Programación Declarativa Universidad de Málaga

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programación Declarativa Universidad de Málaga"

Transcripción

1 Programación Declarativa Universidad de Málaga 3. o de Ingeniería Informática E.T.S.I. Informática Enero de 2008 Tema 5. Programación lógica con árboles Ejercicios Ejercicio 1. Dada la siguiente representación de árbol binario: ArbolB ::= vaciob nodob(arbolb,raiz,arbolb) define los siguientes predicados sobre árboles binarios: es_arbolb(a) A es un árbol binario bien formado es_arbolb_nat(a) A es un árbol binario de naturales raiz(r,a) R es la raíz de A hoja(h,a) H es una hoja de A miembro(x,a) X es elemento de A padre(x,y,a) X es padre de Y en A hijo(x,y,a) X es hijo de Y en A descendiente(x,y,a) X es descendiente de Y en A ascendiente(x,y,a) X es ascendiente de Y en A rama(rs,a) la lista Rs es una rama de A sustituye(x,y,ax,ay) AY es AX sustituyendo todas las X por Y Ejercicio 2. Define las siguientes relaciones sobre árboles binarios: subarbol(a,b) simetricos(a,b) isomorfos_estruc(a,b) isomorfos_ramas(a,b) A es subárbol de B A y B son simétricos A y B tienen la misma estructura A y B tienen las mismas ramas Ejercicio 3. Define versiones recursivas (con y sin acumulador) de los siguientes predicados sobre árboles binarios: num_nodos(a,n) profundidad(a,p) maximo(a,m) suma(a,s) frontera(a,fs) A tiene N nodos P es la profundidad de A M es el máximo de A S es la suma de los nodos de A Fs es la frontera de A Ejercicio 4. Define los siguientes predicados de recorrido sobre árboles binarios: 1

2 miembro_preorden(x,a) preorden(rs,a) miembro_inorden(x,a) inorden(rs,a) miembro_postorden(x,a) postorden(rs,a) miembro_anchura(x,a) anchura(rs,a) generador de elementos de A en preorden Rs es una lista con el recorrido en preorden de A generador de elementos de A en inorden Rs es una lista con el recorrido en inorden de A generador de elementos de A en postorden Rs es una lista con el recorrido en postorden de A generador de elementos de A en anchura Rs es una lista con el recorrido en anchura de A Ejercicio 5. Define un predicado arbol_inorden(rs,a) tal que, dada una lista Rs, genere todos los árboles binarios A tales que su recorrido en inorden es Rs. Ejercicio 6. Define un predicado construye_arbol(ps,is,a) que reconstruya un árbol binario A a partir de sus recorridos en preorden Ps e inorden Is. Ejercicio 7. Define un predicado genera_arbolb(a) que se comporte como un generador no acotado de árboles binarios. Asegúrate de que no se trate de un generador anómalo. Ejercicio 8. Define un predicado camino(x,a,cs) que, dado un árbol binario A, se satisfaga si la lista Cs contiene un camino desde la raíz de A hasta un nodo X. El camino debe almacenar las raices de los nodos que lo componen, así como los lados del árbol por los que se desciende. Por ejemplo:?- arbol_ejemplo(_a), camino(5,_a,cs). Cs = [ (4->der), (6->izq), 5] ; significa que hay un camino en el árbol A que parte de la raíz 4, desciende por la derecha visitando 6 y desciende por la izquierda hasta llegar al nodo destino 5. Ejercicio 9. Define un predicado camino_entre(x,y,a,cs) que, dado un árbol binario A, se satisfaga si la lista Cs contiene un camino desde un nodo X hasta un nodo Y. El camino debe almacenar las raices de los nodos que lo componen, así como los lados del árbol por los que se desciende. Por ejemplo:?- arbol_ejemplo(_a), camino_entre(6,5,_a,cs). Cs = [(6->izq), 5] ; significa que hay un camino en el árbol A que parte del nodo 6 y desciende por la izquierda hasta llegar al nodo destino 5. Ejercicio 10. Define un predicado nodos_prof_i(i,a,is) que, dados un árbol binario A y un entero positivo I, devuelva una lista Is con los nodos de A situados a profundidad I. Ejercicio 11. Define un predicado por_profundidad(a,iss) que, dado un árbol binario A, devuelva una lista de listas Iss tal que la lista i-ésima contenga los nodos de A situados a profundidad i-ésima. Escribe dos versiones: una que haga uso del predicado nodos_prof_i(i,a,is) y otra que no. Ejercicio 12. Se desea representar en Prolog árboles de búsqueda mediante términos de la forma: ArbolBB ::= vaciobb nodobb(arbolbb,clave,arbolbb) 2

