Estructuras de datos. Estructuras de datos
|
|
|
- María Ángeles Rivas Cabrera
- hace 9 años
- Vistas:
Transcripción
1 Un arbol es un conjunto de nodos que cumplen con las relaciones padre, hijo y hermano. Llamamos hijos de un nodo a todos los nodos que podemos llegar directamente por medio de un apuntador hacia ellos y descendencia a todos los que pudieramos llegar a traves de los hijos y su propia descendencia. Llamamos padre al nodo del cual proviene el nodo hijo. Existe un nodo que no tiene padre y le llamamos raiz del arbol. Llamamos hermanos a todos los nodos que tienen el mismo padre. Llamamos hoja al nodo que no tiene hijos. Podemos definir un árbol de manera recursiva diciendo que un árbol sin nodos esta vacío. Un arbol es un nodo llamado raiz cuyos hijos son tambien arboles(vacios o no). Notemos que una lista es un arbol cuyos nodos solo tienen un hijo. Un arbol binario es aquel cuyos nodos pueden tener a lo más dos hijos. 1
2 Un arbol cuyos nodos tienen 0 o 2 hijos se llama estrictamente binario. Si algún nodo tiene un solo hijo ya no lo es. Llamamos nivel al numero de apuntadores que se tienen que recorrer para llegar a un nodo a partir la raiz, asi el nodo raiz esta en el nivel 0 y sus hijos en el nivel 1. La profundidad de un árbol es igual al mayor nivel de sus hojas Un árbol estrictamente binario cuyas hojas estan todas en el mismo nivel se llama arbol binario completo. Un arbol estrictamente binario cuyas hojas estan a lo más en dos niveles diferentes se llama arbol casi completo y se dice que el arbol esta balanceado. Los arboles binarios son muy importantes en las operaciones de busqueda y para ello deben mantenerse balanceados. 2
3 raiz El nodo 1 es el nodo raiz. Los nodos 2 y 3 son el hijo izquierdo y el hijo derecho del nodo raiz. Los nodos 4, 5, 6 y 7 son las hojas del arbol. El padre del nodo 5 es 2 y del nodo 7 es 3. Los nodos 2 y 3 son hermanos. La profundidad del arbol es 2. El arbol de la lamina anterior tambien es un arbol estrictamente binario y ademas completo. Para mayores ejemplos de arboles binarios y su clasificación consultar el libro de Tenenbaum en el capítulo de arboles. 3
4 Para implementar un arbol binario es necesario crear primero una clase Nodo_Arbol capaz de almacenar cualquier dato y que tenga dos apuntadores a los hijos izquierdo y derecho. template <class T> class Nodo_Arbol: public Nodo<T>{ public: Nodo_Arbol(T); T GetDato(){ return Nodo<T>::GetDato(); Nodo_Arbol* GetDer(){ return (Nodo_Arbol *)GetSiguiente();//cast de Nodo * a Nodo_Arbol * void SetDer(Nodo_Arbol *d){setsiguiente((nodo<t> *)d);//cast de Nodo_Arbol * a Nodo * Nodo_Arbol* GetIzq(){ return izq; void SetIzq(Nodo_Arbol *d){izq = d; private: Nodo_Arbol *izq; ; template <class T> Nodo_Arbol<T>::Nodo_Arbol(T x): Nodo<T>(x){ //manda a llamar al constructor de Nodo izq = NULL; La implementación de Nodo_Arbol usa herencia y hereda las caracteristicas de Nodo, es decir usa las propiedades y la interfaz de la clase Nodo que se uso para crear Listas. Para tener una nomenclatura consistente se renombro el apuntador siguiente para convertirlo en der, y se añadio el apuntador al nodo izq. Para ello fue necesario hacer conversiones de tipos o cast. Estas conversiones deben manejarse con cuidado para evitar referencias erroneas a la memoria. 4
