICES004CB33-A16V1. Programa Programa Estándar Anual Nº Guía práctica: El enlace químico Ejercicios PSU 1. Con respecto al enlace químico, se afirma que A) el enlace iónico se establece entre elementos de electronegatividad similar.

Más detalles

FUERZAS INTERMOLECULARES

FUERZAS INTERMOLECULARES DEPARTAMENTO DE CIENCIAS QUÍMICA - IB FUERZAS INTERMOLECULARES Existen fuerzas de atracción entre las moléculas (fuerzas intermoleculares). Ellas son las responsables de que los gases condensen (pasar

Más detalles

UNIDAD EDUCATIVA MONTE TABOR NAZARET Área de Ciencias Experimentales Actividades de refuerzo académico I QM 2015-2016

UNIDAD EDUCATIVA MONTE TABOR NAZARET Área de Ciencias Experimentales Actividades de refuerzo académico I QM 2015-2016 NOMBRE: CURSO: PRIMERO DE BACHILERATO UNIDAD EDUCATIVA MONTE TABOR NAZARET Área de Ciencias Experimentales Actividades de refuerzo académico I QM 2015-2016 Contenido: Caligrafía: Presentación Ortografía:

Más detalles

ENLACE QUÍMICO. NaCl. Grafito: láminas de átomos de carbono

ENLACE QUÍMICO. NaCl. Grafito: láminas de átomos de carbono NaCl Grafito: láminas de átomos de carbono Se denomina enlace químico al conjunto de fuerzas que mantienen unidos los átomos cuando forman moléculas o cristales, así como las fuerzas que mantienen unidas

Más detalles

Ley Periódica. Química General I 2012

Ley Periódica. Química General I 2012 Ley Periódica Química General I 2012 Ley Periódica Mendeleev estudió las configuraciones electrónicas y descubrió la periodicidad cuando estas eran similares. Configuración electrónica similar Propiedades

Más detalles

Modelo de repulsión de pares de electrones en la capa de valencia Forma molecular y polaridad molecular. Hibridación de orbitales y enlaces múltiples

Modelo de repulsión de pares de electrones en la capa de valencia Forma molecular y polaridad molecular. Hibridación de orbitales y enlaces múltiples GEOMETRÍA MOLECULAR Y TEORÍADE ENLACE Modelo de repulsión de pares de electrones en la capa de valencia Forma molecular y polaridad molecular Teoría de enlace de valencia Hibridación de orbitales y enlaces

Más detalles

NÚCLEO ATÓMICO Profesor: Juan T. Valverde

NÚCLEO ATÓMICO Profesor: Juan T. Valverde 6 1.- Deduce la masa atómica del litio a partir de sus isótopos Li con una abundancia del 7 7,5% y Li con una abundancia del 92,5%. http://www.youtube.com/watch?v=8vvo-xqynea&feature=youtu.be 2.- Calcula

Más detalles

Capitulo 4: ENLACES QUIMICOS

Capitulo 4: ENLACES QUIMICOS Capitulo 4: ENLACES QUIMICOS! Símbolos de Lewis y la regla del octeto! Iones y compuestos ionicos! Enlaces iónicos! Configuración electrónica de los iones, iones de metales de transición y iones poliatómicos!

Más detalles

Maestro: Especialidad: Educación Primaria ENLACE QUÍMICO. Fundamentos y Didáctica de la Física y la Química

Maestro: Especialidad: Educación Primaria ENLACE QUÍMICO. Fundamentos y Didáctica de la Física y la Química Maestro: Especialidad: Educación Primaria ENLACE QUÍMICO Fundamentos y Didáctica de la Física y la Química Según la regla del octeto, una de las estructuras más estables de los elementos es tener ocho

Más detalles

Por qué se unen los átomos?

