Iluminando galerías de arte en 3D

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Iluminando galerías de arte en 3D"

Transcripción

1 Iluminando galerías de arte en 3D Javier Cano, Csaba D. Tóth and Jorge Urrutia XVIII Coloquio Víctor Neumann-Lara de Teoría de Gráficas, Combinatoria y sus Aplicaciones, 2013

2 Problema de la galería de arte Cuántos focos son suficientes y a veces necesarios para iluminar el interior de una galería de arte?

3 Problema de la galería de arte Cuántos focos son suficientes y a veces necesarios para iluminar el interior de una galería de arte?

4 Problema de la galería de arte Cuántos focos son suficientes y a veces necesarios para iluminar el interior de una galería de arte?

5 Problema de la galería de arte Cuántos focos son suficientes y a veces necesarios para iluminar el interior de una galería de arte?

6 Problema de la galería de arte Cuántos focos son suficientes y a veces necesarios para iluminar el interior de una galería de arte? n 3

7 Iluminando poliedros Cuántos focos son suficientes y a veces necesarios para iluminar el interior de una galería de arte, en 3-D?

8 Iluminando poliedros Cuántos focos son suficientes y a veces necesarios para iluminar el interior de una galería de arte, en 3-D? No siempre se puede con vértices, y a veces son necesarios!! ω(n) puntos

9 Los vértices no son suficientes

10 Los vértices no son suficientes

11 Los vértices no son suficientes

12 Los vértices no son suficientes

13 Los vértices no son suficientes

14 Los vértices no son suficientes

15 (lámparas-arista) Mejor lámparas ahorradoras!!

16 (lámparas-arista) Mejor lámparas ahorradoras!!

17 Cuántas lámparas-arista son suficientes para iluminar un poliedro?

18 Cuántas lámparas-arista son suficientes para iluminar un poliedro? Es fácil probar una cota superior de m O(1) lámparasarista, donde m es el número de aristas.

19 Cuántas lámparas-arista son suficientes para iluminar un poliedro? Es fácil probar una cota superior de m O(1) lámparasarista, donde m es el número de aristas. En 1998 Jorge se preguntó si era posible iluminar un poliedro usando cm lámparas-arista, con c<1

20 Cuántas lámparas-arista son suficientes para iluminar un poliedro? Es fácil probar una cota superior de m O(1) lámparasarista, donde m es el número de aristas. En 1998 Jorge se preguntó si era posible iluminar un poliedro usando cm lámparas-arista, con c<1 Por fin, pudimos contestar que sí es posible...

21 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia:

22 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia: Primero, encontramos un conjunto E 1 de aristas que cubra todos los vértices

23 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia: Primero, encontramos un conjunto E 1 de aristas que cubra todos los vértices Después, partimos el resto de aristas en 4 clases, tales que cualquier punto del poliedro que no vea ningún vértice ve al menos 2 aristas en clases distintas. Tomamos las tres clases más pequeñas.

24 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia: Primero, encontramos un conjunto E 1 de aristas que cubra todos los vértices Después, partimos el resto de aristas en 4 clases, tales que cualquier punto del poliedro que no vea ningún vértice ve al menos 2 aristas en clases distintas. Tomamos las tres clases más pequeñas. Usamos: E (m E 1 ) = 3m + E 1 4 lámparas

25 Cubriendo los vértices

26 Cubriendo los vértices Un cubrimiento mínimo con aristas de los vértices, contiene un emparejamiento maximal M y una arista por cada vértice que no cubre M.

27 Cubriendo los vértices Un cubrimiento mínimo con aristas de los vértices, contiene un emparejamiento maximal M y una arista por cada vértice que no cubre M. (Edmonds-Gallai) Si M es un emparajemiento maximal de G, entonces existe un subconjunto de vértices propiedades siguientes: U con las

28 Cubriendo los vértices Un cubrimiento mínimo con aristas de los vértices, contiene un emparejamiento maximal M y una arista por cada vértice que no cubre M. (Edmonds-Gallai) Si M es un emparajemiento maximal de G, entonces existe un subconjunto de vértices propiedades siguientes: U con las - M tiene un emparejamiento perfecto de la componenetes pares de G[V \ U]. - M tiene un emparejamiento casi perfecto de las componentes impares de G[V \ U]. - M empareja a todos los vértices de U con vértices en componentes impares de G[V \ U].