5 La otra opción es crear la clase Nodo_Arbol desde cero como se explico en clase. Es decir se crea una clase que contenga espacio para almacenar un dato y los apuntadores der e izq hacia nodos del arbol. La interfaz resultaria muy parecida a la de los nodos de la clase Lista. Para evitar la conversión entre objetos de un tipo a otro puede llegar a preferirse este metodo, sobre todo tomando en cuenta la simplicidad de la clase Nodo_Arbol. Ahora podemos pasar a analizar las operaciones que se pueden hacer con un árbol. Inserta(ELEMENTO x, Nodo_Arbol t) inserta el elemento x en el arbol t. La regla es que todos los nodos se insertan como hojas, no puede haber nodos repetidos y todos los descendientes izquierdos de un nodo son menores a el y los derechos son mayores a ese mismo nodo. A un arbol de este tipo le llamamos arbol de busqueda binaria. 5
6 Anula(Nodo_Arbol *t) convierte el arbol t en un arbol vacío. El proceso de eliminación comienza en las hojas. Recorrer_en_orden(Nodo_Arbol *t) recorre los nodos del arbol de acuerdo a la siguiente regla recursiva: Recorrer_en_orden(SUBARBOL_IZQ); Raiz; Recorrer_en_orden(SUBARBOL_DER); Recorrer_en_preorden(Nodo_Arbol *t) recorre los nodos del arbol de acuerdo a la siguiente regla recursiva: Raiz; Recorrer_en_preorden(SUBARBOL_IZQ); Recorrer_en_preorden(SUBARBOL_DER); Recorrer_en_postorden(Nodo_Arbol *t) recorre los nodos del arbol de acuerdo a la siguiente regla recursiva: Recorrer_en_postorden(SUBARBOL_IZQ); Recorrer_en_postorden(SUBARBOL_DER); Raiz; 6
7 ELEMENTO Get_Dato(Nodo_Arbol *nd) devuelve el dato almacenado en el nodo nd. Nodo_Arbol *GetIzq(Nodo_Arbol *nd) devuelve un apuntador al hijo izquierdo del nodo nd. Nodo_Arbol *GetDer(Nodo_Arbol *nd) devuelve un apuntador al hijo derecho del nodo nd. BOOL SetDer(Nodo_Arbol *nd, ELEMENTO x) devuelve verdadero si pudo insertar un nuevo nodo conteniendo a x como hijo derecho del nodo nd. BOOL SetDer(Nodo_Arbol *nd, ELEMENTO x) igual que SetDer pero como hijo izquierdo del nodo nd. Nodo_Arbol *Padre(Nodo_Arbol *nd) devuelve un apuntador al padre del nodo nd. Nodo_Arbol *Hermano(Nodo_Arbol *nd) devuelve un apuntador al hermano del nodo nd. BOOL EsIzq(Nodo_Arbol *nd) devuelve verdadero si el nodo nd es hijo izquierdo. BOOL EsDer(Nodo_Arbol *nd) devuelve verdadero si el nodo nd es hijo derecho. BOOL EsHoja(Nodo_Arbol *nd) devuelve verdadero si el nodo nd es hoja. 7
8 La siguiente secuencia de inserciones generara el arbol de la siguiente figura. 6, 3, 9, 10, 5, 7, 2. aux raiz El recorrido en orden del mismo seria: 2, 3, 5, 6, 7, 9, 10. El recorrido en preorden seria: 6, 3, 2, 5, 9, 7, 10. El recorrido en postorden seria: 2, 5, 3, 7, 10, 9, 6. Una llamada a Get_Dato(aux) devolveria 3. Una llamada a Padre(aux) devolveria un apuntador al nodo raiz. Una llamada a Hermano(aux) devolveria un apuntador al nodo que contiene al 9. 8