3 donde no hay claves repetidas, los elementos menores que Clave están a la izquierda, y los mayores (@>) a la derecha. Define los siguientes predicados sobre árboles de búsqueda: es_arbolbb(a) A es un árbol de búsqueda bien formado inserta(x,a,ax) AX es el árbol que resulta de insertar X en A borra(x,ax,a) A es el árbol que resulta de borrar X de AX miembro_inorden(x,a) generador de elementos de A en inorden inorden(rs,a) Rs es la lista con el recorrido en inorden de A Ejercicio 13. Define un predicado ordenar(xs,ys) que dada una lista Xs devuelva su ordenación en Ys. Utiliza un árbol de búsqueda para ordenar los elementos. Ejercicio 14. Un árbol hoja es un árbol binario no vacío que almacena información sólo en las hojas. Los árboles hoja pueden representarse en Prolog por términos de la forma: ArbolH ::= hoja(dato) nodoh(arbolh,arbolh) define los siguientes predicados sobre árboles hoja: es_arbolh(a) A es un árbol hoja bien formado es_arbolh_nat(a) A es un árbol hoja de naturales miembro(x,a) X es elemento de A sustituye(x,y,ax,ay) AY es AX sustituyendo todas las X por Y subarbol(a,b) A es subárbol de B simetricos(a,b) A y B son simétricos isomorfos_estruc(a,b) A y B tienen la misma estructura isomorfos_ramas(a,b) A y B tienen las mismas ramas num_hojas(a,n) A tiene N hojas profundidad(a,p) P es la profundidad de A maximo(a,m) M es el máximo de A suma(a,s) S es la suma de las hojas de A frontera(a,fs) Fs es la frontera de A Ejercicio 15. Define un predicado camino(x,a,cs) que, dado un árbol hoja A, se satisfaga si la lista Cs contiene un camino desde la raíz de A hasta una hoja X. El camino debe almacenar los lados del árbol por los que se desciende hasta llegar a la hoja X. Por ejemplo:?- arbol_hoja_ejemplo(_a), camino(5,_a,cs). Cs = [ der, izq, 5] ; significa que hay un camino en el árbol A que parte de la raíz y desciende por la derecha y por la izquierda hasta llegar a la hoja destino 5. Ejercicio 16. Define un predicado arbolh_frontera(fs,a) que dada una lista Fs genere todos los árboles hoja A tales que Fs es su frontera Ejercicio 17. Define un predicado genera_arbolh(a) que se comporte como un generador no acotado de árboles hoja. Asegúrate de que no se trate de un generador anómalo. Ejercicio 18. Un árbol genérico puede ser vacío, lo que representaremos en Prolog mediante la constante 3

4 vaciog o bien tener una raíz y un número arbitrario n de hijos (n 0), representado en Prolog por términos de la forma: ArbolG ::= nodog(raiz,[arbolg]) es decir, cada nodo tiene una raíz y una lista con sus hijos (los nodos hoja se representarán por términos de la forma nodog(raiz,[])). Define los siguientes predicados sobre árboles genéricos: es_arbolg(a) A es un árbol genérico bien formado es_arbolg_nat(a) A es un árbol genérico de naturales miembro(x,a) X es elemento de A sustituye(x,y,ax,ay) AY es AX sustituyendo todas las X por Y subarbol(a,b) A es subárbol de B simetricos(a,b) A y B son simétricos isomorfos_estruc(a,b) A y B tienen la misma estructura num_nodos(a,n) A tiene N hojas profundidad(a,p) P es la profundidad de A maximo(a,m) M es el máximo de A suma(a,s) S es la suma de los nodos de A frontera(a,fs) Fs es la frontera de A Ejercicio 19. Las fórmulas bien formadas (fbfs) de la lógica proposicional pueden representarse en Prolog por términos de la forma: FBF ::= at(a) o(fbf,fbf) y(fbf,fbf) imp(fbf,fbf) no(fbf) es decir; cada conectiva lógica (,,, ) se representa por una estructura con el functor y la aridad apropiadas, y las fórmulas atómicas por estructuras de la forma at(a), donde A es cualquier término Prolog (para simplificar, puedes suponer que siempre serán letras minúsculas). Por ejemplo, las fbfs: a (b c) se representarán por los términos Prolog: a b a b y(at(a),o(at(b),at(c))) imp(y(at(a),at(b)),o(at(a),at(b))) Define los siguientes predicados sobre fbfs: es_fbf(a) atomo(a,at) atomos(a,ats) subformula(a,b) A es una fórmula bien formada At es un átomo (formula atómica) de A Ats es la lista de átomos (fórmulas atómicas) de A B es una subfórmula de A Ejercicio 20. Define un predicado tamanyo(a,n) que dada una fbf A devuelva en N su tamaño (número de conectivas que aparecen en A). Por ejemplo: 4

