Geometría en una retícula
|
|
|
- Belén Parra Castro
- hace 9 años
- Vistas:
Transcripción
1 Geometría en una retícula Alumnos de ESTALMAT-Andalucía Pascual Jara X Concurso Ciencia en Acción. Granada-2009
2 Contenido Recubrimientos del plano con figuras reticulares Actividades en una retícula El teorema de Pick El Stomachion de Arquímedes Zapatero a tus zapatos Circunferencias en una retícula
3 Ejemplos de figuras reticulares y no reticulares Las figuras reticulares no tienen agujeros ni puntos singulares Estas figuras no son reticulares
4 Con qué tipo de figuras reticulares podemos recubrir el plano? Monomino 1 Dimino 1 Trimino 2 Cuatrimino 7 Pentamino Si Si Sí Si
5 Con algunos cuatriminos podemos recubrir algunas regiones rectangulares. Con otros no. Estudia estos cuatriminos Cuatrimino S Cuatrimino T Con el cuatrimino T puedes formar ciertos rectángulos. Y con el cuatrimino S?
6 Con los otros xyminos vamos a tener aún más diversidad; Incluso con alguno de ellos no podremos recubrir, no ya un rectángulo, sino que no podremos recubir el plano completo. Da un ejemplo de alguno de estos.
7 Un juego simple REGLAS: Se delimita una región cerrada de la retícula (por ejemplo un rectángulo) El primer jugador une por un segmento dos puntos de la retícula que estén contiguos en al misma fila o columna. El segundo jugador elige uno de los puntos extremos, y lo une con otro nuevo que esté contiguo en la misma fila o columna. Por turnos se repite este proceso. Pierde el jugador que no puede realizar movimientos
8 Análisis, desarrollo y objetivos 1. El primer objetivo que se persigue es el de diseñar un juego mediante reglas simples que no lleven a indeterminaciones. Es claro que las reglas que hemos elegido no son únicas ni son universalmente aceptadas. 2. Desarrollo de estrategias ganadoras o no perdedoras comenzando por el análisis de partidas desarrolladas en recintos pequeños. 3. Existen estrategias ganadoras en este juego?
9 Cómo medir el área de un polígono haciendo aritmética? Para calcular el área, A(P), del polígono de la figura basta contar el número de vértices en el borde, B(P), y en el interior, I(P). El área viene dada por la fórmula:
10 Aplicaciones Este resultado es de interés en ciertos contextos. Uno, que es particularmente curioso, es el que tiene que ver con la posibilidad o no de dibujar polígonos regulares en una retícula.
11 Cuadrados Un cuadrado se puede dibujar, y es posible hacerlo de varias formas, no es necesario que sus lados sigan las líneas de la retícula. Haz algunos de estos y calcula su área. Cuáles son los posibles valores de estas áreas?
12 Triángulos equiláteros y otros polígonos Vamos a hacer entrar a los números irracionales en escena. Es posible dibujar un triángulo equilátero? Qué ocurre en el caso de un pentágono regular? Qué polígonos se pueden dibujar en una retícula?
13 El Stomachion de Arquímedes Éste es un ejemplo de una división del cuadrado, similar al tangram. Sea atribuye a Arquímedes su introducción, quien al parece lo empleaba para estudiar problemas de combinatoria. Curiosidad histórica: Los trabajos de Arquímedes se perdieron, pero alguno debió de permanecer o ser copiado, ya que los árabes en la Edad Media trabajaron con un juego exactamente igual al Stomachion de Arquímedes. Para nosotros de interés ya que proporciona una ejemplo de cómo medir áreas utilizando el Teorema de Pick.
14 Determina el área de cada una de la piezas del Stomachion
15 Curiosamente todos son números enteros!
16 Al igual que el tangram podemos formar figuras, o reconstruir el cuadrado, a partir de las piezas del Stomachion.
17 He aquí la solución al hexágono ( puede ser el hexágono regular?)
18 Un problema de optimización Cómo poner los cordones a los zapatos para que la longitud del mismo sea mínima? He aquí varios ejemplos. Cuál de ellos es el que utiliza menos cordón?