9 Un procedimiento inserta quedaria como sigue: template <class T> BOOL Arbol<T>::Inserta2(T x, Nodo_Arbol<T> *ptr){ if(ptr == NULL){//Arbol vacio raiz = creanodo(x); return VERDADERO; else{//arbol no vacio if(x > ptr->getdato())//el dato es mayor que el de el nodo actual if(ptr->getder() == NULL){//hijo derecho esta vacio ptr->setder(creanodo(x)); return VERDADERO; else//el hijo derecho no esta vacio return Inserta2(x, ptr->getder()); if(x < ptr->getdato())//el dato es menor que el de el nodo actual if(ptr->getizq() == NULL){//hijo izquierdo esta vacio ptr->setizq(creanodo(x)); return VERDADERO; else//hijo izquierdo no esta vacio return FALSO; return Inserta2(x, ptr->getizq()); Un procedimiento Anula quedaria como sigue: template <class T> void Arbol<T>::Anula(){ Nodo_Arbol<T> *aux1, *aux2; while(raiz!= NULL){//mientras el arbol no este vacio aux1 = raiz;//aux1 seria el nodo a eliminar while(!eshoja(aux1)){//minetras aux1 no sea una hoja aux2 = aux1;//aux2 es el padre de aux1 if (aux1->getizq()!= NULL)//buscar hoja izquierda aux1 = aux1->getizq(); else77buscar hoja derecha aux1 = aux1->getder(); if (aux1 == raiz){//caso especial, la raiz no tiene padrre delete aux1; raiz = NULL; break; if(aux2->getizq() == aux1)// es aux1 hijo izquierdo? aux2->setizq(null);//apuntar hijo izquierdo a NULL else aux2->setder(null);//apuntar hijo derecho a NULL delete aux1;//eliminar aux1 9
Estructura de datos y de la información Boletín de problemas - Tema 10
Estructura de datos y de la información Boletín de problemas - Tema 10 1. En el caso de que sea posible, dar un ejemplo de los siguientes puntos. Si no, explicar por qué no lo es. Considerar un valor genérico
Árboles. Árboles. Árboles binarios de búsqueda. Árboles. Inserción en un árbol. Árbol binario de búsqueda
Árboles Árboles Mario Medina C. [email protected] Árboles Estructura recursiva Árbol vacío 0 o más árboles hijos Altura ilimitada Árbol binario A lo más dos hijos: izquierdo y derecho Árboles Árboles
Estructura de Datos. Temario Unidad VI. Árboles Árboles Binarios
Estructura de Datos Árboles Árboles Binarios Temario Unidad VI 6.1 Definición y operaciones 6.2 Implementación 6.3 Recorrido en Árboles Binarios 6.4 Árboles AVL y su implementación 6.5 Árboles n-arios
El método main de la clase PruebaArbol, empieza creando una instancia de un objeto Árbol vacío y asigna su referencia a la variable árbol
Árboles Las listas enlazadas, pilas y colas son estructuras de datos lineales (es decir, secuencias). Un árbol es una estructura de datos bidimensional no lineal, con propiedades especiales. Los nodos
Temario. Tema 5. Estructuras de Datos no Lineales. 5.1 Árboles Binarios 5.2 Árboles n-arios
Temario 5.1 Árboles Binarios 5.2 Árboles n-arios Especificación Utilización Representación Enlazada 5.3 Árboles Binarios de Búsqueda 5.4 Árboles Parcialmente Ordenados 1 Árbol n-ario: O bien es el conjunto
TEMA 3. Árboles. Objetivos. Contenidos. Bibliografía. Básica
TEMA 3. Árboles Objetivos En este tema se estudia una de las estructuras de datos no lineal más importante en computación, el árbol. Comenzaremos introduciendo la terminología asociada a los árboles y
A) PREORDEN B) INORDEN C) POSTORDEN D) NIVELES
Capitulo 5. Arboles 1. Al recorrer el siguiente árbol en se visitan más nodos para llegar al número 38. Justifique su respuesta mostrando cada uno de los recorridos. Tipo de Recorrido Recorrido A) PREORDEN
Programación II Árboles binarios de búsqueda (ABB)
Programación II Árboles binarios de búsqueda (ABB) Definición Un árbol binario de búsqueda(abb) a es una estructura de datos de tipo árbol binario en el que para todos sus nodos, el hijo izquierdo, si
Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez
Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,
