4. " $#%&' (#) para todo $#* (desigualdad triangular).

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4. " $#%&' (#) para todo $#* (desigualdad triangular)."

Transcripción

1 10

2 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes condiciones: 1 2 si, y sólo si (separación) 3 para todo! (simetría) 4 " $#%&' (#) para todo $#* (desigualdad triangular) Definición 212 (Espacio métrico) Se llama espacio métrico a un par $+, donde es un conjunto y es una distancia definida en Ejemplo 213 (1) El espacio métrico de los números reales con la métrica del valor absoluto de la diferencia, es decir, - / definida como (2) El espacio métrico discreto Sea un conjunto no vacío cualquiera; si 4 definimos si - y 6 si 87 $+ es un espacio métrico 9 Antes de continuar con el siguiente, e importante ejemplo, conviene establecer una interesante relación: 11

3 "& 12 CAPÍTULO 2 ESPACIOS MÉTRICOS Proposición 214 (Desigualdad de Cauchy-Schwarz) Si y números reales cualesquiera, entonces: Demostración Dado cualquier se verifica que *& Si desarrollamos el cuadrado y agrupamos tendremos que& &, tomando En estos términos, lo que queremos probar es que Si " todos los y por tanto también todos los Si 7 podemos poner $%& &, "!)*& $#& para todo 8 El segundo miembro (') (') " es mínimo si y si lo sustituimos en la expresión anterior " y, " Ejemplo 21 (1) Sea, y para los puntos, e * se definen las aplicaciones: *1 1 & & +*, --0 0/13$ En el gráfico anterior puede verse como es cada una de estas distancias Las tres son generalizaciones de la métrica del valor absoluto de la diferencia, y las tres tienen nombre propio: se llama la métrica del taxi, se llama la métrica euclídea o usual y se llama la métrica del ajedrez o del máximo

4 & 21 DISTANCIAS Y ESPACIOS MÉTRICOS 13 e * 0 se define: 1 1 (2) El ejemplo anterior se puede generalizar a Sean - 0 +*, 1 $ La prueba de que y son distancias es una mera comprobación Lo mismo sucede con las propiedades (1) y (2); no así con la desigualdad triangular en la que hay que utilizar la desigualdad de Cauchy-Schwarz Veámoslo Sean $#* y consideremos ($#%&'(#) #& (# & # (# #(# aplicando la desigualdad de Cauchy-Schwarz al último sumando de la expresión anterior, podemos continuar #& (# #& (# &) & # (# # (# #3& (# ( Las tres métricas se pueden considerar generalizaciones de la métrica del valor absoluto en vista en el Ejemplo 103(1) (3) El conjunto de los números complejos con la métrica del módulo de la diferencia (# #21 # #1 con #$#, es un espacio métrico

5 1 14 CAPÍTULO 2 ESPACIOS MÉTRICOS (4) Sea funciones acotadas, sea! (de la palabra inglesa bounded que significa acotada), el conjunto de Dadas dos funciones (que son los puntos de este espacio), -- ) 1 1 La siguiente gráfica nos da una idea de cómo es esta distancia - El par $ - es un espacio métrico y la métrica se denomina métrica del supremo o métrica - uniforme En concreto podemos destacar por su interés el espacio de las sucesiones acotadas sucesión acotada * acotada con la distancia -- () El espacio sobre un intervalo cerrado con la distancia es también un espacio métrico )0 1 1 continua de las funciones reales continuas 1 (6) Las siguientes métricas se pueden definir en el producto de dos espacios métricos Sean $+ y $ ; se define para 6, * donde! - : 0 3&4