5 ?- tamanyo(y(at(a), o(at(b), at(c))),n). N = 2 ; Ejercicio 21. Define un predicado conectivas(a,cs) que dada una fbf A devuelva en Cs una lista con el número de veces que aparece cada conectiva en A. Por ejemplo:?- conectivas(y(y(at(a),at(d)),o(at(b),at(c))),cs). Cs = [veces(y,2),veces(o,1)] ; Ejercicio 22. Define un predicado elimina_imp(a,b) que dada una fbf A devuelva la fbf B resultado de reemplazar todas las implicaciones de A por disyunciones, aplicando la equivalencia: A B A B. Por ejemplo:?- elimina_imp(imp(at(a),at(b)),b). B = o(no(at(a)),at(b)) ;?- elimina_imp(imp(y(at(a), at(b)), o(at(a), at(b))),b). B = o(no(y(at(a), at(b))), o(at(a), at(b))) ; Ejercicio 23. Define un predicado no_atomico(a,b) que dada una fbf A devuelva la fbf B resultado de aplicar las leyes de De Morgan hasta que las negaciones sólo afecten a los átomos. Por ejemplo:?- no_atomico(no(y(at(a),at(b))),b). B = o(no(at(a)), no(at(b))) ;?- no_atomico(no(no(no(at(a)))),b). B = no(at(a)) ;?- no_atomico(no(no(at(a))),b). B = at(a) ; Recuerda que la implicación material ( ) contiene una negación implícita que debe ser tratada como las demás:?- no_atomico(no(imp(at(a),at(b))),b). B = y(at(a), no(at(b))) ;?- no_atomico(y(imp(at(a),at(b)),at(c)),b). B = y(o(no(at(a)), at(b)), at(c)) ; Ejercicio 24. Define un predicado evalua(f,i,v) que evalúe la fbf F respecto a la interpretación I, devolviendo el valor en V (0 o 1). La interpretación I puede representarse mediante una lista que contiene sólo las fórmulas atómicas ciertas (es decir, los átomos no presentes en la lista I se consideran falsos). Por ejemplo: 5

6 ?- evalua(y(at(p),at(q)), [p],v). V = 0;?- evalua(y(at(p),at(q)), [p,q],v). V = 1; 6

Programación lógica con árboles. Introducción. Contenido. Introducción. 1. Programación con árboles 2. Otras estructuras arbóreas

Programación lógica con árboles. Introducción. Contenido. Introducción. 1. Programación con árboles 2. Otras estructuras arbóreas Contenido 1. Programación con árboles 2. Otras estructuras arbóreas Ingeniería Informática Ingeniería Técnica en Informática Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Más detalles

Tema Árboles binarios fmap para árboles binarios Plegado de árboles binarios

Tema Árboles binarios fmap para árboles binarios Plegado de árboles binarios Programación Declarativa Haskell Informática Sistemas Curso 2003-2004 Pepe Gallardo Universidad de Málaga Tema 9. Árboles 9.1 Árboles binarios fmap para árboles binarios Plegado de árboles binarios 9.2

Más detalles

Estructura de Datos Unidad 6: ARBOLES

Estructura de Datos Unidad 6: ARBOLES Estructura de Datos Unidad 6: ARBOLES A. CONCEPTO DE ARBOL B. TIPOS DE ARBOL C. ARBOL BINARIO D. IMPLEMENTACION DE UN ARBOL BINARIO E. PROYECTO Introducción En ciencias de la informática, un árbol es una

Más detalles

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,

Más detalles

Tema Árboles generales. 9.2 Árboles binarios 9.3 Árboles de búsqueda

Tema Árboles generales. 9.2 Árboles binarios 9.3 Árboles de búsqueda Informática Haskell Matemáticas Curso 2004-2005 Pepe Gallardo Universidad de Málaga Tema 9. Árboles 9.1 Árboles generales 9.2 Árboles binarios 9.3 Árboles de búsqueda 9.1 Árboles generales Un árbol es

Más detalles

Estructura de datos y de la información Boletín de problemas - Tema 10

Estructura de datos y de la información Boletín de problemas - Tema 10 Estructura de datos y de la información Boletín de problemas - Tema 10 1. En el caso de que sea posible, dar un ejemplo de los siguientes puntos. Si no, explicar por qué no lo es. Considerar un valor genérico

Más detalles

Ejercicios del Tema 3 Estructuras jerárquicas: Árboles

Ejercicios del Tema 3 Estructuras jerárquicas: Árboles ALGORITMOS Y ESTRUCTURAS DE DATOS II Ingeniería Técnica en Informática de Gestión Ingeniería Técnica en Informática de Sistemas Ejercicios del Tema 3 Estructuras jeráruicas: Árboles Árboles n-arios 1.

Más detalles

ESTRUCTURA DE DATOS. ABB Arboles de Búsqueda Binaria

ESTRUCTURA DE DATOS. ABB Arboles de Búsqueda Binaria ESTRUCTURA DE DATOS ABB Arboles de Búsqueda Binaria ÁRBOLES BINARIOS Hasta ahora nos hemos dedicado a estudiar TAD que de una u otra forma eran de naturaleza lineal, o unidimensional. En los tipos abstractos

Más detalles

ESTRUCTURAS DE DATOS Y ALGORITMOS

ESTRUCTURAS DE DATOS Y ALGORITMOS ESTRUCTURAS DE DATOS Y ALGORITMOS CURSO 2009 PRÁCTICO 8 Nota: al igual que en los prácticos 6 y 7, en los problemas que siguen se usarán los tipos lista y árbol binario, como tipos abstractos, cada uno

Más detalles

Estructuras de Datos y Algoritmos

Estructuras de Datos y Algoritmos Estructuras de Datos y Algoritmos Tema 5.1. Árboles. Árboles binarios y generales Prof. Dr. P. Javier Herrera Contenido 1. Introducción 2. Terminología 3. Árboles binarios 4. Árboles generales Tema 5.1.