INGENIERIA DE SISTEMAS 19 ESTRUCTURAS DE DATOS (Listas simples) ARBOLES
INGENIERIA DE SISTEMAS 19 ESTRUCTURAS DE DATOS (Listas simples) ARBOLES Un árbol es una estructura no lineal en la que cada nodo puede apuntar a uno o varios nodos. También se suele dar una definición
Estructura de Datos. Árboles Binarios de Búsqueda ABB. Primer Semestre, 2010
Estructura de Datos Árboles Binarios de Búsqueda ABB Prof.: Mauricio Solar Prof.: Lorna Figueroa Primer Semestre, 20 1 Arboles de Búsqueda Binaria El árbol binario de búsqueda (ABB) toma su nombre del
Estructura de Datos Tema 6. Árboles. Contenido 14/06/2018
Estructura de Datos Tema 6. Árboles Presenta: David Martínez Torres Universidad Tecnológica de la Mixteca Instituto de Computación Oficina No. [email protected] Contenido 1. Definición y operaciones
Tema 09: TAD Árbol binario
Tema 09: TAD Árbol binario M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Introducción El árbol binario
Árboles Binarios Ordenados Árboles AVL
Árboles Binarios Ordenados Árboles AVL Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Diseño e Implementación TAD Árbol Representación de árboles
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
Introducción Un árbol es una estructura no lineal en la que cada nodo puede apuntar a uno o varios nodos. A B C D E F G H I J K Clasificación con respecto a su relación: Nodo hijo: cualquiera de los nodos
Árbol ABB equilibrado. Lección: Árboles. Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58
Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58 Índice 1 Árbol de búsqueda 2 2/ 58 Índice Árbol de búsqueda 1 Árbol de búsqueda 2 3/ 58 Árbol de búsqueda Es
Estructura de Datos. Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos)
Ing. En Sistemas Computacionales Estructura de Datos Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos) Ing. Néstor Alejandro Carrillo López Arboles Un árbol es un conjunto finito
Estructura de Datos Unidad 6: ARBOLES
Estructura de Datos Unidad 6: ARBOLES A. CONCEPTO DE ARBOL B. TIPOS DE ARBOL C. ARBOL BINARIO D. IMPLEMENTACION DE UN ARBOL BINARIO E. PROYECTO Introducción En ciencias de la informática, un árbol es una
ÁRBOL BINARIO. T der. Árbol binario homogéneo es aquel cuyos nodos tienen grado 0 ó 2(no hay ninguno de grado 1).
ÁRBOL BINARIO - Un árbol binario puede definirse como un árbol que en cada nodo puede tener como mucho grado 2, es decir, a lo más 2 hijos. Los hijos suelen denominarse hijo a la izquierda e hijo a la
ESTRUCTURAS DE DATOS Y ALGORITMOS
ESTRUCTURAS DE DATOS Y ALGORITMOS CURSO 2009 PRÁCTICO 8 Nota: al igual que en los prácticos 6 y 7, en los problemas que siguen se usarán los tipos lista y árbol binario, como tipos abstractos, cada uno
Estructuras de Datos Clase 14 Árboles binarios de búsqueda
Estructuras de Datos Clase 14 Árboles binarios de búsqueda Dr. Sergio A. Gómez http://cs.uns.edu.ar/~sag Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Bahía Blanca,
Tema Árboles generales. 9.2 Árboles binarios 9.3 Árboles de búsqueda
Informática Haskell Matemáticas Curso 2004-2005 Pepe Gallardo Universidad de Málaga Tema 9. Árboles 9.1 Árboles generales 9.2 Árboles binarios 9.3 Árboles de búsqueda 9.1 Árboles generales Un árbol es
1. Leer el primer número y almacenarlo en la raíz del árbol. 2. Repetir hasta encontrar un duplicado o el árbol esté vacío.