29 Cubriendo los vértices El 1-esqueleto de un poliedro será una gráfica en la que toda componente es 3-conexa.

30 Cubriendo los vértices El 1-esqueleto de un poliedro será una gráfica en la que toda componente es 3-conexa. Veamos qué podemos hacer para gráficas 3-conexas!

31 Cubriendo los vértices

32 Cubriendo los vértices Si U = entonces M es un emparejamiento casi perfecto de Gcon V aristas, y con una más obtenemos un 2 cubrimiento con V 2 aristas.

33 Cubriendo los vértices Si U = entonces M es un emparejamiento casi perfecto de Gcon V aristas, y con una más obtenemos un 2 cubrimiento con V aristas. Pero queremos hacer las cuentas en términos del número de aristas de G. 2

34 Cubriendo los vértices Si U = entonces M es un emparejamiento casi perfecto de Gcon V aristas, y con una más obtenemos un 2 cubrimiento con V aristas. Pero queremos hacer las cuentas en términos del número de aristas de G. 2 G es 3-conexa así que tiene grado mínimo 3, por lo que tenemos m 3 V /2, así que nuestro cubrimiento tiene a lo más (m + 1)/3 aristas.

35 Cubriendo los vértices U G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

36 Cubriendo los vértices U Sean las aristas con al menos un extremo en G. Ē i G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

37 Cubriendo los vértices U Sean las aristas con al menos un extremo en G. Ē i Tenemos Ēi 3( V i + 1)/2. G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

38 Cubriendo los vértices U G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

39 Cubriendo los vértices U Tenemos un emparejamiento perfecto acá G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

40 Cubriendo los vértices U Tenemos un emparejamiento perfecto acá Entonces cubrimos sus vértices con la tercera parte de aristas G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

41 Cubriendo los vértices U G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

42 Cubriendo los vértices U Acá tenemos uno casi perfecto G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

43 Cubriendo los vértices U Para el vértice sin emparejar agregamos una arista más ( si es Acá tenemos uno casi perfecto adyacente a uno en U mejor!). G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

44 Cubriendo los vértices U Haciendo cuentas, no usamos más de la tercera parte de las aristas! G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

45 Cubriendo los vértices U Haciendo cuentas, no usamos más de la tercera parte de las aristas! m +1 3 G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

46 Cubriendo los vértices U Si G no es conexa, podemos llegar a que en el peor caso usaríamos 3m/8 aristas. G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

47 Cubriendo los vértices U Ahora tenemos iluminado a cada punto del poliedro que ve algún vértice. Veamos qué hacer con el resto! G 1 G 2 G j G j+1 G k 1 G k Componentes pares Componentes impares

48 Las cuatro clases x z y

49 Las cuatro clases x z y Arista derecha

50 Las cuatro clases x z y

51 Las cuatro clases x z y Arista izquierda

52 Las cuatro clases x z y

53 Las cuatro clases x z y

54 Las cuatro clases x z Interior y Arista techo

55 Las cuatro clases x z y

56 Las cuatro clases Interior x z y Arista piso

57 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) x z y

58 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) x y

59 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) x y

60 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) x y

61 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) Q a x y

62 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) Q a x y

63 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) Q a x y

64 Si no ves un vértice, no puedes ver sólo aristas izquierdas (igual derechas) Q a x y

65 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) x z y

66 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) Cortina x z y

67 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) Cortina x z y

68 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) Cortina x z y

69 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) Cortina x z y

70 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) Cortina x z y

71 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) Cortina x z y

72 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) Cortina x z y

73 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) x z y

74 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) x z y

75 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) x z y

76 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) x z y

77 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) x z y

78 Si no ves un vértice, no puedes ver sólo aristas techo (igual Piso) x z y

79 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia:

80 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia: Primero, encontramos un conjunto E 1 de aristas que cubra todos los vértices

81 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia: Primero, encontramos un conjunto E 1 de aristas que cubra todos los vértices Después, partimos el resto de aristas en 4 clases, tales que cualquier punto del poliedro que no vea ningún vértice ve al menos 2 aristas en clases distintas. Tomamos las tres clases más pequeñas.