Más detalles

Árboles generales. Un árbol es una estructura no lineal acíclica utilizada para organizar información de forma eficiente. La definición es recursiva:

Árboles generales. Un árbol es una estructura no lineal acíclica utilizada para organizar información de forma eficiente. La definición es recursiva: Capítulo 9. Programación con Árboles 107 Árboles Árboles generales Un árbol es una estructura no lineal acíclica utilizada para organizar información de forma eficiente. La definición es recursiva: Un

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Introducción Un árbol es una estructura no lineal en la que cada nodo puede apuntar a uno o varios nodos. A B C D E F G H I J K Clasificación con respecto a su relación: Nodo hijo: cualquiera de los nodos

Más detalles

Definición recursiva de los árboles

Definición recursiva de los árboles Árboles Un árbol es una estructura de datos jerarquizada ada dato reside en un nodo, y existen relaciones de parentesco entre nodos: padre, hijo, hermano, ascendiente, descendiente, etc. Ejemplo: apítulos

Más detalles

Tema 7: Árboles ESTRUCTURAS DE DATOS 1

Tema 7: Árboles ESTRUCTURAS DE DATOS 1 Tema 7: Árboles ESTRUCTURAS DE DATOS 1 Contenidos Definiciones Conceptos de Árboles Binarios Especificación algebraica Implementaciones Programación con Árboles Binarios Árboles Binarios de Búsqueda Introducción

Más detalles

Tema 09: TAD Árbol binario

Tema 09: TAD Árbol binario Tema 09: TAD Árbol binario M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Introducción El árbol binario

Más detalles

CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES

CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES Los árboles (en general) se utilizan para representar fórmulas algebraicas, para organizar objetos en orden de tal forma que las búsquedas sean muy eficientes

Más detalles

TEMA 3. Árboles. Objetivos. Contenidos. Bibliografía. Básica

TEMA 3. Árboles. Objetivos. Contenidos. Bibliografía. Básica TEMA 3. Árboles Objetivos En este tema se estudia una de las estructuras de datos no lineal más importante en computación, el árbol. Comenzaremos introduciendo la terminología asociada a los árboles y

Más detalles

Estructura de Datos. Temario Unidad VI. Árboles Árboles Binarios

Estructura de Datos. Temario Unidad VI. Árboles Árboles Binarios Estructura de Datos Árboles Árboles Binarios Temario Unidad VI 6.1 Definición y operaciones 6.2 Implementación 6.3 Recorrido en Árboles Binarios 6.4 Árboles AVL y su implementación 6.5 Árboles n-arios

Más detalles

Arboles Binarios de Búsqueda en C++

Arboles Binarios de Búsqueda en C++ Arboles Binarios de Búsqueda en C++ por CCG/Mayo-2014 Tema de Arboles Binarios de Búsqueda, como un poco de teoría para su mejor entendimiento seguidamente mostrare la implementación en lenguaje de programación

Más detalles

Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS

Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS TEMA 4. - La Estructura de datos Árbol 4.1. Árboles, definiciones 4.2 Árboles binarios y su representación 4.3 Operaciones básicas de un árbol binario

Más detalles

Estructura de Datos. Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos)

Estructura de Datos. Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos) Ing. En Sistemas Computacionales Estructura de Datos Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos) Ing. Néstor Alejandro Carrillo López Arboles Un árbol es un conjunto finito

Más detalles

Algoritmos y Programación II Curso 2006

Algoritmos y Programación II Curso 2006 Arboles: Un árbol es una colección de elementos, llamados nodos, uno de los cuales se distingue con el nombre de raíz. Los nodos mantienen entre ellos una relación que define una estructura jerárquica

Más detalles

Estructura de Datos. Árboles Binarios de Búsqueda ABB. Primer Semestre, 2010

Estructura de Datos. Árboles Binarios de Búsqueda ABB. Primer Semestre, 2010 Estructura de Datos Árboles Binarios de Búsqueda ABB Prof.: Mauricio Solar Prof.: Lorna Figueroa Primer Semestre, 20 1 Arboles de Búsqueda Binaria El árbol binario de búsqueda (ABB) toma su nombre del

Más detalles

Capítulo 8. Árboles. Continuar

Capítulo 8. Árboles. Continuar Capítulo 8. Árboles Continuar Introducción Uno de los problemas principales para el tratamiento de los grafos es que no guardan una estructura establecida y que no respetan reglas, ya que la relación entre

Más detalles

Estructuras de datos utilizando JAVA

Estructuras de datos utilizando JAVA 1 Sistemas Expertos e Inteligencia Artificial / Guía II / Ciclo 01-2017 Centro de Investigación y Transferencia de Tecnología Estructuras de datos utilizando JAVA Facultad: Ingeniería Escuela: Computación

Más detalles

A) PREORDEN B) INORDEN C) POSTORDEN D) NIVELES

A) PREORDEN B) INORDEN C) POSTORDEN D) NIVELES Capitulo 5. Arboles 1. Al recorrer el siguiente árbol en se visitan más nodos para llegar al número 38. Justifique su respuesta mostrando cada uno de los recorridos. Tipo de Recorrido Recorrido A) PREORDEN

Más detalles

Definición: NODO Un nodo es un punto de intersección o unión de varios elementos que confluyen en el mismo lugar.