Capítulo 6 Árboles 6.1 Introducción Esta no es una estructura lineal, deben conocerlos de matemáticas finitas. Ejemplos: la tabla de contenido de un libro, los que se hacen en los torneos, los arboles
Estructuras de datos utilizando JAVA
1 Sistemas Expertos e Inteligencia Artificial / Guía II / Ciclo 01-2017 Centro de Investigación y Transferencia de Tecnología Estructuras de datos utilizando JAVA Facultad: Ingeniería Escuela: Computación
Programación de sistemas Árboles
Programación de sistemas Árboles Departamento de Ingeniería Telemática 1 Contenidos Concepto de árbol Terminología Implementación Casos especiales Árboles binarios de búsqueda Montículos (heaps) 2 Concepto
Programación Estructuras Arborescentes
Programación 2 4 - Estructuras Arborescentes 1 Definición La recursión puede ser utilizada para la definición de estructuras realmente sofisticadas. Una estructura árbol (árbol general o finitario) con
Árboles. Cursos Propedéuticos 2015. Dr. René Cumplido M. en C. Luis Rodríguez Flores
Árboles Cursos Propedéuticos 2015 Dr. René Cumplido M. en C. Luis Rodríguez Flores Contenido de la sección Introducción Árbol genérico Definición y representación Árboles binarios Definición, implementación,
Ejercicio 2 Considere la representación para Lista de Naturales y Árbol Binario de Naturales de la Figura 1.
Ejercicios Resueltos del Práctico 4 Ejercicio 2 Considere la representación para Lista de Naturales y Árbol Binario de Naturales de la Figura 1. 1 2 struct NodoLista { 3 int elem ; 4 NodoLista * sig ;
PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS
INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR ESIME CULHUACAN NOMBRE ALUMNO: 1. Objetivo PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS El alumno comprenderá y aplicara
Programación 2 Práctico 9 - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario
Práctico - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario Objetivos Trabajar con los tipos abstractos de datos Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario. Desarrollar y analizar
Programación II Arboles Binarios(AB)
Programación II Arboles Binarios(AB) Definición Un árbol consta de un conjunto finito de elementos, denominados nodos, y un conjunto finito de líneas dirigidas, denominadas enlaces, que conectan los nodos.
El TAD Árbol. El TAD Árbol
Objetivos! Presentar el árbol como estructura de datos jerárquica! Estudiar diferentes variantes de árboles, tanto en su especificación como en su implementación Contenidos 3.1 Concepto, definiciones y
Arboles Binarios de Búsqueda en C++
Arboles Binarios de Búsqueda en C++ por CCG/Mayo-2014 Tema de Arboles Binarios de Búsqueda, como un poco de teoría para su mejor entendimiento seguidamente mostrare la implementación en lenguaje de programación
Para la resolución de los ejercicios, se dispone de una implementación de árbol binario a través de la clase BinTree con la siguiente especificación.
Para la resolución de los ejercicios, se dispone de una implementación de árbol binario a través de la clase BinTree con la siguiente especificación. public class BinTree { public BTNode root; // la raiz
Árboles binarios. Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile
Árboles binarios Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile [email protected] Árbol: definición v Árbol (del latín arbor oris): Planta perenne,
Sólo una opción es correcta en cada pregunta. Cada respuesta correcta suma 1 4. puntos. Cada respuesta incorrecta resta 1 12
Programación de Sistemas Grados en Ingeniería de Sistemas Audiovisuales, Ingeniería de Sistemas de Comunicaciones, Ingeniería en Sistemas de Telecomunicación e Ingeniería Telemática Leganés, de julio de
Definición recursiva de los árboles
Árboles Un árbol es una estructura de datos jerarquizada ada dato reside en un nodo, y existen relaciones de parentesco entre nodos: padre, hijo, hermano, ascendiente, descendiente, etc. Ejemplo: apítulos
Tema 10: Árbol binario de búsqueda
Tema 10: Árbol binario de búsqueda M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Árbol binario de
NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS
1 NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS Árboles Binarios y Árboles Binarios Ordenados 2 Contenido Árboles binarios Iteradores Árboles binarios ordenados 3 Árboles binarios Algunas definiciones para
IMPLEMENTACIÓN DE PILAS CON LISTAS EN C++
IMPLEMENTACIÓN DE PILAS CON LISTAS EN C++ Fichero nodo.h #ifndef NODO_H #define NODO_H const int cantidad_nodos = 10; class Nodo private: string dato; Nodo* siguiente; public: Nodo(); void setdato(string