Por qué se unen los átomos? Enlace Químico Por qué se unen los átomos? Los átomos se unen entre sí porque al estar unidos alcanzan una situación más estable (menos energética) que cuando estaban separados. En adelante podremos hablar

Más detalles

Modelo atómico de la materia. Tabla periódica, configuración electrónica y propiedades periódicas

Modelo atómico de la materia. Tabla periódica, configuración electrónica y propiedades periódicas Eje temático: Modelo atómico de la materia Enlace químico Química orgánica Disoluciones químicas Contenido: Propiedades periódicas: configuración electrónica y tabla periódica Nivel: Segundo medio Modelo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción A Reserva 1, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción B Septiembre,

Más detalles

Tema 1 Introducción a la Ciencia de los Materiales.

Tema 1 Introducción a la Ciencia de los Materiales. Tema 1 Introducción a la Ciencia de los Materiales. La Ciencia de los Materiales es la disciplina que se encarga de estudiar cómo están formados los materiales y cuáles son sus propiedades. El objetivo

Más detalles

Ley Periódica. Química General I 2013

Ley Periódica. Química General I 2013 Ley Periódica Química General I 2013 Ley Periódica Mendeleev estudió las configuraciones electrónicas y descubrió la periodicidad cuando estas eran similares. Configuración electrónica similar Propiedades

Más detalles

El enlace químico TEMA-3

El enlace químico TEMA-3 El enlace químico TEMA-3 1 Tipos de enlaces químicos Atómicos: Iónico Covalente a) Teoría de Lewis b) Método del enlace de valencia (EV) Metálico Intermoleculares: Fuerzas de Van de Waals. Enlace por puentes

Más detalles

M A T E R I A L E S ENLACES QUIMICOS

M A T E R I A L E S ENLACES QUIMICOS M A T E R I A L E S ENLACES QUIMICOS I FUERZAS DE ATRACCIÓN Intramoleculares: entre átomos de una molécula Determinan tipo de sustancia y propiedades químicas. Intermoleculares: entre moléculas Determinan

Más detalles

ENLACE QUÍMICO. Walter Kossel 1888-1956. Gilbert N. Lewis 1875-1946

ENLACE QUÍMICO. Walter Kossel 1888-1956. Gilbert N. Lewis 1875-1946 ENLACE QUÍMICO Walter Kossel 1888-1956 Gilbert N. Lewis 1875-1946 Fritz Haber 1868-1934 Max Born 1882-1954 1.1 DEFINICIÓN DE ENLACE QUÍMICO Un enlace químico es la unión entre dos o más átomos para formar

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

Tendencias Periódicas- Problemas de Revisión

Tendencias Periódicas- Problemas de Revisión Tendencias Periódicas- Problemas de Revisión PSI Química Nombre Tamaño atómico 1. Ordena los siguientes elementos según su tamaño atómico creciente: P, Cs, Sn, F, Sr, Tl 2. Ordena los siguientes elementos

Más detalles

Tema 4. Tema 4: Clasificación Periódica de los elementos químicos. 4.1 Introducción

Tema 4. Tema 4: Clasificación Periódica de los elementos químicos. 4.1 Introducción Tema 4: Clasificación Periódica de los elementos químicos 4.1 Introducción 4. Descripción de la Tabla Periódica 4.3 Base electrónica de la clasificación periódica 4.4 Propiedades periódicas AJ1.13-1, PHH10,

Más detalles

UNIDAD II TABLA PERIÓDICA Y PROPIEDADES PERIÓDICAS

UNIDAD II TABLA PERIÓDICA Y PROPIEDADES PERIÓDICAS UNIDAD II TABLA PERIÓDICA Y PROPIEDADES PERIÓDICAS ORÍGENES DE LA TABLA PERIÓDICA. 1. El primero en descubrir una cierta regularidad entre los elementos químicos fue Johan W. Döbereiner (1780 1849), químico

Más detalles

Fuerzas intermoleculares y líquidos y sólidos

Fuerzas intermoleculares y líquidos y sólidos Fuerzas intermoleculares y líquidos y sólidos Capítulo 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Una fase es la parte homógenea de un sistema en contacto

Más detalles

Elemento químico: es el conjunto formado por átomos del mismo número atómico (Z)

Elemento químico: es el conjunto formado por átomos del mismo número atómico (Z) Tabla Periodica En 1913, al realizar experiencias de bombardeo de varios elementos químicos con rayos X, Moseley percibió que el comportamiento de cada elemento químico estaba relacionado con la cantidad

Más detalles

PCPI Ámbito Científico-Tecnológico LA MATERIA

PCPI Ámbito Científico-Tecnológico LA MATERIA LA MATERIA La materia es todo aquello que ocupa lugar en el espacio y tiene masa. Un sistema material es una porción de materia que, para su estudio, aislamos del resto. La materia está formada por partículas

Más detalles

FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H.

FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H. FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H. 2010 INTRODUCCION La tabla o sistema periódico, es el esquema de todos los elementos químicos dispuestos por

Más detalles

Clasificación de Electrolitos

Clasificación de Electrolitos 8/11/14 Conductancia eléctrica Lalboratorio de Química Física I QUIM 451 http://www.usm.maine.edu/chy/manuals/114/text/conduct.html Ileana Nieves Martínez agosto 14 1 Clasificación de Electrolitos Electrolitos

Más detalles

Tema 3: Ecuaciones químicas y concentraciones

Tema 3: Ecuaciones químicas y concentraciones Tema 3: Ecuaciones químicas y concentraciones Definición de disolución. Clases de disoluciones. Formas de expresar la concentración de una disolución. Proceso de dilución. Solubilidad. Diagramas de fases

Más detalles

TABLA PERIODICA. Ciencias naturales Ambientes Raymond Chang

TABLA PERIODICA. Ciencias naturales Ambientes Raymond Chang TABLA PERIODICA Ciencias naturales Ambientes Raymond Chang TABLA PERIODICA La organización más satisfactoria de los elementos fue obra de Dmitri Mendeleev, quien señalo que las propiedades, tanto físicas

Más detalles

Química I. Objetivos de aprendizaje. Tema 7 Enlaces. Al finalizar el tema serás capaz de:

Química I. Objetivos de aprendizaje. Tema 7 Enlaces. Al finalizar el tema serás capaz de: Química I Tema 7 Enlaces Objetivos de aprendizaje Al finalizar el tema serás capaz de: Describir las características y propiedades del enlace iónico así como citar ejemplos. Identificar enlaces covalentes

Más detalles

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.1 Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.2 PREGUNTA 1.1

Más detalles

FUERZAS INTERMOLECULARES FUERZAS INTERMOLECULARES ESTADO LÍQUIDOL. De qué dependen las propiedades físicas f sustancias?

FUERZAS INTERMOLECULARES FUERZAS INTERMOLECULARES ESTADO LÍQUIDOL. De qué dependen las propiedades físicas f sustancias? Cátedra de Introducción n a la Química Cs Naturales ESTADO LÍQUIDOL QUIDO-PROPIEDADES DE LOS LIQUIDOS De qué dependen las propiedades físicas f de las sustancias? Bibliografía: a: Química la Ciencia Central

Más detalles

Enlaces químicos II: Geometría molecular e hibridación de orbitales atómicos

Enlaces químicos II: Geometría molecular e hibridación de orbitales atómicos Enlaces químicos II: Geometría molecular e hibridación de orbitales atómicos Capítulo 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Modelo de repulsión de

Más detalles

27/04/2011. Tabla Periódica Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad.

27/04/2011. Tabla Periódica Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad. Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad Radio atómico (r): es la distancia desde el núcleo al último electrón del átomo En un período Sabemos que

Más detalles

Enlaces y Propiedades de Sólidos con esos Enlaces

Enlaces y Propiedades de Sólidos con esos Enlaces Enlaces y Propiedades de Sólidos con esos Enlaces PROPIEDADES DE CRISTALES METÁLICOS En estos cristales el enlace predominante es el metálico. 1 Conductividad eléctrica y térmica en materiales metálicos

Más detalles

En un grupo. En un período

En un grupo. En un período Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad Radio atómico (r): es la distancia desde el núcleo al último electrón del átomo Sabemos que r n Al aumentar

