MOSAICOS COMPETENCIA
|
|
|
- Diego Juan Francisco Guzmán Robles
- hace 9 años
- Vistas:
Transcripción
1 MOSAICOS COMPETENCIA Competencia matemática. Competencia en el conocimiento e interacción con el mundo físico. Competencia cultural y artística. Competencia en autonomía personal. OBJETIVOS NIVEL MATERIAL Trabajar conceptos de geometría: polígonos, tipos de polígonos, ángulos, medidas, perímetros, áreas... Trabajar procedimientos geométricos. Estudio de movimientos: traslaciones, giros y simetrías. Primaria Eso - Cartulinas. - Tijeras. - Colores. - Regla y compás. DESARROLLO DE LA ACTIVIDAD En matemáticas un mosaico es un recubrimiento de todo el plano mediante figuras planas, llamadas teselas, que no se solapan ni dejan hueco entre ellas. La idea de mosaico viene asociada a la decoración hecha con piezas. Todas las culturas han utilizado traslaciones, giros y simetrías en sus manifestaciones artísticas. Han jugado casi siempre con sorprendentes resultados estéticos con los movimientos del plano. Si nos planteamos un método eficaz con el que poder construir mosaicos fácilmente nos encontraremos con que un modo sencillo de hacerlo es usando distintos polígonos. No tenemos más que pensar en las típicas baldosas que ocupan los espacios de nuestras cocinas o los suelos. Si el mosaico está formado por un único tipo de polígonos regulares iguales se dice que el mosaico es regular y si está formado por más de un tipo de polígono regular se dice que es semirregular. Cualquier polígono regular puede teselar el plano para crear un mosaico regular?. 1
2 Veamos que ocurre con el polígono regular más básico: un triángulo equilátero. Para teselar el plano será necesario que los ángulos que concurran sumen 360º. Como el ángulo interior de un triángulo mide 60º necesitaremos que confluyan 6 triángulos en un vértice común. Para que un cuadrado tesele el plano será necesario que concurran 4 figuras en un mismo vértice. 360º : 90º = 4 Vemos que el plano no se puede recubrir con pentágonos regulares puesto que 360º no es divisible por 108º que es la medida de un ángulo interior de un pentágono. 360º = 3 108º + 36º. Como en las figuras anteriores podemos deducir que necesitamos que concurran 3 hexágonos en un vértice para teselar el plano. 360º : 120º = 3 En general, tal como se ha mencionado anteriormente, para poder teselar el plano será necesario que los ángulos que concurran en un vértice sumen 360º para que no queden huecos y poder ocupar todo el espacio del mosaico. Existe algún polígono regular distinto a los ya estudiados que recubran el plano? La respuesta es clara, ya que debería tratarse de un ángulo mayor a 120º que divida a 360º y esto sólo lo cumple el ángulo de 180º. Nuestra conclusión es obvia: los únicos polígonos regulares que pueden formar un mosaico son el triángulo, el cuadrado y el hexágono. 2
3 Dibujos de mosaicos mediante técnicas de Escher: El famoso artista holandés M. C. Escher dibujó sorprendentes figuras que encajaban entre sí formando bellos mosaicos. Llega a parecer realmente arte de magia cómo lagartos, caballeros o pájaros solapan a la perfección cubriendo armoniosamente el plano. A continuación vamos a estudiar en parte estos métodos que, modificando los lados de algunos polígonos y aplicando movimientos, nos permiten obtener variados mosaicos. A) Por traslaciones: Sobre un paralelogramo o hexágono, se modifica (o "recorta") un lado y se traslada la modificación (o se añade lo recortado) hacia el lado opuesto: Podemos construir nuestras propias teselas utilizando este método 3
4 B) Mediante giros de 180º con el centro en el punto medio de un lado de un cuadrilátero, triángulo o hexágono. 4
5 OBSERVACIÓN: No es necesario hacer el mismo recorte en todos los lados. C) Mediante giros de 60º, 90º o 120º desde un vértice en algunos polígonos. Los vértices desde los que se gira no pueden ser contiguos. Esta tesela se construye mediante un giro de 60º: Si eres observador habrás notado que han aparecido 2 de las teselas más usadas por los árabes. 5
6 Los artesanos árabes eran unos verdaderos expertos en este tipo de trasformaciones. A continuación tienes algunos ejemplos tomados de los muros de la Alhambra. Otros artistas posteriores como M.C Escher se han inspirado en este monumento para crear maravillosos mosaicos de animales, plantas, personas etc. La cosa, por supuesto, no acaba aquí. Podemos continuar. El límite es nuestra propia imaginación. 6
7 Como creemos que eres un auténtico artista queremos que crees tus propias teselas y que construyas un pequeño mosaico con ellas, para ello puedes utilizar una trama cuadrada o una isométrica. Referencias: 7
8 Ejemplos de teselas: 8
9 9
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón: Calcula el perímetro y el área de esta figura: Calcula el perímetro y el área de esta figura:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón: 2 ) Calcula el perímetro y el área de esta figura: 3 ) Calcula el perímetro y el área de
Lección 17: Polígonos básicos
Lección 17: Polígonos básicos Un polígono es una figura cerrada formada por segmentos de recta que no se cruzan entre sí. Los segmentos se llaman lados del polígono. Los polígonos pueden ser convexos,
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
Actividades. Tangram chino. Alumno Fecha. Grupo CRISPELU. Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras.