82 Cuántas lámparas-arista son suficientes para iluminar un poliedro? La estrategia: Primero, encontramos un conjunto E 1 de aristas que cubra todos los vértices Después, partimos el resto de aristas en 4 clases, tales que cualquier punto del poliedro que no vea ningún vértice ve al menos 2 aristas en clases distintas. Tomamos las tres clases más pequeñas. Usamos: E (m E 1 ) = 3m + E 1 4 lámparas

83 Cuántas lámparas-arista son suficientes para iluminar un poliedro?

84 Cuántas lámparas-arista son suficientes para iluminar un poliedro? Podemos iluminar el interior de cualquier poliedro usando más o menos 27m/32 lámparas aristas.

85 Cuántas lámparas-arista son suficientes para iluminar un poliedro? Podemos iluminar el interior de cualquier poliedro usando más o menos 27m/32 lámparas aristas. Si el 1-esqueleto fuera conexo, con 5m/6 lámparas arista sería suficiente.

86 Cuántas lámparas-arista son suficientes para iluminar un poliedro? Podemos iluminar el interior de cualquier poliedro usando más o menos 27m/32 lámparas aristas. Si el 1-esqueleto fuera conexo, con 5m/6 lámparas arista sería suficiente. No hacemos ninguna suposición sobre el género del poliedro...

87 Cuántas lámparas-arista son suficientes para iluminar un poliedro? Podemos iluminar el interior de cualquier poliedro usando más o menos 27m/32 lámparas aristas. Si el 1-esqueleto fuera conexo, con 5m/6 lámparas arista sería suficiente. No hacemos ninguna suposición sobre el género del poliedro... Sin embargo, la cota sigue bastante holgada, la mejor cota inferior la da un poliedro que necesita m 6 lámparas arista.

88

PÁGINA 196. 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos.

PÁGINA 196. 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos. Soluciones a las actividades de cada epígrafe PÁGINA 196 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos. a) b) c) d) a) Triangular,

Más detalles

Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas

Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

6 EXPRESIONES FRACCIONARIAS Y RADICALES

6 EXPRESIONES FRACCIONARIAS Y RADICALES EJERCICIOS PROPUESTOS. Halla el valor numérico de la fracción 7 0 para los valores, 0 y. 8 Para : Para 0: 0 0 Para : 7 0 0. Valor indeterminado. 8 0 7 0 0 0 5 0 8 8. 7 0. No eiste valor numérico. 8 0.

Más detalles

4. Método Simplex de Programación Lineal

4. Método Simplex de Programación Lineal Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción

Más detalles

Problemas + PÁGINA 231

Problemas + PÁGINA 231 PÁGINA 231 Pág. 1 Problemas + 14 Queremos alicatar una pared de 4,6 m 3 m con azulejos cuadrados de 20 cm de lado como este: a) Completa, en tu cuaderno, un mosaico de 7 7 azulejos. b) Averigua cuántos

Más detalles

Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4

Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 25. El número 2 x es la mayor potencia entera de 2 entre las que tienen nueve dígitos en base 10, y sus nueve dígitos son distintos. Usando que

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 200

9Soluciones a los ejercicios y problemas PÁGINA 200 PÁGINA 200 Pág. 1 T ipos de cuerpos geométricos 1 Di, justificadamente, qué tipo de poliedro es cada uno de los siguientes: A B C D E F Hay entre ellos algún poliedro regular? A 8 Prisma pentagonal recto.

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es. Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,

Más detalles

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos?