6 $ ( &' +*, -- $ Se ve claramente que se trata de una construcción similar a la seguida en el ejemplo 10(1) para la construcción de tres distancias en ; y juegan el papel de DISTANCIAS Y ESPACIOS MÉTRICOS 1 Proposición 216 Sea 1 $#% $+ un espacio métrico, entonces se verifica (#) 1+" para todo $# Demostración Aplicando la desigualdad triangular tenemos $#%" & $#% 3&' (#), por tanto $#% (#) " De forma análoga podemos poner (#) " (#) & $#% & y tendremos que " $#% (#) Si unimos las dos desigualdades obtenidas en los párrafos anteriores " $#% (#) " Definición 217 (Subespacio métrico) Sea $+ un espacio métrico y sea un subconjunto de Sea también 2, definida por 6 El par $ es un espacio métrico y se llama un subespacio métrico de, y la métrica recibe el nombre de métrica inducida por Si, cuando se hable de como de un espacio métrico, siempre se estará suponiendo que su métrica es la métrica inducida por la métrica euclídea de, salvo que se diga otra cosa en contra En particular esto se aplica a los diferentes tipos de intervalos de números reales Ejemplo (1) + con la métrica inducida por el valor absoluto es subespacio métrico de (2) con la métrica inducida por es subespacio métrico de (3) El espacio de las sucesiones reales con límite 0, es subespacio métrico de - 9 Definición 219 (Distancia de un punto a un conjunto) Sea $+ un espacio métrico, sea un subconjunto Definimos la distancia de un punto al subconjunto como que existe dado que el conjunto sobre el que tomamos el ínfimo, está acotado inferiormente por 0

7 16 CAPÍTULO 2 ESPACIOS MÉTRICOS Definición 2110 (Distancia entre conjuntos) Sean y dos subconjuntos de Se define la distancia del subconjunto al subconjunto como * Ejemplo 2111 (1) Si es la métrica discreta sobre, y 0 si si * (2) Consideremos con la distancia usual % 4 ; 1 4 ; (+ 1 1% 4 6 Evidentemente, si y, entonces ejemplo (3) Consideremos $ Entonces *, entonces si si 31 y sea 7 2, entonces: El recíproco no es cierto, como muestra este &", y2 &* Una gráfica ayuda a realizar este sencillo cálculo: la distancia que queremos calcular es la diferencia entre la longitud de la diagonal de un cuadrado de lado 1, que es y diámetro del círculo que es 1 9

8 & 22 BOLAS Bolas Los subconjuntos, quizás más importantes, de un espacio métrico, que vamos a estudiar a continuación, son las bolas abiertas; que darán origen a un concepto fundamental: el de conjunto abierto Se trata de una generalización del concepto conocido de intervalo abierto centrado en un punto en Definición 221 (Bola abierta) Sea $+ un espacio métrico y sean, y un número real Definimos la bola abierta en, centrada en y de radio como el conjunto - Si se necesita especificar con qué métrica se está trabajando, se representará la bola abierta por Ejemplo 222 (1) En 11 la bola abierta de centro y radio es el intervalo abierto de extremos & (2) La palabra bola debe su origen al caso euclídeo En $, tenemos que - &4 y es el interior del círculo de radio centrado en En el espacio $,- esfera sólida de radio centrada en $#% &8&'# es el interior de la bola o Las bolas abiertas, sin embargo, pueden ser realmente muy diferentes y no tener la apariencia de una bola esférica En $ -*, la bola-(+ es el interior del cuadrado de centro y de lados paralelos a los ejes de coordenadas y con longitud En $ con la métrica, la bola-(+ es el interior del cuadrado centrado en el punto (+$ y con vértices en los puntos (+ (+ $ $ Con la gráfica siguiente nos podemos hacer una idea de cómo son estas tres bolas, con centro 0 y radio 6 en el plano (+ (+ (+