19 Vamos a hacer un modelo para estudiar este problema a través de una retícula:
20 Comentarios: Ahora no tenemos que hacer los cálculos necesarios para medir la longitud exacta del cordón; en ese modelo nos basta medir el perímetro del polígono reticulado. Existe alguna relación entre el perímetro de un polígono y su área? Algo parecido a la Fórmula de Herón que todo el mundo conoce? Parece que la respuesta a esta última pregunta es NO. Sin embargo, es curioso que podemos utilizar el área para conseguir un perímetro mínimo.
21 Qué es importante en esta actividad? Es necesario definir claramente cuando un cordón está correctamente colocado. Solo el acordonado primero es correcto; cómo definirías cuando un acordonado es correcto? Una vez resuelto este problema se trata de dar respuesta a las siguientes preguntas: Hay un acordonado mínimo? Cuál es este mínimo? Cómo podemos probarlo?
22 Qué circunferencias podemos construir en una retícula? Primero comprobamos que, mediante traslaciones podemos solo considerar circunferencias centradas en el origen (0,0) del sistema de coordenadas, y que por lo tanto solo hay que determinar el radio de las mismas. r
23 Los problemas En esta situación hay problemas aún no resueltos, nosotros vamos a ver solo aquellos que podemos abordar. 1. Dado un posible radio r, determinar si la circunferencia de radio r tiene puntos en la retícula. 2. Dado un punto determinar los puntos de la retícula que están sobre la circunferencia. Éste último problema nos lleva, de forma natural, a estudiar la descomposición en primos y a trabajar con números complejos como un instrumento para representar puntos del plano. 3. Cuántos puntos hay en el interior de la circunferencia? Este problema nos conduce al estudio del número PI.
24 MUCHOS OTROS PROBLEMAS SE PUEDEN PLANTEAR EN UNA RETÍCULA; POR AHORA CONSIDRAMOS QUE ES SUFICIENTE. LA VENTAJA QUE PRESENTA LA APROXIMACIÓN LÚDICA QUE HEMOS DESARROLLADO ES QUE DE FORMA NATURAL SURGEN LOS CONCEPTOS Y RESULTADOS CLÁSICOS DE LA MATEMÁTICA, COMO POR EJEMPLO EL NÚMERO pi O EL TEOREMA DE PITÁGORAS. TAMBIÉN PERMITE MODELIZAR PROBLEMAS DE LA VIDA REAL, DESARROLLAR Y ESTUDIAR ESTRATEGIAS DE JUEGO Y FORZAR LA CREATIVIDAD DEL POSIBLE USUARIO. MUCHAS GRACIA POR SU AMABLE ATENCIÓN!
Zapatero a tus zapatos
Zapatero a tus zapatos P. Jara 10 de julio de 2009 1. Zapatero a tus zapatos Vamos a tratar un problema en el que el uso de una retícula plana nos va a dar una solución sencilla. Se trata de determinar
FORMAS Y FIGURAS EN TRAMAS I.- JUEGO DE LOS TRIÁNGULOS ESTALMAT CASTILLA Y LEÓN. Material necesario: Tres dados. Tabla de resultados.
I.- JUEGO DE LOS TRIÁNGULOS Material necesario: Tres dados. Tabla de resultados. Reglas del juego: Cada uno de los jugadores, por turno, tira los tres dados a la vez y comprueba si los números que le salen
UNIDAD IV ÁREAS DE FIGURAS PLANAS
UNIDAD IV ÁREAS DE FIGURAS PLANAS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica las áreas de figuras planas, volumen y superficie. CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro
1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:
1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula
Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.
Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,
AREAS DE FIGURAS PLANAS. Si en la figura siguiente cada cuadrado tuviese un centímetro de lado
AREAS DE FIGURAS PLANAS 1 CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro de una figura plana a la longitud del orde de la figura. Se llama área de una figura plana a la medida de
Actividades. Tangram chino. Alumno Fecha. Grupo CRISPELU. Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras.
Actividades Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras. Dibuja el contorno. Qué figura has formado? A qué se parece lo que has hecho? Dibujamos los contornos
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
La ecuación de segundo grado para resolver problemas.
La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades
POLÍGONOS 8.2.1 8.2.2
POLÍGONOS 8.2.1 8.2.2 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos, con particular atención a los polígonos regulares, que son equiláteros
15 EJERCICIOS BÁSICOS SOBRE POLÍGONOS REGULARES. 1. Cuál es el perímetro de un cuadrado de 15 metros de lado?. L=Longitud del lado. P=Perímetro.