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? Geometría en 3D. Problemas del capítulo 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? 2. Qué es volumen y cómo lo encontramos? 3. Cómo se relacionan los volúmenes

Más detalles

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej. Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid 9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Números naturales, principio de inducción

Números naturales, principio de inducción , principio de inducción. Conjuntos inductivos. Denotaremos por IN al conjunto de números naturales, IN {,,, 4, 5, 6,...}, cuyos elementos son suma de un número finito de unos. Recordemos que IN es cerrado

Más detalles

José María Sorando Muzás Teoría de Números Sumas de impares y de pares 1 + 3 + 5 +... + (2n + 1) es un cuadrado perfecto

José María Sorando Muzás Teoría de Números Sumas de impares y de pares 1 + 3 + 5 +... + (2n + 1) es un cuadrado perfecto La Al pensar que todo podía explicarse con los números, los Pitagóricos establecieron gran cantidad de clasificaciones entre los éstos y se dedicaron a descubrir sus propiedades. Así iniciaron una rama

Más detalles

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8 Ejercicios de potencias y raíces con soluciones 1 Sin realizar las potencias, indica el signo del resultado: a) ( ) 4 b) ( ) 10 c) ( 1) 7 d) ( 5) 9 a) Positivo por tener exponente par. b) Positivo por

Más detalles

SUBCONJUNTOS y CONJUNTO POTENCIA. COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013

SUBCONJUNTOS y CONJUNTO POTENCIA. COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013 1 SUBCONJUNTOS y CONJUNTO POTENCIA COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013 2 Material de Estudio Libro de Koshy: páginas 71-72, 78-84. Vídeos

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Los poliedros y sus elementos

Los poliedros y sus elementos Los poliedros y sus elementos De las siguientes figuras, rodea las que sean poliedros o tengan forma de poliedro. Dibuja y escribe el nombre de tres objetos que tengan forma de poliedro. espuesta libre

Más detalles

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n. 952822586 http:/www.mariaauxiliadora2.com SISTEMAS DE ECUACIONES

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n. 952822586 http:/www.mariaauxiliadora2.com SISTEMAS DE ECUACIONES Colegio C. C. Mª Auiliadora II Marbella Urb. La Cantera, s/n. 988 http:/www.mariaauiliadora.com º ESO SISTEMAS DE ECUACIONES º. Une con flechas cada pareja de números con el sistema del que es solución:

Más detalles

Separadores minimales de vértices de grafos dualmente cordales y caracterizaciones

Separadores minimales de vértices de grafos dualmente cordales y caracterizaciones Separadores minimales de vértices de grafos dualmente cordales y caracterizaciones Mar del Plata, septiembre de 2009 Definiciones rápidas Un uv-separador de G es un conjunto S V (G) tal que G S es no conexo

Más detalles

LECTURA N 9: PRODUCTOS NOTABLES

LECTURA N 9: PRODUCTOS NOTABLES LECTURA N 9: PRODUCTOS NOTABLES Tomado con fines instruccionales de: Santamaría, J. (006). Productos Notables. Artículo no publicado (pp.1-8). Tinaquillo, Estado Cojedes. Al iniciar nuestra aventura por

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

Conversión de unidades: factores de conversión vs. reglas de tres

Conversión de unidades: factores de conversión vs. reglas de tres Conversión de unidades: factores de conversión vs. reglas de tres Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad

Más detalles

Teoremas del seno y el coseno: ejercicios resueltos

Teoremas del seno y el coseno: ejercicios resueltos Teoremas del seno y el coseno: ejercicios resueltos 1) En los siguientes triángulos, halla los lados y ángulos restantes: a) b) c) d) 22º 12 92º 6 110º 25 28 8 79º 15 70º 5 2) Desde lo alto de un globo

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

3.- Si duplico el número 1.235 y le resto los 4/5 del número 2.480, cuál será el número que resulte?

3.- Si duplico el número 1.235 y le resto los 4/5 del número 2.480, cuál será el número que resulte? VERANO 2010 MATEMÁTICAS: 6º PRIMARIA 1 1. - Calcula estos ejercicios: a) x + 2 - (24-188) : 8 b) (2 + - 7) x 12 c) x (4 + ) - [ 12 : (2 + 4) ] - 6 d) 10 : (4 + 21-10) 2. - Un librero ha comprado 120 libros.