Actividades Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras. Dibuja el contorno. Qué figura has formado? A qué se parece lo que has hecho? Dibujamos los contornos
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
Problemas + PÁGINA 231
PÁGINA 231 Pág. 1 Problemas + 14 Queremos alicatar una pared de 4,6 m 3 m con azulejos cuadrados de 20 cm de lado como este: a) Completa, en tu cuaderno, un mosaico de 7 7 azulejos. b) Averigua cuántos
4,4,4,4 [4,4] ó 4 4.
TESELADOS De acuerdo con el diccionario, la palabra tesela (del latín tessella) significa, "cada una de las piezas cúbicas de mármol, piedra, barro cocido, vidrio, etc., con que los antiguos formaban los
11-A-1/8. Nombre: Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser:
11-A-1/8 Geometría (polígonos) Líneas poligonales. Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser: Abierta Cerrada El trozo de plano que hay dentro de una línea poligonal cerrada,
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 255 EJERCICIOS Construcciones y ejes de simetría 1 a) Halla el ángulo central de un octógono regular. b) Dibuja un octógono regular inscrito en una circunferencia de 5 cm de radio, construyendo
FIGURAS PLANAS. Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos:
FIGURAS PLANAS Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos: Y esto, una línea poligonal cerrada en la que se unen el extremo inicial del primer segmento
FIGURAS GEOMÉTRICAS PLANAS
FIGURAS GEOMÉTRICAS PLANAS 1.- Es posible construir un triángulo equilátero y rectángulo? Razona tu respuesta. 2.- Dibuja un triángulo equilátero. Cómo son sus ángulos? 3.- Construye, con regla, compás
POLÍGONOS. α3 α 4 α 5. α 7 α 6. 1. Definición. Sean: A 1, A 2,...A n, n distintos puntos del plano. Trazamos los segmentos: A 1A 2,
A 7 A 6 A 8 α 7 α 8 α A 5 α 6 A α α α α 5 A A A Un agricultor contrata a una compañía constructora para que realice el cálculo del área de un terreno que se encuentra en una explanada y que desea adquirir.
5. POLÍGONOS. 5.1 Definición y notación de polígonos
5. POLÍGONOS 5.1 Definición y notación de polígonos Un polígono es una figura geométrica limitada por segmentos de recta denominados lados, donde el extremo de un segmento es el origen del otro. E D Etimológicamente,
B8 Polígonos regulares
Geometría plana B8 Polígonos regulares Polígonos equiláteros son los que tienen todos sus lados iguales, como el triángulo equilátero, el rombo y el cuadrado. Polígonos equiángulos son los que tienen todos
COMPETENCIA MATEMÁTICA
Servicio de Inspección Educativa 2 0 1 4 / 1 5 EVALUACIÓN DIAGNÓSTICA 2º DE EDUCACIÓN SECUNDARIA COMPETENCIA MATEMÁTICA Nombre y apellidos:... Centro escolar:... Grupo/Aula:... Localidad:... Fecha:...