Ejercicios Resueltos 1. Cuál es el perímetro de un cuadrado de 15 metros de lado?. L=Longitud del lado. P=Perímetro. L=15 m. P=15 + 15 + 15 + 15 = 60. Es decir 60 metros. O lo que es lo mismo: P=5 15 =
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 255 EJERCICIOS Construcciones y ejes de simetría 1 a) Halla el ángulo central de un octógono regular. b) Dibuja un octógono regular inscrito en una circunferencia de 5 cm de radio, construyendo
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =
www.matesxronda.net José A. Jiménez Nieto
NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta
Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II
Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de
Ejercicios de Polígonos Inscritos y Circunscritos
www.matebrunca.com Prof.Waldo Márquez González polígonos inscritos y circunscritos 1 Ejercicios de Polígonos Inscritos y Circunscritos TRES CASOS ESPECIALES 1 1. En la figura, el perímetro del triángulo
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas.
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. 1.- Escribe el nombre de las siguientes líneas. 2.- Qué ángulos forman dos rectas perpendiculares?
FIGURAS PLANAS. Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos:
FIGURAS PLANAS Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos: Y esto, una línea poligonal cerrada en la que se unen el extremo inicial del primer segmento
La circunferencia y el círculo
La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.
Ejercicios resueltos de geometría
Ejercicios resueltos de geometría ) Calcula el área de los siguientes triángulos (todas las medidas están en centímetros): a) b) c) d) 9 0 20 2) Calcula el perímetro y el área de los siguientes cuadriláteros(todas
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
Trigonometría, figuras planas
El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama
I.E.S VICENTE ALEIXANDRE BARBATE
1. Calcula el área y el perímetro de estas figuras:. Un sector circular mide 80 y tiene 10 de radio. Cuál es su área y su perímetro? 3. El área de la zona sombreada es de 35. Cuál es la superficie del
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES.
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.4.1. Áreas de polígonos. El área de un triángulo es Área(ABC) = 1 2 ch = 1 cb sin α 2 Si el triángulo
PRUEBA GEOMETRÍA CDI 2015
Portal Fuenterrebollo PRUEBA GEOMETRÍA CDI 015 1. Una cruz compuesta por cinco cuadrados iguales está inscrita en un cuadrado. Si el área de la cruz es de 5 cm. Cuál es, en cm, el área del cuadrado? 5
2º ESO CAPÍTULO 6: LONGITUDES Y ÁREAS
º ESO CAPÍTULO 6: LONGITUDES Y ÁREAS Revisores: Javier Rodrigo y Raquel Hernández 110 Longitudes y áreas. º de ESO Índice 1. TEOREMA DE PITÁGORAS. PERÍMETROS Y ÁREAS DE POLÍGONOS.1. ÁREA DEL CUADRADO Y
Unidad didáctica sobre lugares geométricos y figuras planas
Marzo de 2008, Número 13, páginas 129-143 ISSN: 1815-0640 Coordinado por Agustín Carrillo de Albornoz Unidad didáctica sobre lugares geométricos y figuras planas Introducción En esta unidad didáctica se
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
TEOREMA DE PITÁGORAS. SEMEJANZA. (http://profeblog.es/blog/luismiglesias)
Cuestiones 1. Qué polígonos son semejantes cuando tienen los lados proporcionales? a) Todos. c) Ninguno. b) Los cuadriláteros. d) Los triángulos. 2. La razón entre los perímetros de dos figuras semejantes
Ejercicios de geometría
Ejercicios de geometría Ejercicio nº 1.- Los lados de un triángulo miden 16 cm, 11 cm y 8 cm. Comprueba si es un triángulo rectángulo. Ejercicio nº 2.- Calcula el área y el perímetro de estas figuras:
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS En un triángulo rectángulo, los lados menores son los que forman el ángulo
SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS
SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos
3Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; ;, ) 9 7;,; ; ; π b) Alguno de ellos es entero? c) Ordénalos
1.- ÁNGULOS Y TRIÁNGULOS
OBJETIVOS MÍNIMOS DE LAS UNIDADES 10 y 11 1.- Usar el teorema de Pitágoras para determinar la medida desconocida en figuras geométricas en casos muy simples.- Determinar el área de figuras geométricas
POLÍGONOS. α3 α 4 α 5. α 7 α 6. 1. Definición. Sean: A 1, A 2,...A n, n distintos puntos del plano. Trazamos los segmentos: A 1A 2,
A 7 A 6 A 8 α 7 α 8 α A 5 α 6 A α α α α 5 A A A Un agricultor contrata a una compañía constructora para que realice el cálculo del área de un terreno que se encuentra en una explanada y que desea adquirir.