Tema 6: Estructuras de datos recursivas
Tema 6: Estructuras de datos recursivas Índice 1 Listas jerárquicas...2 2 Árboles binarios... 4 3 Árboles genéricos...7 4 Referencias...10 1. Listas jerárquicas Las listas tienen la propiedad de la clausura
Introducción a Árboles Árboles Binarios
Introducción a Árboles Árboles Binarios Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Introducción a Árboles Estructuras hasta ahora Estructuras
DEFINICION. Ing. M.Sc. Fulbia Torres Asignatura: Estructuras de Datos Barquisimeto 2006
ARBOLES ESTRUCTURAS DE DATOS 2006 DEFINICION Un árbol (tree) es un conjunto finito de nodos. Es una estructura jerárquica aplicable sobre una colección de elementos u objetos llamados nodos; uno de los
Algoritmos y Programación II Curso 2006
Arboles: Un árbol es una colección de elementos, llamados nodos, uno de los cuales se distingue con el nombre de raíz. Los nodos mantienen entre ellos una relación que define una estructura jerárquica
324 MR Versión 1 Prueba Integral 1/3 Semana 10 Lapso 2015-2
324 MR Versión 1 Prueba Integral 1/3 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Computación II CÓDIGO: 324 MOMENTO: Prueba Integral FECHA DE APLICACIÓN:
Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS
Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS TEMA 4. - La Estructura de datos Árbol 4.1. Árboles, definiciones 4.2 Árboles binarios y su representación 4.3 Operaciones básicas de un árbol binario
Estructura de Datos. Índice
TEMA 5. ÁRBOLES (I) 1 Índice 1. Concepto de árbol 2. Árboles binarios 1. Especificación informal del TAD árbol binario 2. Implementación del TAD árbol binario 3. Recorrido de un árbol binario 4. Árboles
Tema: ARBOLES. Instructor: MC. Gerardo Gálvez Gámez Junio de 2018 INTRODUCCIÓN:
UNIVERSIDAD AUTÓNOMA DE SINALOA Facultad de Informática uliacán Tema: AROLES Instructor: M. Gerardo Gálvez Gámez Junio de 2018 INTRODUIÓN: Hasta el momento solo se han estudiado estructuras lineales y
Definición de árbol. Árboles
ÁRBOLES Árboles * Definición de árbol * Formas de representación * Nomenclatura sobre árboles * Árboles binarios * Declaración de árbol binario * Recorridos sobre árboles binarios * Construcción de un
Estructuras de Datos II
Estructuras de Datos II Segundo Parcial Los árboles B+ son estructuras de datos jerárquicas que se utilizan para almacenar y manipular datos ordenados de forma muy eficiente, ya que por su estructura y
Estructura de Datos. Temario Unidad VI. Árboles Árboles AVL
Estructura de Datos Árboles Árboles VL Temario Unidad VI 6.1 Definición operaciones 6.2 Implementación 6.3 Recorrido en Árboles inarios 6.4 Árboles VL su implementación 6.5 Árboles n-arios 6.6 Árboles
Tema 7: Árboles ESTRUCTURAS DE DATOS 1
Tema 7: Árboles ESTRUCTURAS DE DATOS 1 Contenidos Definiciones Conceptos de Árboles Binarios Especificación algebraica Implementaciones Programación con Árboles Binarios Árboles Binarios de Búsqueda Introducción
Clase adicional 9. Listas enlazadas. Temas. Listas enlazadas Árboles Problemas de la clase adicional Ejercicios de diseño
Clase adicional 9 Temas Listas enlazadas Árboles Problemas de la clase adicional Ejercicios de diseño Listas enlazadas Previamente en este curso, ya habrá trabajado con dos de las estructuras de datos
Tema 10. Árboles. José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía
Tema 10. Árboles http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía {badia, bmartine, morales, sanchiz}@icc.uji.es Estructuras de datos y de la información Universitat
Segundo parcial de Programación 2
Generalidades: Segundo parcial de Programación 2 a. La prueba es individual y sin material. b. La duración es 3hs. c. Sólo se contestan dudas acerca de la letra. 8 de Julio de 2016 d. Escriba las hojas
ÁRBOLES BINARIOS DE BÚSQUEDA (ABB)
ÁRBOLES BINARIOS DE BÚSQUEDA (ABB) INTRODUCCIÓN - Un árbol binario de búsqueda (ABB) es un árbol binario con la propiedad de que todos los elementos almacenados en el subárbol izquierdo de cualquier nodo
CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES
CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES Los árboles (en general) se utilizan para representar fórmulas algebraicas, para organizar objetos en orden de tal forma que las búsquedas sean muy eficientes
Tema: Arboles en C#. Objetivos Específicos. Materiales y Equipo. Introducción Teórica. Definición de Árbol Binario. Programación IV. Guía No.