Diana Acosta y Diana Rincón
OCTÁGONOS QUE TESELAN EL PLANO Diana Acosta y Diana Rincón Egresadas de la Licenciatura en Matemáticas, Universidad Pedagógica Nacional [email protected], [email protected] Esta comunicación breve
Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II
Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de
Trigonometría y problemas métricos
Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL *. Responde a las siguientes preguntas en tu cuaderno. a) Qué es una recta? Dibújala. Recta: sucesión infinita de puntos (no tiene principio ni fin). Las rectas
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
2. Construcción de polígonos regulares conociendo el radio
Polígonos regulares 1. Características Polígono regular es el que tiene sus lados iguales y sus ángulos iguales. Un polígono regular puede ser inscrito y circunscrito a una circunferencia cuyo centro es
Geometría en una retícula
Geometría en una retícula Alumnos de ESTALMAT-Andalucía Pascual Jara X Concurso Ciencia en Acción. Granada-2009 Contenido Recubrimientos del plano con figuras reticulares Actividades en una retícula El
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
Tema 1: Introducción. Primeros conceptos.
Tema 1: Introducción. Primeros conceptos. El papel de la geometría en las matemáticas de primaria: cuál es? cuál debería ser? En la puerta de la Academia de Platón se podía leer Que no entre aquí nadie
Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.
Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,
11 Cuerpos geométricos
89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo
GEOMETRÍA DEL TRIÁNGULO
GEOMETRÍA DEL TRIÁNGULO ROCÍO MÉNDEZ MENDOZA 1.- Las Matemáticas en Educación Primaria Las Matemáticas son un conjunto de saberes asociados en una primera aproximación a los números y las formas, que van
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =
Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.
Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos
Circunferencia y sus elementos
Liceo Tecnológico Enrique Kirberg Departamento de Matemáticas Compendio Verano 2011 Séptimo y Octavo año Básico Circunferencia y sus elementos Una circunferencia es una figura geométrica formada por todos
MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES
MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES OBJETIVOS Reconocer las unidades decimales: décima, centésima y milésima Leer y escribir números decimales. Diferenciar la parte entera y decimal de un
Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica
EL PUNTO Geometría Básica El punto es la entidad geométrica más pequeña y finita. Se puede definir por intersección de 2 rectas. En un plano, se puede definir por medio de 2 coordenadas. En el espacio,
Ángulos (páginas 506 509)
A NOMRE FECHA PERÍODO Ángulos (páginas 506 509) Las rectas que forman las artistas de una caja se juntan en un punto llamado vértice. Dos rectas que se juntan en un vértice forman un ángulo. Los ángulos
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
1.- ÁNGULOS Y TRIÁNGULOS
OBJETIVOS MÍNIMOS DE LAS UNIDADES 10 y 11 1.- Usar el teorema de Pitágoras para determinar la medida desconocida en figuras geométricas en casos muy simples.- Determinar el área de figuras geométricas
UNIDAD IV ÁREAS DE FIGURAS PLANAS
UNIDAD IV ÁREAS DE FIGURAS PLANAS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica las áreas de figuras planas, volumen y superficie. CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro
TEMA 2. DIBUJO TÉCNICO
TEMA 2. DIBUJO TÉCNICO 1.PARALELISMO Y PERPENDICULARIDAD Dos rectas son paralelas cuando mantienen siempre la misma distancia entre ellas y nunca llegan a unirse. Dos rectas son perpendiculares cuando
Unidad didáctica sobre lugares geométricos y figuras planas
Marzo de 2008, Número 13, páginas 129-143 ISSN: 1815-0640 Coordinado por Agustín Carrillo de Albornoz Unidad didáctica sobre lugares geométricos y figuras planas Introducción En esta unidad didáctica se
PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA
Geometría La palabra geometría tiene sus raíces en la composición de las palabras geo que significa tierra, y la palabra metrein que significa medida, por lo tanto en su significado más literal es medida
Tema 10. Geometría plana
Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...
Guía del estudiante. Observe cada una de las siguientes formas. Luego, marque con un 4 en el espacio correspondiente si es un polígono o no. 2. 4.