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón: 2 ) Calcula el perímetro y el área de esta figura: 3 ) Calcula el perímetro y el área de
A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un
ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
EJERCICIOS. ÁREAS Y VOLÚMENES.
EJERCICIOS. ÁREAS Y VOLÚMENES. Teorema de Tales 1. Sean los triángulos ABC, AB'C'.Calcula el valor desconocido x. 2. Dos triángulos semejantes tienen una superficie de 20cm 2 y 30cm 2 respectivamente.
Problemas + PÁGINA 231
PÁGINA 231 Pág. 1 Problemas + 14 Queremos alicatar una pared de 4,6 m 3 m con azulejos cuadrados de 20 cm de lado como este: a) Completa, en tu cuaderno, un mosaico de 7 7 azulejos. b) Averigua cuántos
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
Recuerda lo fundamental
11 Rectas y ángulos Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un
Perímetros Recordemos que el perímetro se define como la suma de las longitudes de los lados de un polígono
1 Biografía de Euclides UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL 11 TALLER Nº 4 PERÍMETROS Y ÁREAS Se estima que vivió entre los años 325 y 265 antes de Cristo. No está claro dónde nació,
EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente.
1. Supongamos una circunferencia de radio 90/ð cms. y un ángulo cuyo vértice coincida con el centro de la circunferencia. Halla: a) La longitud de arco de circunferencia que abarca un ángulo de 501. b)
Efa Moratalaz PCPI - Matemáticas GEOMETRÍA PLANA
GEOMETRÍA PLANA Geometría Plana Ficha 1 (Ejercicios Cuadrado) Área de un cuadrado: Perímetro de un cuadrado: 1) Halla el perímetro y el área de un cuadrado de 3 m de lado. 2) Halla el perímetro y el área
Ejercicios Resueltos
Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
Actividades de refuerzo
MATEMÁTICAS 1º SECUNDARIA CUADERNO DE ACTIVIDADES DE REFUERZO Nombre: Curso: Fecha de entrega: 1 Números naturales. Divisibilidad 1. Rodea con una circunferencia los múltiplos de 4, y con un cuadrado los
MOSAICOS COMPETENCIA
MOSAICOS COMPETENCIA Competencia matemática. Competencia en el conocimiento e interacción con el mundo físico. Competencia cultural y artística. Competencia en autonomía personal. OBJETIVOS NIVEL MATERIAL
Portal Fuenterrebollo Olimpiada Matemáticas Nivel III (3º 4º ESO) OLIMPIADA MATEMÁTICAS NIVEL III (3º - 4º ESO)
Portal Fuenterrebollo Olimpiada Matemáticas Nivel III (º º ESO) OLIMPIADA MATEMÁTICAS NIVEL III (º - º ESO) 6. Encima de un triángulo equilátero de lado cm, colocamos un círculo de cm de radio, haciendo
Proporcionalidad geométrica
TEMA 9: Proporcionalidad geométrica INTRODUCCIÓN: THALES DE MILETO Thales, filósofo, astrónomo y matemático griego nació en Mileto en el año 624 a. de C. y murió a la edad de 78 años durante la quincuagésima
a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo
Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor
Lección 17: Polígonos básicos
Lección 17: Polígonos básicos Un polígono es una figura cerrada formada por segmentos de recta que no se cruzan entre sí. Los segmentos se llaman lados del polígono. Los polígonos pueden ser convexos,
13 LONGITUDES Y ÁREAS
EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras., cm cm cm a) p,5 8 5 1 b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de 6 centímetros de lado. b) Un triángulo
1. EL TRIÁNGULO. PRIMERAS PROPIEDADES
http://www.cepamarm.es ACFGS - Matemáticas ESG - 11/2011 Pág. 1 de 11 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más
El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.
Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Manual de teoría: Geometría Matemática Bachillerato
Manual de teoría: Geometría Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Geometría: José Pablo Flores Zúñiga Página 1 Contenido: 3) Geometría 3.1 Círculo y Circunferencia 3. Polígonos
Lección 14: Volúmenes de algunos cuer pos
LECCIÓN 14 Lección 14: Volúmenes de algunos cuer pos Concepto de volumen En un cuerpo sólido podemos medir su volumen, lo que, como en el caso de las longitudes y las áreas significa ver cuántas veces
11 Cuerpos geométricos
89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo
Ángulos (páginas 506 509)
A NOMRE FECHA PERÍODO Ángulos (páginas 506 509) Las rectas que forman las artistas de una caja se juntan en un punto llamado vértice. Dos rectas que se juntan en un vértice forman un ángulo. Los ángulos
Polígonos, perímetros y áreas
Polígonos, perímetros y áreas Contenidos 1. Líneas poligonales. Definición y tipos. Polígono. 2. Triángulos. Elementos y clasificación. Construcción de triángulos. Rectas y puntos notables. 3. Cuadriláteros.
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO 1. POLÍGONOS: DEFINÍCIÓN, ELEMENTOS Y CLASIFICACIÓN. 2. POLÍGONOS REGULARES E IRREGULARES. 3. TRIÁNGULOS Y CUADRILÁTEROS: CLASIFICACIÓN. 4.
GEOMETRÍA DEL TRIÁNGULO
GEOMETRÍA DEL TRIÁNGULO ROCÍO MÉNDEZ MENDOZA 1.- Las Matemáticas en Educación Primaria Las Matemáticas son un conjunto de saberes asociados en una primera aproximación a los números y las formas, que van
XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid
9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número
XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 2009
XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 009 Problema 1: Veamos la siguiente figura: p q 4 El área del rectángulo es 0. Recordemos que el área
Semejanza. Teorema de Tales
Semejanza. Teorema de Tales Dos polígonos son semejantes si los ángulos correspondientes son iguales y los lados correspondientes son proporcionales. ABCDE A'B' C'D'E' si: Â = Â', Bˆ = Bˆ ', Ĉ = Ĉ', Dˆ
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
CUERPOS GEOMÉTRICOS. Clases de cuerpos geométricos. Los poliedros. Los poliedros regulares.
CUERPOS GEOMÉTRICOS. Se denominan cuerpos geométricos a aquellos elementos que, ya sean reales o ideales - que existen en la realidad o pueden concebirse mentalmente - ocupan un volumen en el espacio desarrollándose
Unidad didáctica 3. Cálculo de superficies y volúmenes
Unidad didáctica. Cálculo de superficies y volúmenes.1 Cálculo de superficies. En el presente apartado se estudiarán las superficies, perímetros y relaciones geométricas más importantes de las principales
Semejanza. Teorema de Pitágoras
Semejanza. Teorema de Pitágoras Contenidos 1. Teorema de Tales Enunciado y posición de Tales Aplicaciones 2. Semejanza de figuras Figuras semejantes Semejanza de triángulos Aplicaciones Relación entre
Guia PSU Matemática IV Medio PERÍMETROS, ÁREAS Y VOLÚMENES
PERÍMETROS, ÁREAS Y VOLÚMENES Antes de entrar al análisis de fórmulas referente al perímetro, área y volumen de figuras geométricas, repasemos estos temas y efectuemos ejercicios pertinentes Llamamos área
GUIÓN PEDAGÓGICO DEL TALLER. BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.
GUIÓN PEDAGÓGICO DEL TALLER TÍTULO: DIDÁCTICA DE LAS MATEMÁTICAS PARA EDUCACIÓN SECUNDARIA BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
Unidad 4: Resolución de triángulos.