Programación IV. Guía No. 7 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Arboles en C#. Objetivos Específicos Definir el concepto de la estructura de datos Árbol. Implementar
Programación de sistemas
Programación de sistemas Árboles Julio Villena Román MATERIALES CREADOS EN EL TRABAJO DE DIFERENTES AUTORES: Carlos Delgado Kloos, M.Carmen Fernández Panadero, Raquel M.Crespo García,
Capítulo 8. Árboles. Continuar
Capítulo 8. Árboles Continuar Introducción Uno de los problemas principales para el tratamiento de los grafos es que no guardan una estructura establecida y que no respetan reglas, ya que la relación entre
ÁRBOLES PARCIALMENTE ORDENADOS
ÁRBOLES PARCIALMENTE ORDENADOS INTRODUCCIÓN - Un árbol A se dice parcialmente ordenado (APO) si cumple la condición de que la etiqueta de cada nodo es menor (de igual forma mayor) o igual que las etiquetas
Árboles n-arios de búsqueda. Lección 16
Árboles n-arios de búsqueda Lección 16 Definiciones Los árboles n-arios de búsqueda (árboles de búsqueda múltiples o multicamino) son árboles de grado n definidos de la forma: si el árbol A es vacío, entonces
Estructuras de Datos Clase 20 Árboles de búsqueda
Estructuras de Datos Clase 20 Árboles de búsqueda Dr. Sergio A. Gómez http://cs.uns.edu.ar/~sag Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina
Estructuras de datos y algoritmos
Estructuras de datos y algoritmos 1. Introducción 2. Estructuras de datos lineales 3. Estructuras de datos jerárquicas 4. Grafos y caminos 5. Implementación de listas, colas, y pilas 6. Implementación
Tema Árboles binarios fmap para árboles binarios Plegado de árboles binarios
Programación Declarativa Haskell Informática Sistemas Curso 2003-2004 Pepe Gallardo Universidad de Málaga Tema 9. Árboles 9.1 Árboles binarios fmap para árboles binarios Plegado de árboles binarios 9.2
ESTRUCTURA DE DATOS. ABB Arboles de Búsqueda Binaria
ESTRUCTURA DE DATOS ABB Arboles de Búsqueda Binaria ÁRBOLES BINARIOS Hasta ahora nos hemos dedicado a estudiar TAD que de una u otra forma eran de naturaleza lineal, o unidimensional. En los tipos abstractos
Listas Posicionales. Listas posicionales
Listas Posicionales Definición: Una lista posicional es una colección de elementos homogéneos, con una relación lineal entre ellos, en la que se puede acceder a los elementos mediante su posición. Se puede
Algoritmos y Estructuras de Datos. Guillermo Román Díez
Algoritmos y Estructuras de Datos Árboles Generales y Árboles Binarios Guillermo Román Díez [email protected] Universidad Politécnica de Madrid Curso 2015-2016 Guillermo Román, UPM AED: Introducción 1/22
Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la
Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios libros por lo que está prohibida su impresión y distribución.
Estructuras de Datos y Algoritmos
Estructuras de Datos y Algoritmos Tema 5.1. Árboles. Árboles binarios y generales Prof. Dr. P. Javier Herrera Contenido 1. Introducción 2. Terminología 3. Árboles binarios 4. Árboles generales Tema 5.1.