MATEMÁTICAS Grado Séptimo Bimestre II Semana 3 Número de clases 11-15 Clase 11 Tema: Polígonos Actividad 1 Observe cada una de las siguientes formas. Luego, marque con un 4 en el espacio correspondiente
I.E PBRO ANTONIO JOSÉ BERNAL LONDOÑO POR: JUAN GUILLERMO BUILES GÓMEZ BASE 4: POLÍGONOS EN GENERAL A. RECONOCIMIENTO DE POLÍGONOS Y SUS ELEMENTOS
I.E PBRO ANTONIO JOSÉ BERNAL LONDOÑO POR: JUAN GUILLERMO BUILES GÓMEZ BASE 4: POLÍGONOS EN GENERAL A. RECONOCIMIENTO DE POLÍGONOS Y SUS ELEMENTOS MATERIALES: FIGURAS GEOMÉTRICAS Y CUERPOS FÍSICOS PLANOS
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO 1. POLÍGONOS: DEFINÍCIÓN, ELEMENTOS Y CLASIFICACIÓN. 2. POLÍGONOS REGULARES E IRREGULARES. 3. TRIÁNGULOS Y CUADRILÁTEROS: CLASIFICACIÓN. 4.
1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 20 5. EJERCICIOS DE REFUERZO Página 36 1 1. ESQUEMA - RESUMEN Página 1.1. POLÍGONOS 2 1.2. TRIÁNGULOS
Ejercicios de geometría
Ejercicios de geometría Ejercicio nº 1.- Los lados de un triángulo miden 16 cm, 11 cm y 8 cm. Comprueba si es un triángulo rectángulo. Ejercicio nº 2.- Calcula el área y el perímetro de estas figuras:
Recuerda lo fundamental
11 Rectas y ángulos Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un
17. POLÍGONOS REGULARES
17. POLÍGONOS REGULARES 17.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.
Matemáticas 1º ESO. 1. Deltaedros y diedros. 2. Posiciones relativas de planos. 3. Desarrollos planos. 4. Poliedros regulares
5 Poliedros Matemáticas 1º ESO 1. Deltaedros y diedros 2. Posiciones relativas de planos 3. Desarrollos planos 4. Poliedros regulares 188 Poliedros 1. Deltaedros y diedros DELTAEDROS Material: Triángulos
El segmento, parte de una recta comprendida entre dos puntos. Mediatriz: recta perpendicular que corta un segmento en su punto medio.
CONTENIDOS 1º ESO A, B Y C. 2º EVALUACIÓN. Educación Plástica y visual. Pilar Martínez Carnicer. ELEMENTOS FUNDAMENTALES DE LA EXPRESIÓN PLÁSTICA 1. El punto, es el elemento de expresión plástica más simple
El dibujo G eométrico
El dibujo G eométrico Una definición y un poco de historia. Geometría. (Del lat. geometrĭa, y este del gr. γεωμετρία). 1. f. Estudio de las propiedades y de las medidas de las figuras en el plano o en
Poliedro cóncavo: es aquel que no cumple la propiedad anterior. Una recta puede cortarlo por más de dos puntos.
El sistema diédrico D13 El prisma Poliedros Poliedro es un cuerpo geométrico limitado por polígonos. Caras del poliedro son los polígonos que lo limitan. Vértices son los vértices de las caras. Aristas
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas.
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. 1.- Escribe el nombre de las siguientes líneas. 2.- Qué ángulos forman dos rectas perpendiculares?
CUERPOS GEOMÉTRICOS. Clases de cuerpos geométricos. Los poliedros. Los poliedros regulares.
CUERPOS GEOMÉTRICOS. Se denominan cuerpos geométricos a aquellos elementos que, ya sean reales o ideales - que existen en la realidad o pueden concebirse mentalmente - ocupan un volumen en el espacio desarrollándose
FORMAS Y FIGURAS EN TRAMAS I.- JUEGO DE LOS TRIÁNGULOS ESTALMAT CASTILLA Y LEÓN. Material necesario: Tres dados. Tabla de resultados.
I.- JUEGO DE LOS TRIÁNGULOS Material necesario: Tres dados. Tabla de resultados. Reglas del juego: Cada uno de los jugadores, por turno, tira los tres dados a la vez y comprueba si los números que le salen
D18 Poliedros regulares
El sistema diédrico D18 Poliedros regulares Clases de poliedros regulares convexos No pueden existir más de cinco clases de poliedros regulares convexos. Teniendo en cuenta que la suma de las caras de
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES.
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.4.1. Áreas de polígonos. El área de un triángulo es Área(ABC) = 1 2 ch = 1 cb sin α 2 Si el triángulo
a intersección de los semiplanos aa, bb y cc lo llamaremos el triángulo determinado por los puntos A, B y C y lo
apítulo 3 Triángulos Luego de las rectas y los ángulos, las figuras más sencillas en el plano son los triángulos, que pasamos a estudiar a continuación. Sean, y tres puntos no colineales en el plano, a
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
DIBUJO TÉCNICO II. Construcción de polígonos regulares a partir de su lado o del radio de la circunferencia circunscrita.