Definición: NODO Un nodo es un punto de intersección o unión de varios elementos que confluyen en el mismo lugar. Definición: ÁRBOL El árbol es como un tipo de grafo cíclico, conexo y no dirigido. Las estructuras tipo árbol se usan principalmente para representar datos con una relación jerárquica entre sus elementos.

Más detalles

Programación Declarativa UNIVERSIDAD DE MÁLAGA

Programación Declarativa UNIVERSIDAD DE MÁLAGA Programación Declarativa UNIVERSIDAD DE MÁLAGA (3 o de Ingeniería Técnica en Informática) E.T.S.I. INFORMÁTICA 17 de Febrero de 2005 Alumno: Grupo: Prolog Ejercicio 1 (a)(2 pts.) Realiza el árbol de búsqueda

Más detalles

RECORRIDO EN ARBOLES

RECORRIDO EN ARBOLES RECORRIDO EN ARBOLES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 16 de septiembre de 2008 Contenido Recorrido en árboles Definición Recorrido en

Más detalles

Estructura de Datos. Índice

Estructura de Datos. Índice TEMA 5. ÁRBOLES (I) 1 Índice 1. Concepto de árbol 2. Árboles binarios 1. Especificación informal del TAD árbol binario 2. Implementación del TAD árbol binario 3. Recorrido de un árbol binario 4. Árboles

Más detalles

Tema: Arboles en C#. Objetivos Específicos. Materiales y Equipo. Introducción Teórica. Definición de Árbol Binario. Programación IV. Guía No.

Tema: Arboles en C#. Objetivos Específicos. Materiales y Equipo. Introducción Teórica. Definición de Árbol Binario. Programación IV. Guía No. Programación IV. Guía No. 7 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Arboles en C#. Objetivos Específicos Definir el concepto de la estructura de datos Árbol. Implementar

Más detalles

FUNDAMENTOS DE PROGRAMACIÓN Datos recursivos II

FUNDAMENTOS DE PROGRAMACIÓN Datos recursivos II FUNDAMENTOS DE PROGRAMACIÓN Datos recursivos II Ángela Villota Gómez Escuela de Ingeniería de Sistemas y Computación Facultad de Ingeniería Universidad del Valle Primera parte: Repaso de funciones con

Más detalles

12/08/2017 AVL. Especificación sobre árboles AVL. AVL: rotaciones

12/08/2017 AVL. Especificación sobre árboles AVL. AVL: rotaciones VL Se dice que un árbol binario está balanceado si y sólo si en cada nodo las alturas de sus 2 subárboles difieren como máximo en 1. Todos los árboles perfectamente balanceados son árboles VL. Especificación

Más detalles

Programación Estructuras Arborescentes

Programación Estructuras Arborescentes Programación 2 4 - Estructuras Arborescentes 1 Definición La recursión puede ser utilizada para la definición de estructuras realmente sofisticadas. Una estructura árbol (árbol general o finitario) con

Más detalles

1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N 2-1 b. 2 N+1-1 c. 2 N d. 2 N+1 i.

1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N 2-1 b. 2 N+1-1 c. 2 N d. 2 N+1 i. 1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N - 1 b. N1-1 c. N d. N1 i.. Dado el siguiente árbol binario: raiz Q K T D M R Y B J P W N a. Cuáles son los antecesores

Más detalles

Introducción a los árboles. Lección 11

Introducción a los árboles. Lección 11 Introducción a los árboles Lección 11 Árbol: Conjunto de elementos de un mismo tipo, denominados nodos, que pueden representarse en un grafo no orientado, conexo y acíclico, en el que existe un vértice

Más detalles

PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS

PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR ESIME CULHUACAN NOMBRE ALUMNO: 1. Objetivo PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS El alumno comprenderá y aplicara

Más detalles

El TAD Árbol. El TAD Árbol

El TAD Árbol. El TAD Árbol Objetivos! Presentar el árbol como estructura de datos jerárquica! Estudiar diferentes variantes de árboles, tanto en su especificación como en su implementación Contenidos 3.1 Concepto, definiciones y

Más detalles

Práctica N o 5 - Programación Lógica

Práctica N o 5 - Programación Lógica Práctica N o 5 - Programación Lógica Para resolver esta práctica, recomendamos usar el SWI-Prolog, de distribución gratuita, que puede bajarse de http://www.swi-prolog.org. No utilizar cut (!) ni predicados