9 - (3) En +,- es el conjunto de todas las funciones continuas en +, cuya gráfica se encuentra entre las gráficas de las funciones y & 18 CAPÍTULO 2 ESPACIOS MÉTRICOS (4) En el espacio métrico discreto $ se tiene que () Sea si ", si con la métrica del valor absoluto en Entonces, en, (+, mientras que para la métrica inducida en, 0 (+ 9 Las bolas abiertas en un subespacio métrico son la intersección con el subespacio de la bola del espacio total con el mismo centro y radio: Proposición 223 (Bolas en subespacios métricos) Sea $+ un espacio métrico, y sea un subconjunto de ; entonces las bolas abiertas del subespacio métrico $ son la intersección de las correspondientes bolas en el espacio total con el subconjunto Es decir, 23 Abiertos Propiedades Uno de los objetivos de este curso es llegar al concepto de espacio topológico por medio del estudio de los espacios métricos, que son más naturales, y de sus propiedades Empezaremos con una propiedad característica de las bolas abiertas, que nos va a dar lugar a introducir una primera definición de conjunto abierto; en este caso, abierto en un espacio métrico Lema 231 Sea- una bola abierta en un espacio métrico $+, y sea entonces existe un tal que- - -, Demostración Basta tomar de modo que así ya que, como -, entonces #*$- entonces, por la desigualdad triangular, $#% " &' $#% " 3& El número - se puede escoger, puesto que si Entonces- 3&

10 existe 23 ABIERTOS PROPIEDADES 19 Por tanto, # - Teorema 232 (Propiedad de Hausdorff) Si $+ es un espacio métrico y son dos puntos distintos, existen tales que- - Demostración (Ejercicio) Este resultado permite plantearse la definición de un tipo de subconjuntos que verifican esta condición, es decir, de aquellos subconjuntos tales que, para cualquier punto del subconjunto, existe una bola abierta centrada en él y totalmente contenida en el subconjunto Serán los conjuntos abiertos Definición 233 (Conjunto abierto) Sea $+ un espacio métrico Diremos que un subconjunto es abierto en $+ si para cada 4 un tal que- Observemos que el número real depende del punto, es decir, para diferentes serán necesarios diferentes radios Corolario 234 Cualquier bola abierta en un espacio métrico Ejemplo 23 $+ es un abierto (1) Cualquier intervalo abierto de la recta real, incluso los intervalos abiertos no acotados, es en subconjunto abierto de la recta real con la métrica del valor absoluto de la diferencia También lo son las uniones de intervalos abiertos Sin embargo los intervalos, y no lo son (2) Un conjunto abierto no tiene por qué ser una bola abierta Así el subconjunto de : 1 1, 1 31 no es una bola abierta de para la métrica euclídea, y sin embargo sí que es un subconjunto abierto Sin embargo el conjunto siguiente no es abierto 2 1 1, 1 31%" (3) En la métrica discreta, cualquier subconjunto es abierto (4) La condición de ser abierto depende de la métrica El subconjunto métrica discreta, pero no lo es para la métrica euclídea es abierto para la () La condición de ser abierto también depende del conjunto sobre el que se define la métrica Así, el intervalo + es abierto en + $, pero no lo es en el espacio total con la métrica del valor absoluto 9 Teorema 236 Sea $+ un espacio métrico, entonces se verifican: 1 y son abiertos