Más detalles

si con 24 g de magnesio reaccionan 6 g de oxígeno pues con 6 g reaccionarán x

si con 24 g de magnesio reaccionan 6 g de oxígeno pues con 6 g reaccionarán x Hoja número 1. 1) Si 24 g de magnesio se combinan exactamente con 16 g de oxígeno para formar óxido de magnesio, a) cuántos gramos de óxido se habrán formado?; b) a partir de 6 g de magnesio cuántos gramos

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

UNIDAD 2.- EL DIBUJO TÉCNICO: EXPRESIÓN Y

UNIDAD 2.- EL DIBUJO TÉCNICO: EXPRESIÓN Y UNIDAD 2.- EL DIBUJO TÉCNICO: EXPRESIÓN Y COMUNICACIÓN GRÁFICA 2.1.- DIBUJO TÉCNICO 2.2.- LOS MATERIALES DE DIBUJO TÉCNICO 2.3.- LAS NORMAS DE DIBUJO TÉCNICO: LA NORMALIZACIÓN 2.4.- EL BOCETO Y EL CROQUIS

Más detalles

Matemáticas 1º ESO. 1. Deltaedros y diedros. 2. Posiciones relativas de planos. 3. Desarrollos planos. 4. Poliedros regulares

Matemáticas 1º ESO. 1. Deltaedros y diedros. 2. Posiciones relativas de planos. 3. Desarrollos planos. 4. Poliedros regulares 5 Poliedros Matemáticas 1º ESO 1. Deltaedros y diedros 2. Posiciones relativas de planos 3. Desarrollos planos 4. Poliedros regulares 188 Poliedros 1. Deltaedros y diedros DELTAEDROS Material: Triángulos

Más detalles

Es evidente la continuidad en En el punto, se tiene:

Es evidente la continuidad en En el punto, se tiene: Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 19 REFLEXIONA Las cajas, los contenedores y la caseta son poliedros. También es un poliedro la figura que forma la caja que pende de la grúa con las cuatro cuerdas que la sostienen. Cuántas

Más detalles

Cómo hacer divisiones con y sin decimales

Cómo hacer divisiones con y sin decimales Cómo hacer divisiones con y sin decimales Las divisiones no son una operación tan difícil como muchos piensan. Es cierto que a veces son largas de hacer, pero largo no quiere decir que sea complicado,

Más detalles

XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 2009

XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 2009 XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 009 Problema 1: Veamos la siguiente figura: p q 4 El área del rectángulo es 0. Recordemos que el área

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

Lección 13: Resolución algebraica de sistemas de ecuaciones

Lección 13: Resolución algebraica de sistemas de ecuaciones GUÍA DE MATEMÁTICAS III Lección 1: Resolución algebraica de sistemas de ecuaciones En la lección anterior hemos visto cómo resolver gráficamente un sistema de ecuaciones. Si bien ese método es relativamente

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico

Más detalles

Límites e indeterminaciones

Límites e indeterminaciones Límites e indeterminaciones La idea de límite de una función no es en sí complicada, pero hubo que esperar hasta el siglo XVII a que los matemáticos Newton 1 y Leibniz 2 le dieran forma y la convirtiesen

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

Zapatero a tus zapatos

Zapatero a tus zapatos Zapatero a tus zapatos P. Jara 10 de julio de 2009 1. Zapatero a tus zapatos Vamos a tratar un problema en el que el uso de una retícula plana nos va a dar una solución sencilla. Se trata de determinar

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

UNIDAD 10 CUERPOS GEOMÉTRICOS

UNIDAD 10 CUERPOS GEOMÉTRICOS UNIDAD 10 CUERPOS GEOMÉTRICOS EJERCICIOS RESUELTOS Objetivo General. Al terminar ésta unidad identificarás los diferentes tipos de Cuerpos Geométricos, resolverás ejercicios y problemas en los que apliques