Más detalles

Árboles y esquemas algorítmicos. Tema III

Árboles y esquemas algorítmicos. Tema III Árboles y esquemas algorítmicos Tema III Bibliografía Tema III (lecciones 15 a 22) del libro Campos Laclaustra, J.: Estructuras de Datos y Algoritmos, Prensas Universitarias de Zaragoza, Colección Textos

Más detalles

Temario. Tema 5. Estructuras de Datos no Lineales. 5.1 Árboles Binarios 5.2 Árboles n-arios

Temario. Tema 5. Estructuras de Datos no Lineales. 5.1 Árboles Binarios 5.2 Árboles n-arios Temario 5.1 Árboles Binarios 5.2 Árboles n-arios Especificación Utilización Representación Enlazada 5.3 Árboles Binarios de Búsqueda 5.4 Árboles Parcialmente Ordenados 1 Árbol n-ario: O bien es el conjunto

Más detalles

Definición de árbol. Árboles

Definición de árbol. Árboles ÁRBOLES Árboles * Definición de árbol * Formas de representación * Nomenclatura sobre árboles * Árboles binarios * Declaración de árbol binario * Recorridos sobre árboles binarios * Construcción de un

Más detalles

Francisco J. Hernández López

Francisco J. Hernández López rancisco. Hernández ópez [email protected] structura de datos no lineal, en la que cada elemento sólo puede estar enlazado con su predecesor (o nodo padre) y sus sucesores (o nodos hijos) xiste un único

Más detalles

Tema 4. Estructuras no lineales de datos: árboles

Tema 4. Estructuras no lineales de datos: árboles Fundamentos de Programación II Tema 4. Estructuras no lineales de datos: árboles Luís Rodríguez Baena ([email protected]) Universidad Pontificia de Salamanca (campus Madrid) Escuela Superior de

Más detalles

Árboles Binarios Ordenados Árboles AVL

Árboles Binarios Ordenados Árboles AVL Árboles Binarios Ordenados Árboles AVL Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Diseño e Implementación TAD Árbol Representación de árboles

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica

Más detalles

Instituto de Computación. Facultad de Ingeniería. Universidad de la República Examen de Programación 2 03 de Agosto de 2006 Generalidades:

Instituto de Computación. Facultad de Ingeniería. Universidad de la República Examen de Programación 2 03 de Agosto de 2006 Generalidades: Instituto de Computación. Facultad de Ingeniería. Universidad de la República Examen de Programación 2 03 de Agosto de 2006 Generalidades: La prueba es individual y sin material. La duración es 3 horas.

Más detalles

Programación II Árboles binarios de búsqueda (ABB)

Programación II Árboles binarios de búsqueda (ABB) Programación II Árboles binarios de búsqueda (ABB) Definición Un árbol binario de búsqueda(abb) a es una estructura de datos de tipo árbol binario en el que para todos sus nodos, el hijo izquierdo, si

Más detalles

Árboles. Árboles. Árboles binarios de búsqueda. Árboles. Inserción en un árbol. Árbol binario de búsqueda

Árboles. Árboles. Árboles binarios de búsqueda. Árboles. Inserción en un árbol. Árbol binario de búsqueda Árboles Árboles Mario Medina C. [email protected] Árboles Estructura recursiva Árbol vacío 0 o más árboles hijos Altura ilimitada Árbol binario A lo más dos hijos: izquierdo y derecho Árboles Árboles

Más detalles

Programación de sistemas Árboles

Programación de sistemas Árboles Programación de sistemas Árboles Departamento de Ingeniería Telemática 1 Contenidos Concepto de árbol Terminología Implementación Casos especiales Árboles binarios de búsqueda Montículos (heaps) 2 Concepto

Más detalles

Práctica N o 4 - Programación Lógica

Práctica N o 4 - Programación Lógica Práctica N o 4 - Programación Lógica Para resolver esta práctica, recomendamos usar el SWI-Prolog, de distribución gratuita, que puede bajarse de http://www.swi-prolog.org. No utilizar cut (!) ni predicados

Más detalles

Estructura de Datos. Estructuras de Datos no lineales : Árboles

Estructura de Datos. Estructuras de Datos no lineales : Árboles Estructura de Datos Estructuras de Datos no lineales : Árboles Definiciones de Árbol En términos matemáticos, un árbol es cualquier conjunto de puntos, llamados vértices, y cualquier conjunto de pares

Más detalles

Árboles n-arios de búsqueda. Lección 16

Árboles n-arios de búsqueda. Lección 16 Árboles n-arios de búsqueda Lección 16 Definiciones Los árboles n-arios de búsqueda (árboles de búsqueda múltiples o multicamino) son árboles de grado n definidos de la forma: si el árbol A es vacío, entonces

Más detalles

El método main de la clase PruebaArbol, empieza creando una instancia de un objeto Árbol vacío y asigna su referencia a la variable árbol

El método main de la clase PruebaArbol, empieza creando una instancia de un objeto Árbol vacío y asigna su referencia a la variable árbol Árboles Las listas enlazadas, pilas y colas son estructuras de datos lineales (es decir, secuencias). Un árbol es una estructura de datos bidimensional no lineal, con propiedades especiales. Los nodos

Más detalles

Para la resolución de los ejercicios, se dispone de una implementación de árbol binario a través de la clase BinTree con la siguiente especificación.