11 % 20 CAPÍTULO 2 ESPACIOS MÉTRICOS 0 2 Si es una familia de abiertos en, entonces es un abierto 3 Si 6 % es una familia finita de abiertos, entonces es un abierto Demostración (1) Es claro ; como es abierto, para algún será que quiere decir que la unión es un conjunto abierto y como cadaes abierto, cada existirá un tal que- Si tomamos tendremos que - - y por tanto- - Ejemplo 237 La intersección arbitraria de abiertos no es, en general un abierto Si consideramos la familia de abiertos en 131, su intersección es, que no es abierto 9 (2) Si,existirá un tal que -, lo (3) Si,entonces para todo % uno de estos conjuntos debe contener una bola de centro, es decir, para cada % para todo 6 % Algunas de las propiedades e ideas más importantes que abordaremos y, que de hecho, ya se están abordando en análisis, necesitan del estudio de lo que ocurre en un punto y, más en concreto, en las cercanías, en los alrededores de un punto; así sucede con la continuidad, con la convergencia, Necesitamos realizar un estudio local Vamos a ver algunos conceptos que facilitarán dicho estudio Definición 238 (Entorno) Sea $+ un espacio métrico, Diremos que es un entorno de si existe un tal que- Ejemplo 239 un subconjunto y (1) Una bola abierta en un espacio métrico, es entorno de todos sus puntos En concreto, en con la métrica usual, un intervalo abierto, es entorno de todos sus puntos (2) El intervalo + es un entorno del punto, pero no lo es del punto 9 Proposición 2310 Un subconjunto de un espacio métrico entorno de todos sus puntos $+ es abierto si y sólo si es Demostración (Ejercicio) 24 Cerrados Tan importantes como los abiertos, son sus complementarios, los llamaremos cerrados

12 ( existe Si ( es 24 CERRADOS 21 Definición 241 (Cerrado) Sea $+ un espacio métrico Diremos que un subconjunto es cerrado en $+ si su complementario un subconjunto abierto en $+ Ejemplo 242 En, con la métrica usual, los intervalos cerrados son subconjuntos cerrados; también lo son las semirrectas cerradas & o Proposición 243 Un subconjunto de un espacio métrico todo ' un tal que- $ Demostración es cerrado quiere decir que, existe tal que- Si para todo entonces es abierto, luego es cerrado Ejemplo 244 (1) En $, el conjunto 1 No lo son los intervalos de la forma, o 9, es decir,- $, $+ es un cerrado si y sólo si para es abierto, por tanto, para todo, entonces- ), existe tal que- y )" no es cerrado 1%", 1 31+", sí lo es $, cualquier recta es un conjunto cerrado 9 (2) En Definición 24 Sea $+ un espacio métrico, sea, y bola cerrada de centro y radio al conjunto " Las bolas cerradas contienen a las correspondientes bolas abiertas número real Llamaremos Proposición 246 En un espacio métrico, las bolas cerradas son conjuntos cerrados, Demostración (Ejercicio) Teorema 247 Sea $+ un espacio métrico, entonces se verifican: 1 y son cerrados 2 Si es una familia de cerrados en, entonces es un cerrado 3 Si 6 % es una familia finita de cerrados, entonces es un cerrado Demostración Se trata de aplicar las leyes de Morgan (Ejercicio)

13 22 CAPÍTULO 2 ESPACIOS MÉTRICOS Ejemplo 248 (1) La unión arbitrario de cerrados no es, necesariamente un cerrado Consideremos la familia 3 de intervalos cerrados en ; su intersección + no es cerrado + + (2) En la métrica discreta cualquier subconjunto es cerrado (3) Hay subconjuntos que no son ni abiertos ni cerrados, por ejemplo + euclídea con la métrica (4) También es posible que un subconjunto sea a la vez abierto y cerrado Por ejemplo, con la métrica discreta, cualquier subconjunto es a la vez abierto y cerrado 9 Definición 249 Sea $+ un espacio métrico y acotado si eixten y tal que - Ejemplo 2410 (1) con la métrica euclídea es un espacio métrico no acotado (2) con la métrica discreta es un espacio métrico acotado (3) Los subespacios, métricos acotados El subespacio 2 Diremos que es un subconjunto y de con la métrica euclídea son subespacios & no es acotado (4) Cualquier bola, abierta o cerrada, es un subespacio acotado 9 Definición 2411 (Diámetro de un conjunto) Sea $+ un espacio métrico y subconjunto acotado Definimos el diámetro de, y se representa por como Ejemplo (1) Los diámetros de los subconjuntos, y respectivamente, y (2) El subespacio + un de con la métrica usual son + de es un subconjunto acotado para cada una de las tres métricas 9, y - Sus diámetros para cada una de estas tres métricas son, respectivamente,, y