Unidad 4: Resolución de triángulos 1 Unidad 4: Resolución de triángulos. 1.- Resolución de triángulos rectángulos. La resolución de triángulos consiste en calcular, a partir de los datos que nos proporcionan,
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
11-A-1/8. Nombre: Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser:
11-A-1/8 Geometría (polígonos) Líneas poligonales. Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser: Abierta Cerrada El trozo de plano que hay dentro de una línea poligonal cerrada,
Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica
EL PUNTO Geometría Básica El punto es la entidad geométrica más pequeña y finita. Se puede definir por intersección de 2 rectas. En un plano, se puede definir por medio de 2 coordenadas. En el espacio,
OLIMPÍADA JUVENIL DE MATEMÁTICA 2011 CANGURO MATEMÁTICO PRUEBA PRELIMINAR CUARTO AÑO
OLIMPÍADA JUVENIL DE MATEMÁTICA 2011 CANGURO MATEMÁTICO PRUEBA PRELIMINAR CUARTO AÑO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. En un cruce peatonal se alternan franjas blancas y negras, cada
Los poliedros y sus elementos
Los poliedros y sus elementos De las siguientes figuras, rodea las que sean poliedros o tengan forma de poliedro. Dibuja y escribe el nombre de tres objetos que tengan forma de poliedro. espuesta libre
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón: Calcula el perímetro y el área de esta figura: Calcula el perímetro y el área de esta figura:
Taller de Talento Matemático, 3 o y 4 o E.S.O.
de (si los griegos hubieran sabido papiroflexia) Taller de Talento Matemático, 3 o y 4 o E.S.O. 31 de Marzo de 2006 Modelos de Modelos de Modelos de Modelos de Las Reglas del juego: Axiomas de de de Alejandría.
d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1?
MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES Actividad 1 Prismas rectos En años anteriores hemos aprendido a calcular perímetros y áreas de figuras geométricas. Ahora veremos cómo se puede calcular
5. POLÍGONOS. 5.1 Definición y notación de polígonos
5. POLÍGONOS 5.1 Definición y notación de polígonos Un polígono es una figura geométrica limitada por segmentos de recta denominados lados, donde el extremo de un segmento es el origen del otro. E D Etimológicamente,
1. CIRCUITO. a) Irene se dio un paseo por este circuito y salió convertida en el 17. Qué itinerario siguió y qué número era al principio?
1. CIRCUITO Este circuito solo reconoce números naturales (0, 1, 2,,...). Cuando un número entra en este circuito se coloca en la casilla de Entrada y siguiendo las flechas va avanzando hasta llegar a
SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1.3
Capítulo 11 SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1. En este capítulo, los alumnos analizarán las figuras tridimensionales, que se conocen como sólidos. Revisarán cómo calcular el área de superficie
8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES
8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.
a) 8 triángulos equiláteros y 6 cuadrados. V=12, C=14, A=24. b) 8 triángulos equiláteros y 6 octógonos no regulares. V=24, C=14, A=36.
1. CUBO CORTADO a) Uniendo los puntos medios de las aristas de un cubo, como se ve en la figura, se obtiene una pirámide triangular por cada vértice. Quitando estas pirámides qué polígonos forman las caras
1.- 3.- Las áreas de dos polígonos semejantes son 121 cm 2 y 324 cm 2. Si el perímetro del primero es 44 cm, cuál es el perímetro del segundo?
olegio-laret 1.- 10m 7m 30m SMINRIO MTMÁTIS l dibujo presenta un método aproximado para medir la anchura de un río sin necesidad más que de tomar medidas en una orilla. Situándonos en el punto hemos realizado
Estándares de Contenido Sencillos de Entender Para Padres y Estudiantes: Matemáticas Estándares del Kindergarten de Matemáticas
Estándares de Contenido Sencillos de Entender Para Padres y Estudiantes: Matemáticas Estándares del Kindergarten de Matemáticas 1.0 Sentido Numérico Puedo comparar grupos y saber si son iguales, mayores
Unas cuantas propiedades de triángulos equiláteros y de sus hermanos mayores, los tetraedros regulares
Unas cuantas propiedades de triángulos equiláteros de sus hermanos maores, los tetraedros regulares (Con una breve introducción a las técnicas comunes en la demostraciones matemáticas) En la clase anterior,
1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 20 5. EJERCICIOS DE REFUERZO Página 36 1 1. ESQUEMA - RESUMEN Página 1.1. POLÍGONOS 2 1.2. TRIÁNGULOS
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
ESTALMAT-Andalucía Actividades 06/07
ACTIVIDAD 1. NÚMEROS RACIONALES esto? a) Efectúa las divisiones 1/3, 1/5, 1/7, 8/2. Son exactas? Se empiezan a repetir las cifras del cociente en algún momento? Cuándo sucede b) Sin efectuar 15/13, di
Created with novapdf Printer (www.novapdf.com)
GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.