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

COMUNIDAD VALENCIANA (VALENCIA) / JUNIO 99. COU / BIOLOGÍA / BIOMOLÉCULAS / OPCIÓN A / EJERCICIO 1

COMUNIDAD VALENCIANA (VALENCIA) / JUNIO 99. COU / BIOLOGÍA / BIOMOLÉCULAS / OPCIÓN A / EJERCICIO 1 COMUNIDAD VALENCIANA (VALENCIA) / JUNIO 99. COU / BIOLOGÍA / BIOMOLÉCULAS / OPCIÓN A / EJERCICIO 1 1.- Propiedades del agua e importancia biológica. El agua es un componente esencial de todo ser vivo,

Más detalles

CONOCIMIENTOS PREVIOS

CONOCIMIENTOS PREVIOS Enlace Químico INDICE Introducción al enlace químico Conocimientos previos. Tormenta de ideas Por qué se unen los átomos? Concepto de Enlace químico Tipos de enlaces químicos E. iónico(definición, estructura,

Más detalles

LIQUIDOS. Propiedades:

LIQUIDOS. Propiedades: LIQUIDOS Los líquidos se caracterizan por su volumen fijo y forma variable. Las fuerzas intermoleculares son mayores que en los gases, pero al igual que en estos, sus partículas están en movimiento constante.

Más detalles

Finalmente, los autores agradecen a Humberto Bueno su ayuda en la realización de algunas de las figuras incluidas en este trabajo.

Finalmente, los autores agradecen a Humberto Bueno su ayuda en la realización de algunas de las figuras incluidas en este trabajo. INTRODUCCIÓN El aprendizaje de la Química constituye un reto al que se enfrentan cada año los, cada vez más escasos, estudiantes de 2 de bachillerato que eligen las opciones de Ciencias, Ciencias de la

Más detalles

Propiedades de las disoluciones

Propiedades de las disoluciones Tema 1: Disoluciones Propiedades de las disoluciones Factor de van t Hoff (i) El factor de van t Hoff (i) indica la medida del grado de disociación o de ionización de un soluto en agua. El factor de van

Más detalles

QUIMICA 1RO INGENIERIA INDUSTRIAL Y DE SISTEMAS EJECUTIVO PLUS INGENIERIO: LEONOR BARRAZA MARCELA RAMIREZ SANCHEZ TEMA: TABLA PERIODICA Y SUS

QUIMICA 1RO INGENIERIA INDUSTRIAL Y DE SISTEMAS EJECUTIVO PLUS INGENIERIO: LEONOR BARRAZA MARCELA RAMIREZ SANCHEZ TEMA: TABLA PERIODICA Y SUS QUIMICA 1RO INGENIERIA INDUSTRIAL Y DE SISTEMAS EJECUTIVO PLUS INGENIERIO: LEONOR BARRAZA MARCELA RAMIREZ SANCHEZ TEMA: TABLA PERIODICA Y SUS CARACTERISTICAS LOS ALCALINOS Explica que son aquellos metales

Más detalles

Física y Química 4º ESO Enlace químico página 1 de 6. Enlace químico

Física y Química 4º ESO Enlace químico página 1 de 6. Enlace químico Física y Química 4º ESO Enlace químico página 1 de 6 Concepto de enlace químico Enlace químico Generalmente los átomos libres tienen, por separado, una estabilidad menor que cuando están combinados. Todo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción A Reserva 1, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción B Septiembre,

Más detalles

Fuerzas Intermoleculares. Materia Condensada.

Fuerzas Intermoleculares. Materia Condensada. Fuerzas Intermoleculares. Materia Condensada. Contenidos Introducción. Tipos de fuerzas intermoleculares. Fuerzas ion-dipolo Fuerzas ion-dipolo inducido Fuerzas de van der Waals Enlace de hidrógeno Tipos

Más detalles

EJERCICIO DE EXAMEN DE FISICOQUÍMICA

EJERCICIO DE EXAMEN DE FISICOQUÍMICA EJERCICIO DE EXAMEN DE FISICOQUÍMICA 1) En un recipiente de volumen fijo, se tienen los gases ideales 1 y 2 a una presión total P. Si en estas condiciones se introduce un gas ideal manteniendo la presión

Más detalles

Observó propiedades químicas parecidas en los elementos de una fila

Observó propiedades químicas parecidas en los elementos de una fila Historia de la Tabla Periódica La primera clasificación consistía en una separación entre los metales y los no metales, o sea las propiedades físicas, y en total eran sólo como cincuenta elementos. La