Para la resolución de los ejercicios, se dispone de una implementación de árbol binario a través de la clase BinTree con la siguiente especificación. Para la resolución de los ejercicios, se dispone de una implementación de árbol binario a través de la clase BinTree con la siguiente especificación. public class BinTree { public BTNode root; // la raiz

Más detalles

Estructura de Datos Tema 6. Árboles. Contenido 14/06/2018

Estructura de Datos Tema 6. Árboles. Contenido 14/06/2018 Estructura de Datos Tema 6. Árboles Presenta: David Martínez Torres Universidad Tecnológica de la Mixteca Instituto de Computación Oficina No. [email protected] Contenido 1. Definición y operaciones

Más detalles

Árboles B y B ) 20. Algoritmos y Estructuras de Datos II I.T. en Informática de Gestión/Sistemas Universidad de Huelva 63

Árboles B y B ) 20. Algoritmos y Estructuras de Datos II I.T. en Informática de Gestión/Sistemas Universidad de Huelva 63 y B + 3.8 y B+! Problema de los ABB cuando se usa almacenamiento secundario:! la búsqueda de un elemento requeriría muchos accesos a disco (un acceso a disco es extremadamente lento si lo comparamos con

Más detalles

Tema 10. Árboles. José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía

Tema 10. Árboles.  José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía Tema 10. Árboles http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía {badia, bmartine, morales, sanchiz}@icc.uji.es Estructuras de datos y de la información Universitat

Más detalles

ÁRBOL BINARIO. T der. Árbol binario homogéneo es aquel cuyos nodos tienen grado 0 ó 2(no hay ninguno de grado 1).

ÁRBOL BINARIO. T der. Árbol binario homogéneo es aquel cuyos nodos tienen grado 0 ó 2(no hay ninguno de grado 1). ÁRBOL BINARIO - Un árbol binario puede definirse como un árbol que en cada nodo puede tener como mucho grado 2, es decir, a lo más 2 hijos. Los hijos suelen denominarse hijo a la izquierda e hijo a la

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3 Tema 2: Grafos y Árboles Algoritmos y Estructuras de Datos 3 1 ÍNDICE 2.1 Definiciones básicas: grafos y árboles 2.2 Representaciones de árboles y grafos 2.3 Algoritmos de recorrido de árboles binarios

Más detalles

Diseño y Análisis de Algoritmos con Java(I Sem. 2004) Prof. Dr.Eric Jeltsch F.

Diseño y Análisis de Algoritmos con Java(I Sem. 2004) Prof. Dr.Eric Jeltsch F. Arboles En esta sección se presentan los árboles que son un tipo de dato abstracto más adecuado para el tratamiento de grandes cantidades de información, las aplicaciones de los mismos son muy diversas,

Más detalles

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos Algoritmos y Estructuras de Datos I 1 cuatrimestre de 009 Departamento de Computación - FCEyN - UBA Programación funcional - clase Tipos algebraicos Tipos algebraicos y abstractos ya vimos los tipos básicos

Más detalles

Carlos Delgado Kloos Mª Carmen Fernández Panadero Raquel M. Crespo García Ingeniería Telemática Univ. Carlos III de Madrid

Carlos Delgado Kloos Mª Carmen Fernández Panadero Raquel M. Crespo García Ingeniería Telemática Univ. Carlos III de Madrid Árboles Carlos Delgado Kloos Mª Carmen Fernández Panadero Raquel M. Crespo García Ingeniería Telemática Univ. Carlos III de Madrid [email protected] Java: Árboles / 1 Índice Concepto Definición no recursiva

Más detalles

ESTRUCTURAS DE DATOS

ESTRUCTURAS DE DATOS ESTRUCTURAS DE DATOS Listas 1. Definir predicados Prolog referentes a listas con los siguientes significados: miembro(elem,lista) "Elem pertenece a Lista" longitud(lista,long) "Lista tiene Long elementos"

Más detalles

Algoritmos y estructuras de datos

Algoritmos y estructuras de datos Algoritmos y estructuras de datos Dr. Eduardo A. Rodríguez Tello Laboratorio de Tecnologías de Información Cinvestav Tamaulipas [email protected] Cursos de inducción a la MCC Cinvestav Tamaulipas

Más detalles

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios libros por lo que está prohibida su impresión y distribución.