Más detalles

Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma

Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma Polinomios Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma p(x) = a 0 + a 1 x +... + a n x n (1) donde x es la variable y a 0,

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

RAZONES Y PROPORCIONES

RAZONES Y PROPORCIONES 1. Razón RAZONES Y PROPORCIONES Cuando comparemos 2 magnitudes mediante una división diremos que esas 2 magnitudes se encuentran en una razón. Por ejemplo, sean a y b dos cantidades, entonces una razón

Más detalles

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN EL LENGUAJE DEL ORDENADOR Todos los elementos electrónicos del ordenador son digitales, es decir, trabajan con dos estados posibles: - El estado de activación supone

Más detalles

Planaridad. Algoritmos y Estructuras de Datos III

Planaridad. Algoritmos y Estructuras de Datos III Planaridad Algoritmos y Estructuras de Datos III Por qué planares? Por qué planares? Por qué planares? Grafos planares Definiciones: Una representación planar de un grafo G es un conjunto de puntos en

Más detalles

Construyamos una tabla de valores que incluya valores negativos y positivos de.

Construyamos una tabla de valores que incluya valores negativos y positivos de. Materia: Matemáticas de 4to año Tema: Representación gráfica de una función exponencial Marco teórico Funciones exponenciales Iniciemos esta sección construyendo las gráficas de algunas funciones exponenciales.

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos

Más detalles

Divisores de un número y regla del producto

Divisores de un número y regla del producto Divisores de un número y regla del producto Eugenio Flores En estas notas, nuestra intención es llegar a través de varios pasos naturales, a poder ver la fórmula para calcular los divisores de un número

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

DIAGRAMAS DE FLUJOS. Qué son Los Diagramas de Flujo y Para qué se Usan?

DIAGRAMAS DE FLUJOS. Qué son Los Diagramas de Flujo y Para qué se Usan? DIAGRAMAS DE FLUJOS Los diagramas de flujo representan la secuencia o los pasos lógicos para realizar una tarea mediante unos símbolos. Dentro de los símbolos se escriben los pasos a seguir. Un diagrama

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2011 CANGURO MATEMÁTICO PRUEBA PRELIMINAR CUARTO AÑO

OLIMPÍADA JUVENIL DE MATEMÁTICA 2011 CANGURO MATEMÁTICO PRUEBA PRELIMINAR CUARTO AÑO OLIMPÍADA JUVENIL DE MATEMÁTICA 2011 CANGURO MATEMÁTICO PRUEBA PRELIMINAR CUARTO AÑO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. En un cruce peatonal se alternan franjas blancas y negras, cada

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Página 85 PRACTICA Desarrollos y áreas Haz corresponder cada figura con su desarrollo y calcula el área total: I II cm III cm IV cm 7 cm A B C D 8 Pág. I C Área de una cara: 6 h + 6 h + 9 h 6 9

Más detalles

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 1.- Cómo utilizar la tabla de la distribución Binomial? Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de obtener cara es del 30%. La probabilidad que salga cruz será,

Más detalles

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1 Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1. Los índices de refracción de un dioptrio esférico cóncavo, de 20,0 cm de radio, son 1,33 y 1,54 para el primero y el segundo medios.

Más detalles

CHAPTER 7. Desigualdades en triángulos. 41. Ángulos exteriores.

CHAPTER 7. Desigualdades en triángulos. 41. Ángulos exteriores. HPTR 7 esigualdades en triángulos. 41. Ángulos exteriores. l ángulo suplementario a un ángulo de un triángulo (o polígono) se llama unángulo exterior de este triángulo (o polígono). Por ejemplo (Figura

Más detalles

Ejercicios resueltos de aritmética

Ejercicios resueltos de aritmética Ejercicios resueltos de aritmética 1) Calcula: a) 5 3 7 + 1 + 8 b) 2 3 + 4 + 1 8 + 2 c) 1 3 + 5 7 + 9 11 d) 2 + 4 6 8 + 10 12 + 14 2) Quita paréntesis: a) a + (b + c) b) a (b + c) c) a + (b c) d) a (b