Más detalles

Las que tienen relación con el de tamaño: LAS PROPIEDADES PERIÓDICAS. Se pueden separar en dos grupos: PERIODICIDAD

Las que tienen relación con el de tamaño: LAS PROPIEDADES PERIÓDICAS. Se pueden separar en dos grupos: PERIODICIDAD LAS PROPIEDADES PERIÓDICAS Se pueden separar en dos grupos: 1- Las que tienen relación con el de tamaño: Los radios atómicos y los radios iónicos o cristalinos. La densidad. (ρ) El punto de fusión y ebullición.

Más detalles

Propiedades Periódicas

Propiedades Periódicas Propiedades Periódicas Radio atómico Definición: La mitad de la distancia entre los centros de dos átomos vecinos. Estimar el tamaño de los átomos es un poco complicado debido a la naturaleza difusa de

Más detalles

Tema 2: Fuerzas intermoleculares

Tema 2: Fuerzas intermoleculares Tema 2: Fuerzas intermoleculares Fuerzas intermoleculares: ion dipolo, dipolo dipolo, dispersión de London y puentes de hidrógeno. Gases ideales y reales. Propiedades de los ĺıquidos. Presión de vapor.

Más detalles

Enlace químico: moléculas diatómicas

Enlace químico: moléculas diatómicas Química General e Inorgánica A Enlace químico: moléculas diatómicas Tema 5 Los electrones de valencia son los electrones del nivel exterior de un átomo. Los electrones de valencia son los electrones que

Más detalles

Capitulo 3: CLASIFICACION PERIODICA DE LOS ELEMENTOS

Capitulo 3: CLASIFICACION PERIODICA DE LOS ELEMENTOS Capitulo 3: CLASIFICACION PERIODICA DE LOS ELEMENTOS! Desarrollo de la tabla periódica! Capas de los electrones vs Tamaño de átomos! Energía de Ionización! Afinidades electrónicas! Metales, no metales

Más detalles

Ejercicios de Enlace Químico

Ejercicios de Enlace Químico Ejercicios de Enlace Químico 1) Utilizando la tabla periódica, indique cuál de los siguientes compuestos tiene mayor carácter iónico. a) LiF b) KF c) CsF d) CaF 2 e) BaF 2 2) Indique cuál(es) de la(s)

Más detalles

TEMA 8 SISTEMA PERIÓDICO Y ENLACES

TEMA 8 SISTEMA PERIÓDICO Y ENLACES TEMA 8 SISTEMA PERIÓDICO Y ENLACES 1. LA TABLA PERIÓDICA Elementos químicos son el conjunto de átomos que tienen en común su número atómico, Z. Hoy conocemos 111 elementos diferentes. Los elementos que

Más detalles

Repaso Química: Compuestos

Repaso Química: Compuestos Repaso Química: Compuestos Covalentes, formación, fórmulas I. Selección Múltiple. Escoge la mejor contestación para cada aseveración. 1 1. Los elementos en un compuesto covalente A. donan electrones. B.

Más detalles

CRISTALIZACIÓN Es una operación unitaria de gran importancia en la Industria Química, como método de purificación y de obtención de materiales cristal

CRISTALIZACIÓN Es una operación unitaria de gran importancia en la Industria Química, como método de purificación y de obtención de materiales cristal CRISTALIZACIÓN CRISTALIZACIÓN Es una operación unitaria de gran importancia en la Industria Química, como método de purificación y de obtención de materiales cristalinos que tienen múltiples aplicaciones.

Más detalles

PROGRAMA QUÍMICA 2015-2016

PROGRAMA QUÍMICA 2015-2016 PROGRAMA QUÍMICA 2015-2016 1. Conceptos comunes. Transformaciones físicas y químicas. Leyes ponderales de la química. Masas atómicas y masas moleculares. Número de Avogadro. Mol. Fórmula empírica y fórmula

Más detalles

Podemos definir la materia como todo aquello que ocupa un lugar en el espacio.