Más detalles

Un árbol binario T se define como un conjunto finito de elementos, llamados nodos, de forma que:

Un árbol binario T se define como un conjunto finito de elementos, llamados nodos, de forma que: Instituto Universitario de Tecnología Industrial Rodolfo Loero Arismendi I.U.T.I.R.L.A. ÁRBOLES Sección 3DA Asignatura: Estructura de Datos Lenguaje (C). Ciudad Bolívar _ abril_ 2006. Introducción El siguiente

Más detalles

Estructura de Datos. Códigos de Huffman. Primer Semestre, Compresión de Archivos. Compresión de Archivos

Estructura de Datos. Códigos de Huffman. Primer Semestre, Compresión de Archivos. Compresión de Archivos Estructura de Datos Códigos de Huffman Prof.: Mauricio Solar Prof.: Lorna Figueroa Primer Semestre, 2 Los algoritmos estudiados hasta ahora han sido diseñados, en general, para que utilicen el menor tiempo

Más detalles

EJERCICIOS RESUELTOS DE PROLOG

EJERCICIOS RESUELTOS DE PROLOG Ejercicio N 1 EJERCICIOS RESUELTOS DE PROLOG Dado el grafo dirigido representado en la siguiente figura: b c a d e Una representación para el mismo en Prolog podría consistir en una lista que contenga

Más detalles

Tema 6: Estructuras de datos recursivas

Tema 6: Estructuras de datos recursivas Tema 6: Estructuras de datos recursivas Índice 1 Listas jerárquicas...2 2 Árboles binarios... 4 3 Árboles genéricos...7 4 Referencias...10 1. Listas jerárquicas Las listas tienen la propiedad de la clausura

Más detalles

Tema: ARBOLES. Instructor: MC. Gerardo Gálvez Gámez Junio de 2018 INTRODUCCIÓN:

Tema: ARBOLES. Instructor: MC. Gerardo Gálvez Gámez Junio de 2018 INTRODUCCIÓN: UNIVERSIDAD AUTÓNOMA DE SINALOA Facultad de Informática uliacán Tema: AROLES Instructor: M. Gerardo Gálvez Gámez Junio de 2018 INTRODUIÓN: Hasta el momento solo se han estudiado estructuras lineales y

Más detalles

Árboles binarios. Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile

Árboles binarios. Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile Árboles binarios Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile [email protected] Árbol: definición v Árbol (del latín arbor oris): Planta perenne,

Más detalles

Introducción a Árboles Árboles Binarios

Introducción a Árboles Árboles Binarios Introducción a Árboles Árboles Binarios Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Introducción a Árboles Estructuras hasta ahora Estructuras

Más detalles

Árbol ABB equilibrado. Lección: Árboles. Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58

Árbol ABB equilibrado. Lección: Árboles. Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58 Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58 Índice 1 Árbol de búsqueda 2 2/ 58 Índice Árbol de búsqueda 1 Árbol de búsqueda 2 3/ 58 Árbol de búsqueda Es

Más detalles

Ejercicio 2 Considere la representación para Lista de Naturales y Árbol Binario de Naturales de la Figura 1.

Ejercicio 2 Considere la representación para Lista de Naturales y Árbol Binario de Naturales de la Figura 1. Ejercicios Resueltos del Práctico 4 Ejercicio 2 Considere la representación para Lista de Naturales y Árbol Binario de Naturales de la Figura 1. 1 2 struct NodoLista { 3 int elem ; 4 NodoLista * sig ;

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Lógica y Programación

Lógica y Programación Lógica y Programación Diagramas de Decisión Binarios J.-A. Alonso, F.-J. Martín-Mateos, J.-L. Ruiz-Reina Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Programación

Más detalles

Programación II Arboles Binarios(AB)

Programación II Arboles Binarios(AB) Programación II Arboles Binarios(AB) Definición Un árbol consta de un conjunto finito de elementos, denominados nodos, y un conjunto finito de líneas dirigidas, denominadas enlaces, que conectan los nodos.

Más detalles

Programación 2 Práctico 9 - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario

Programación 2 Práctico 9 - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario Práctico - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario Objetivos Trabajar con los tipos abstractos de datos Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario. Desarrollar y analizar

Más detalles

95.12 Algoritmos y Programación II Práctica 7: árboles

95.12 Algoritmos y Programación II Práctica 7: árboles Notas preliminares 95.12 Algoritmos y Programación II Práctica 7: árboles El objetivo de esta práctica es introducir distintas clases de estructuras de datos arbóreas y algoritmos para manipularlas. Los

Más detalles

Programación Declarativa Ejercicios de programación con listas

Programación Declarativa Ejercicios de programación con listas Programación Declarativa Ejercicios de programación con listas Ejercicio 1 Define versiones recursivas de los siguientes predicados sobre listas: es lista(xs) Xs es una lista bien formada es lista nat(ss)

Más detalles

Matemáticas Dicretas LÓGICA MATEMÁTICA

Matemáticas Dicretas LÓGICA MATEMÁTICA Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.

Más detalles

Tema 10: Árbol binario de búsqueda

Tema 10: Árbol binario de búsqueda Tema 10: Árbol binario de búsqueda M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Árbol binario de

Más detalles