TEMA 4: POLÍGONOS DIBUJO TÉCNICO II Líneas y puntos notables de un triángulo: o o o o o Ortocentro y triángulo órtico. Baricentro. Incentro y circunferencia inscrita. Circuncentro y circunferencia circunscrita.
Ejercicios resueltos de geometría
Ejercicios resueltos de geometría ) Calcula el área de los siguientes triángulos (todas las medidas están en centímetros): a) b) c) d) 9 0 20 2) Calcula el perímetro y el área de los siguientes cuadriláteros(todas
Perímetros Recordemos que el perímetro se define como la suma de las longitudes de los lados de un polígono
1 Biografía de Euclides UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL 11 TALLER Nº 4 PERÍMETROS Y ÁREAS Se estima que vivió entre los años 325 y 265 antes de Cristo. No está claro dónde nació,
Dibujo Técnico Polígonos regulares
19. POLÍGONOS REGULARES 19.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.
EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente.
1. Supongamos una circunferencia de radio 90/ð cms. y un ángulo cuyo vértice coincida con el centro de la circunferencia. Halla: a) La longitud de arco de circunferencia que abarca un ángulo de 501. b)
Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.
Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
EVALUACIÓN Módulo 3 Matemática. Sexto año básico
EVLUIÓN Módulo 3 Matemática Sexto año básico Mi nombre Mi curso Nombre de mi escuela Fecha 2013 Instrucciones: Lee con atención el enunciado de las preguntas y haz un círculo a la letra con la respuesta
Ángulos (páginas 413 415)
NOMRE FECH PERÍODO Ángulos (páginas 413 415) Un ángulo está formado de dos rayos o lados, con un extremo o vértice. Los ángulos se miden en unidades llamadas grados. Los ángulos se clasifican según sus
GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 6. Preparado por: Héctor Muñoz
GUÍS DE TRJO Material de trabajo para los estudiantes UNIDD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo N 1
TESELAS. Alumno: Fecha
Llamamos mosaico o tesela al recubrimiento que hacemos en el plano mediante polígonos y que cumple dos condiciones: No deben superponerse los polígonos No deben dejar huecos. MOSAICOS REGULARES Fíjate
TEOREMA DE PITÁGORAS. SEMEJANZA. (http://profeblog.es/blog/luismiglesias)
Cuestiones 1. Qué polígonos son semejantes cuando tienen los lados proporcionales? a) Todos. c) Ninguno. b) Los cuadriláteros. d) Los triángulos. 2. La razón entre los perímetros de dos figuras semejantes
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
Liceo N 1 Javiera Carrera 8 años 2011
GUIA DE ESTUDIO : Cuerpos geométricos Prof. Juan Schuchhardt E. DEFINICIÓN: Los poliedros son aquellos cuerpos geométricos que están limitados por superficies planas y de contorno poligonal. Un poliedro
1 Indica cuál es el valor de los ángulo Â, Bˆ. en las siguientes figuras: a) b) 2 Calcula los ángulos dados por letras:
1 Indica cuál es el valor de los ángulo Â, Bˆ y Ĉ en las siguientes figuras: a) b) Calcula los ángulos dados por letras: 3 Calcula el valor del ángulo A. 4 Dados los ángulos los mismos. a 45 0 30.y b 6
A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C
8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
Profr. Efraín Soto Apolinar. Suma de ángulos
Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
Desarrollo de Poliedros Regulares: Generalidades. Ejercicios Resueltos. Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5
DESARROLLO DE POLIEDROS REGULARES UNIDAD IV: DESARROLLO DE SÓLIDOS En esta unidad se dibujarán las superficies de poliedros y cuerpos redondos modelos. Los temas de esta unidad son: sobre un plano para
1.- 3.- Las áreas de dos polígonos semejantes son 121 cm 2 y 324 cm 2. Si el perímetro del primero es 44 cm, cuál es el perímetro del segundo?
olegio-laret 1.- 10m 7m 30m SMINRIO MTMÁTIS l dibujo presenta un método aproximado para medir la anchura de un río sin necesidad más que de tomar medidas en una orilla. Situándonos en el punto hemos realizado
8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES
8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.