Podemos definir la materia como todo aquello que ocupa un lugar en el espacio. Podemos definir la materia como todo aquello que ocupa un lugar en el espacio. MATERIA está formada por moléculas, las cuales son la parte más pequeña que poseen todas las propiedades físicas y químicas

Más detalles

MODELOS ATÓMICOS Y PROPIEDADES PERIÓDICAS DE LOS ELEMENTOS. CUESTIONES.

MODELOS ATÓMICOS Y PROPIEDADES PERIÓDICAS DE LOS ELEMENTOS. CUESTIONES. MODELOS ATÓMICOS Y PROPIEDADES PERIÓDICAS DE LOS ELEMENTOS. CUESTIONES. E2A.S2013 Para los siguientes elementos Na, P, S y Cl, diga razonadamente cuál es: a.- El de menor energía de ionización. b.- El

Más detalles

Materia. Definición, propiedades, cambios de la materia y energía, clasificación de la materia.

Materia. Definición, propiedades, cambios de la materia y energía, clasificación de la materia. TEMA 02 Materia. Definición, propiedades, cambios de la materia y energía, clasificación de la materia. -.-.-.-.-.-.-.-.-..-..-..-..-..-..-.-..-..-..-..-..-.-..-.-..-.-.-.-..-.-...-..-.-..-.-..-.-..-.-..-.-..-.-..-.-..-.-

Más detalles

Tema Tema 18 (I) Estados de agregación de la materia El estado sólido Estructura cristalina

Tema Tema 18 (I) Estados de agregación de la materia El estado sólido Estructura cristalina Tema 18 (I) Estados de agregación de la materia 18.1 El estado sólido 18.2 Estructura cristalina 18.3 Tipos de cristales 18.4 El estado líquido 18.5 Propiedades particulares del agua 1 2 18.1 El estado

Más detalles

n = = 1; 1234; 4; l l= = 0; 1; m m = = 0; 0 ; + 0; s 12; 2; = s s s = ½ ½

n = = 1; 1234; 4; l l= = 0;  1; m m = = 0; 0 ;  + 0; s 12; 2; = s s s = ½ ½ ENLACE QUÍMICO 2012 6p 5d Energía 6s 4 f 5p 4d 5s 4s 4p 3d 3p 3s 2s 1s 2p nn == 4; 1; 2; 3; 0; 2; + 0; 2; ss = s= += +½ 1; ll == 1; 2; 3; 4; 0; m 2; 1; m == + 1; 0; 2; 1; s= +½ +½ ½ Enlaces según

Más detalles

QUÍMICA - 2º BACHILLERATO ENLACE QUÍMICO RESUMEN CONCEPTO DE ENLACE QUÍMICO

QUÍMICA - 2º BACHILLERATO ENLACE QUÍMICO RESUMEN CONCEPTO DE ENLACE QUÍMICO Javier Robledano Arillo Química 2º Bachillerato Enlace Químico - 1 QUÍMICA - 2º BACHILLERATO ENLACE QUÍMICO RESUMEN CONCEPTO DE ENLACE QUÍMICO 1. Enlace químico: conjunto de fuerzas que mantienen unidos

Más detalles

Enlaces y Propiedades de Compuestos con esos Enlaces

Enlaces y Propiedades de Compuestos con esos Enlaces Enlaces y Propiedades de Compuestos con esos Enlaces Parte 1. Enlaces Primarios Parte 2. Secundarios Parte 3 Propiedades de Cristales Parte 1. Electronegatividad y Enlaces Primarios 1 Compuestos de algunos

Más detalles

BLOQUE 1: MATERIALES UNIDAD 1: ESTRUCTURA INTERNA DE LOS MATERIALES

BLOQUE 1: MATERIALES UNIDAD 1: ESTRUCTURA INTERNA DE LOS MATERIALES UNIDAD 1: ESTRUCTURA INTERNA DE LOS MATERIALES UNIDAD 1: ESTRUCTURA INTERNA DE LOS MATERIALES CLASIFICACIÓN DE LA MATERIA UNIDAD 1: ESTRUCTURA INTERNA DE LOS MATERIALES CONSTITUCIÓN DE LA MATERIA: EL ÁTOMO

Más detalles