Más detalles

9Soluciones a las actividades de cada epígrafe PÁGINA 186

9Soluciones a las actividades de cada epígrafe PÁGINA 186 9Soluciones a las actividades de cada epígrafe PÁGINA 186 Pág. 1 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los

Más detalles

Divisibilidad y congruencias

Divisibilidad y congruencias Divisibilidad y congruencias Ana Rechtman Bulajich y Carlos Jacob Rubio Barrios Revista Tzaloa, año 1, número 2 Empecemos por explicar el significado de la palabra divisibilidad. En este texto vamos a

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

Múltiplos y divisores

Múltiplos y divisores Divisibilidad 1. Múltiplos y divisores. 2. Propiedades de los múltiplos. 3. Criterios de divisibilidad. 4. Números primos y compuestos. 5. Descomposición en factores primos. 6. Máximo común divisor y mínimo

Más detalles

TEMA 2: EL INTERÉS SIMPLE

TEMA 2: EL INTERÉS SIMPLE TEMA 2: EL INTERÉS SIMPLE 1.- CAPITALIZACIÓN SIMPLE 1.1.- CÁLCULO DEL INTERÉS: Recibe el nombre de capitalización simple la ley financiera según la cual los intereses de cada periodo de capitalización

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS Los números naturales De forma intuitiva podemos definir los números naturales de la siguiente forma: DEFINICIÓN Los números naturales son aquellos

Más detalles

COMPETENCIA MATEMÁTICA

COMPETENCIA MATEMÁTICA Servicio de Inspección Educativa 2 0 1 4 / 1 5 EVALUACIÓN DIAGNÓSTICA 2º DE EDUCACIÓN SECUNDARIA COMPETENCIA MATEMÁTICA Nombre y apellidos:... Centro escolar:... Grupo/Aula:... Localidad:... Fecha:...

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 255 EJERCICIOS Construcciones y ejes de simetría 1 a) Halla el ángulo central de un octógono regular. b) Dibuja un octógono regular inscrito en una circunferencia de 5 cm de radio, construyendo

Más detalles

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES. INTRODUCCIÓN Qué son? Las ecuaciones y las inecuaciones son expresiones matemáticas que representan problemas reales, por ejemplo : Que carero es el tío del quiosco!, he salido

Más detalles

Y qué pasaría si? Investiga con GeoGebra José Luis Álvarez García

Y qué pasaría si? Investiga con GeoGebra José Luis Álvarez García Investigando con cuadriláteros 1.1 El paralelogramo de Varignon Si unimos los puntos medios de los lados de un cuadrilátero cualquiera obtenemos un paralelogramo? Compruébalo con GeoGebra Selecciona la

Más detalles

Uso de representaciones geométricas para facilitar la transición de la aritmética al álgebra 1

Uso de representaciones geométricas para facilitar la transición de la aritmética al álgebra 1 Docencia Uso de representaciones geométricas para facilitar la transición de la aritmética al álgebra 1 Alfinio Flores Peñafiel Arizona State University recibido: noviembre de 1998 publicado: febrero del

Más detalles

Ejercicios resueltos de funciones

Ejercicios resueltos de funciones Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)

Más detalles

LA DIVISIBILIDAD. Luego, 24 es divisible entre 3. CÓMO SABER SI UN NÚMERO ES DIVISIBLE ENTRE OTRO, SIN HACER LA DIVISIÓN?