GUIÓN PEDAGÓGICO DEL TALLER. BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.
GUIÓN PEDAGÓGICO DEL TALLER TÍTULO: DIDÁCTICA DE LAS MATEMÁTICAS PARA EDUCACIÓN SECUNDARIA BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.
Polydrón. (Polígonos que se enganchan) José María Yáñez Sinovas. Ceip Vicente Aleixandre. Valladolid
Polydrón (Polígonos que se enganchan) José María Yáñez Sinovas Ceip Vicente Aleixandre Valladolid 1-Descripción y posibilidades didácticas Este juego se compone de piezas de plástico que se pueden engarzar
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014
014 015 Preparación del tercer examen de recuperación de MATEMÁTICAS DE º ESO PENDIENTES º ESO Tercer examen DEPARTAMENTO DE MATEMÁTICAS 1.- En un triángulo rectángulo, los catetos miden 5 y 1cm, respectivamente.
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 241 EJERCICIOS Clasificación. Propiedades 1 Observa el siguiente diagrama: cuadriláteros 4 rectángulos trapecios rombos 2 1 3 5 paralelogramos 6 Qué figura geométrica corresponde al recinto?
Área de paralelogramos, triángulos y trapecios (páginas 314 318)
NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de
Los poliedros y sus elementos
Los poliedros y sus elementos De las siguientes figuras, rodea las que sean poliedros o tengan forma de poliedro. Dibuja y escribe el nombre de tres objetos que tengan forma de poliedro. espuesta libre
ÁNGULOS EN LA CIRCUNFERENCIA
TEMA ÁNGULOS EN LA CIRCUNFERENCIA FECHA SIRVE PARA: Calcular la medida de un ángulo inscrito en una circunferencia conociendo la del ángulo central que abarca el mismo arco. NECESITAS: - Geoplano circular.
Ejercicios Resueltos
Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=
Unidad didáctica 3. Cálculo de superficies y volúmenes
Unidad didáctica. Cálculo de superficies y volúmenes.1 Cálculo de superficies. En el presente apartado se estudiarán las superficies, perímetros y relaciones geométricas más importantes de las principales
Relaciones entre rectas y ángulos (páginas 256 260)
A NMRE FECHA PERÍD Relaciones entre rectas y ángulos (páginas 256 260) Las rectas paralelas son rectas en un plano que nunca se intersecan. Si la recta p es paralela a la recta q, entonces escribe p q.
DEPARTAMENTO DE DIBUJO TRABAJOS A REALIZAR PARA APROBAR LA ASIGNATURA DE EDUCACIÓN PLÁSTICA Y VISUAL DE 1º DE ESO
DEPARTAMENTO DE DIBUJO TRABAJOS A REALIZAR PARA APROBAR LA ASIGNATURA DE EDUCACIÓN PLÁSTICA Y VISUAL DE 1º DE ESO 1- EL LENGUAJE VISUAL - Realizar un collage o fotomontaje a partir de fragmentos de fotografías
AREAS DE FIGURAS PLANAS. Si en la figura siguiente cada cuadrado tuviese un centímetro de lado
AREAS DE FIGURAS PLANAS 1 CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro de una figura plana a la longitud del orde de la figura. Se llama área de una figura plana a la medida de
PRUEBA GEOMETRÍA CDI 2015
Portal Fuenterrebollo PRUEBA GEOMETRÍA CDI 015 1. Una cruz compuesta por cinco cuadrados iguales está inscrita en un cuadrado. Si el área de la cruz es de 5 cm. Cuál es, en cm, el área del cuadrado? 5
TEMA 11 ESTADÍSTICA OBJETIVOS CRITERIOS DE EVALUACIÓN COMPETENCIAS BÁSICAS
TEMA 11 ESTADÍSTICA OBJETIVOS CRITERIOS DE EVALUACIÓN COMPETENCIAS BÁSICAS 1. Comprender el significado lenguaje estadístico. del 2. Identificar en una población los caracteres y variables estadísticas
7.1.2. Cuadriláteros cóncavos y convexos. 7.1.3. Cuadriláteros idénticos, iguales y semejantes.
7. CUADRILÁTEROS 7.1. CARACTERÍSTICAS GENERALES Un cuadrilátero ABCD es una figura plana limitada por cuatro lados y cuatro vértices. Puede ser cóncavo o convexo, inscriptible o circunscriptible. La denominación