Estructuras de Datos y Algoritmos (ITIS). TAD Tree. Estructuras de Datos y Algoritmos (ITIS) Ingeniería Técnica en Informática de Sistemas, Curso 2º
Estructuras de Datos y Algoritmos (ITIS) Ingeniería Técnica en Informática de Sistemas, Curso 2º PRÁCTICA 3 TAD TREE Árbol binario de búsqueda. Tabla de frecuencias. Uno de los mecanismos más sencillos
LECCION N 08 ARBOLES. Un árbol es un grafo A que tiene un único nodo llamado raíz que:
LECCION N 08 ARBOLES Los árboles son estructuras de datos útiles en muchas aplicaciones. Hay varias formas de árboles y cada una de ellas es práctica en situaciones especiales, en este capítulo vamos a
Árboles generales. Un árbol es una estructura no lineal acíclica utilizada para organizar información de forma eficiente. La definición es recursiva:
Capítulo 9. Programación con Árboles 107 Árboles Árboles generales Un árbol es una estructura no lineal acíclica utilizada para organizar información de forma eficiente. La definición es recursiva: Un
Árboles y esquemas algorítmicos. Tema III
Árboles y esquemas algorítmicos Tema III Bibliografía Tema III (lecciones 15 a 22) del libro Campos Laclaustra, J.: Estructuras de Datos y Algoritmos, Prensas Universitarias de Zaragoza, Colección Textos
Instituto de Computación. Facultad de Ingeniería. Universidad de la República Examen de Programación 2 03 de Agosto de 2006 Generalidades:
Instituto de Computación. Facultad de Ingeniería. Universidad de la República Examen de Programación 2 03 de Agosto de 2006 Generalidades: La prueba es individual y sin material. La duración es 3 horas.
Tema 8. Listas. José M. Badía, Begoña Martínez, Antonio Morales y José M. Sanchiz
Tema 8. Listas http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Sanchiz {badia, bmartine, morales, sanchiz}@icc.uji.es Estructuras de datos y de la información Universitat
UNIVERSIDAD AUTONOMA DE MADRID ESCUELA POLITÉCNICA SUPERIOR ESTRUCTURAS DE DATOS Y ALGORITMOS
UNIVERSIDAD AUTONOMA DE MADRID ESCUELA POLITÉCNICA SUPERIOR ESTRUCTURAS DE DATOS Y ALGORITMOS Curso 2008-09 Examen parcial APELLIDOS: NOMBRE: 1. (0.5 puntos) Enumera las características de un algoritmo
95.12 Algoritmos y Programación II Práctica 7: árboles
Notas preliminares 95.12 Algoritmos y Programación II Práctica 7: árboles El objetivo de esta práctica es introducir distintas clases de estructuras de datos arbóreas y algoritmos para manipularlas. Los
Programación Declarativa Universidad de Málaga
Programación Declarativa Universidad de Málaga 3. o de Ingeniería Informática E.T.S.I. Informática Enero de 2008 Tema 5. Programación lógica con árboles Ejercicios Ejercicio 1. Dada la siguiente representación
ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES
ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES TEMAS Recorrido de un árbol Máximo y mínimo Búsqueda de un elemento Borrado de un nodo 3 Características ARBOLES - CONCEPTOS Cada elemento del árbol
Estructura de Datos. Listas Enlazadas
Estructura de Datos Listas Enlazadas Conceptos de Lista enlazada Una lista enlazada es una secuencia de nodos que se interconectan mediante sus campos de enlace. Nodo: un objeto creado desde una clase
Carlos Delgado Kloos Mª Carmen Fernández Panadero Raquel M. Crespo García Ingeniería Telemática Univ. Carlos III de Madrid
Árboles Carlos Delgado Kloos Mª Carmen Fernández Panadero Raquel M. Crespo García Ingeniería Telemática Univ. Carlos III de Madrid [email protected] Java: Árboles / 1 Índice Concepto Definición no recursiva
1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N 2-1 b. 2 N+1-1 c. 2 N d. 2 N+1 i.
1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N - 1 b. N1-1 c. N d. N1 i.. Dado el siguiente árbol binario: raiz Q K T D M R Y B J P W N a. Cuáles son los antecesores