LA DIVISIBILIDAD. Luego, 24 es divisible entre 3. CÓMO SABER SI UN NÚMERO ES DIVISIBLE ENTRE OTRO, SIN HACER LA DIVISIÓN? LA DIVISIBILIDAD Qué entendemos por divisibilidad? Es la propiedad de que un número pueda ser dividido por otro un número exacto de veces o que el resto sea cero. Luego, 24 es divisible entre 3. CÓMO SABER

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Funciones. Resumen del contenido

Funciones. Resumen del contenido C APÍTULO 7 Funciones Resumen del contenido En el Capítulo 7, los estudiantes aumentan su entendimiento del crecimiento lineal y de las ecuaciones observando en detalle una clase especial de relación llamada

Más detalles

Lógica Proposicional, Teoremas y Demostraciones

Lógica Proposicional, Teoremas y Demostraciones Lógica Proposicional, Teoremas y Demostraciones Manuel Maia 19 de marzo de 2012 1 Proposiciones Una proposición es una oración declarativa o una expresión matemática que es verdadera o es falsa, pero no

Más detalles

Funciones: raíz cuadrada, potencia, exponencial y logaritmo

Funciones: raíz cuadrada, potencia, exponencial y logaritmo Funciones: raíz cuadrada, potencia, exponencial y logaritmo Función raíz cuadrada La función raíz cuadrada de un número, es el número mayor o igual que cero, que elevado al cuadrado se obtiene el primer

Más detalles

FUNCIONES CONDICIONALES EN EXCEL

FUNCIONES CONDICIONALES EN EXCEL FUNCIONES CONDICIONALES EN EXCEL FORMATO CONDICIONAL, 2 FUNCION CONTAR.SI, 3 FUNCION SI, 1 FUNCION SUMAPRODUCTO, 4 FUNCION SUMAR.SI, 5 1. FUNCION SI La función SI permite evaluar una condición, en el caso

Más detalles

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los

Más detalles

Solución del cubo de Rubik

Solución del cubo de Rubik Solución del cubo de Rubik Conoce a tu enemigo : el cubo de Rubik Esto es todo lo que necesitas saber antes de empezar a solucionar el cubo de Rubik (también conocido como cubo Rubik, cubo mágico, cubo

Más detalles

Movimientos rígidos. Gonzalo Zubieta Badillo Departamento de Matemática Educativa, Cinvestav

Movimientos rígidos. Gonzalo Zubieta Badillo Departamento de Matemática Educativa, Cinvestav Movimientos rígidos Gonzalo Zubieta Badillo Departamento de Matemática Educativa, Cinvestav Resumen: Los movimientos rígidos son una parte de las transformaciones del plano en si mismo, su estudio tiene

Más detalles

a) 8 triángulos equiláteros y 6 cuadrados. V=12, C=14, A=24. b) 8 triángulos equiláteros y 6 octógonos no regulares. V=24, C=14, A=36.

a) 8 triángulos equiláteros y 6 cuadrados. V=12, C=14, A=24. b) 8 triángulos equiláteros y 6 octógonos no regulares. V=24, C=14, A=36. 1. CUBO CORTADO a) Uniendo los puntos medios de las aristas de un cubo, como se ve en la figura, se obtiene una pirámide triangular por cada vértice. Quitando estas pirámides qué polígonos forman las caras

Más detalles

SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN

SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN Observaciones: En la página de este blog titulada SUDOMATES se explica cómo se puede aprovechar la atracción de los sudokus entre muchos de nuestros alumnos, para

Más detalles

Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.

Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

U.E. Colegio Los Arcos Matemáticas Guía #27B Sexto grado Mínimo común múltiplo

U.E. Colegio Los Arcos Matemáticas Guía #27B Sexto grado Mínimo común múltiplo GUIA DE TRABAJO Materia: Matemáticas Guía # 27B. Tema: Mínimo común. Problemas. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

Fórmula para generar el triángulo de Pitágoras

Fórmula para generar el triángulo de Pitágoras Fórmula para generar el triángulo de Pitágoras El teorema de Pitágoras es muy conocido por todo el mundo, uno de sus triángulos más conocido es el de lados 3, 4 y 5. Catetos 3 y 4, hipotenusa 5. Existe

Más detalles

Polinomios. Cajón de Ciencias. Qué es un polinomio?

Polinomios. Cajón de Ciencias. Qué es un polinomio? Polinomios Qué es un polinomio? Si ya sabes lo que es un monomio, poco más hay que explicar: un polinomio es un conjunto de varios monomios que no pueden operarse entre sí. Si aún no sabes lo que es un

Más detalles