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

A partir de la definición obtenemos las siguientes propiedades para estas funciones:

A partir de la definición obtenemos las siguientes propiedades para estas funciones: Capítulo 1 Conjuntos Supondremos conocidas las nociones básicas sobre teoría de conjuntos, tales como subconjuntos, elementos, unión, intersección, complemento, diferencia, diferencia simétrica, propiedades

Más detalles

TEMA 1. NÚMEROS REALES Y COMPLEJOS

TEMA 1. NÚMEROS REALES Y COMPLEJOS TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones

Más detalles

Sigma-álgebras. Requisitos. Operaciones con conjuntos, operaciones con familias de conjuntos.

Sigma-álgebras. Requisitos. Operaciones con conjuntos, operaciones con familias de conjuntos. Sigma-álgebras Objetivos. Definir la noción de σ-álgebra y estudiar sus propiedades básicas. Definir la noción de σ-álgebra generada por un conjunto de conjuntos. Requisitos. Operaciones con conjuntos,

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos

Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos 1. Probabilidad condicionada. Espacio de probabilidad condicionado La probabilidad condicionada es uno de los conceptos clave

Más detalles

Topología de la Recta

Topología de la Recta Capítulo 2 Topología de la Recta 21 Introducción En este capítulo introducimos algunas nociones sobre topología de los espacios métricos Nuestro interés se limitará en el futuro al caso real o a los espacios

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

1 Relaciones de orden

1 Relaciones de orden 1 Relaciones de orden Sea R una relación binaria en un conjunto A. Si R satisface las propiedades reflexiva, antisimétrica y transitiva se dice que R es una relación de orden. En este caso si a y b son

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Números naturales, principio de inducción

Números naturales, principio de inducción , principio de inducción. Conjuntos inductivos. Denotaremos por IN al conjunto de números naturales, IN {,,, 4, 5, 6,...}, cuyos elementos son suma de un número finito de unos. Recordemos que IN es cerrado

Más detalles

Es evidente la continuidad en En el punto, se tiene:

Es evidente la continuidad en En el punto, se tiene: Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos

Más detalles

PUNTOS Y VECTORES EN EL PLANO

PUNTOS Y VECTORES EN EL PLANO PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

TEMA II TEORÍA INTUITIVA DE CONJUNTOS

TEMA II TEORÍA INTUITIVA DE CONJUNTOS TEMA II TEORÍA INTUITIVA DE CONJUNTOS Policarpo Abascal Fuentes TEMA II Teoría intuitiva de conjuntos p. 1/4 TEMA II 2. TEORÍA INTUITIVA DE CONJUNTOS 2.1 CONJUNTOS 2.1.1 Operaciones con conjuntos 2.2 RELACIONES

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

CONVEXIDAD: CONCEPTOS BÁSICOS

CONVEXIDAD: CONCEPTOS BÁSICOS CONVEXIDAD: CONCEPTOS BÁSICOS El estudio de la convexidad de conjuntos y funciones, tiene especial relevancia a la hora de la búsqueda de los óptimos de las funciones, así como en el desarrollo de los

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

GEOMETRÍA Y TRIGONOMETRÍA

GEOMETRÍA Y TRIGONOMETRÍA GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un

Más detalles

Proyecciones ortogonales (métricas) en espacios de funciones continuas

Proyecciones ortogonales (métricas) en espacios de funciones continuas Proyecciones ortogonales (métricas) en espacios de funciones continuas Rafa Espínola Universidad de Sevilla III Encuentro de Análisis Funcional Miraflores de la Sierra, Madrid Junio 21-23, 2007 1 Nonexpansive

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos

Más detalles

1. Definiciones y propiedades básicas.

1. Definiciones y propiedades básicas. Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 2: TOPOLOGÍA. 1 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto.

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional.

Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional. Otras páginas Matemáticas 2º MATEMÁTICAS II Álgebra: Espacios Vectoriales Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional. Combinación lineal.

Más detalles

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Tema 1 Las Funciones y sus Gráficas

Tema 1 Las Funciones y sus Gráficas Tema Las Funciones y sus Gráficas..- Definición de Función y Conceptos Relacionados Es muy frecuente, en geometría, en física, en economía, etc., hablar de ciertas magnitudes que dependen del valor de

Más detalles

Funciones continuas Motivación

Funciones continuas Motivación Lección 9 Funciones continuas Generalizando la noción que conocemos para funciones reales de variable real, vamos a estudiar la continuidad para funciones entre dos espacios métricos cualesquiera. La definimos

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene:

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene: 50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: A = {a, b, c, d, e}, B = {e, f, g, h}, C = {a, e, i, o, u} A B C, A B C, A \ B,

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Tema 2. Conjuntos Numéricos

Tema 2. Conjuntos Numéricos Tema Conjuntos Numéricos Índice del Tema 1 Propiedades algebraicas de los números reales.................... 13 Propiedades de orden de los números reales..................... 17 3 Números naturales, números

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Cálculo infinitesimal de varias variables reales Volumen 1

Cálculo infinitesimal de varias variables reales Volumen 1 Cálculo infinitesimal de varias variables reales Volumen 1 José María Rocha Martínez Departamento de Matemáticas Escuela Superior de Física y Matemáticas del IPN Gabriel D Villa Salvador Departamento de

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

SESIÓN 4: ESPACIOS VECTORIALES

SESIÓN 4: ESPACIOS VECTORIALES SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Tema 3: Conjuntos y Funciones

Tema 3: Conjuntos y Funciones Tema 3: Conjuntos y Funciones Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2008 09 LC, 2008 09 Conjuntos y Funciones 3.1 Conjuntos Escribimos

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos

CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS Este capítulo comprende diversas propiedades geométricas de secciones (para casos prácticos, secciones de vigas) siendo la más importante el momento de inercia.

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

Versión Geométrica del Teorema de Hahn-Banach

Versión Geométrica del Teorema de Hahn-Banach Tema 7 Versión Geométrica del Teorema de Hahn-Banach En este Tema abordamos la interpretación geométrica del Teorema de Hahn-Banach, que consistirá en encontrar condiciones suficientes para separar dos

Más detalles

Elementos de topología usados en Cálculo. Parte I: ESPACIOS MÉTRICOS

Elementos de topología usados en Cálculo. Parte I: ESPACIOS MÉTRICOS Elementos de topología usados en Cálculo. Parte I: ESPACIOS MÉTRICOS Eleonora Catsigeras Versión preliminar: 1 de marzo de 2004 Nota: Las partes del texto comprendidas entre dos marcas son esenciales y

Más detalles

Límites de una función

Límites de una función Límites de una función Introducción Comenzaremos a analizar la definición del límite finito de tendencia finita a través de un ejemplo. Consideremos la función f. Observemos su regla de asignación y su

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 255 EJERCICIOS Construcciones y ejes de simetría 1 a) Halla el ángulo central de un octógono regular. b) Dibuja un octógono regular inscrito en una circunferencia de 5 cm de radio, construyendo

Más detalles

Espacios Normados (Normas en R n )

Espacios Normados (Normas en R n ) Espacios Normados (Normas en R n ) Uno de los conceptos más importantes del cálculo y del analisis matemático es el de métrica o distancia. En R n la noción de metrico depende a su vez del concepto de

Más detalles

RSA: Implementación. Ya resolvimos (3), ahora vamos a resolver (2). IIC3242 Complejidad Probabiĺıstica 28 / 77

RSA: Implementación. Ya resolvimos (3), ahora vamos a resolver (2). IIC3242 Complejidad Probabiĺıstica 28 / 77 RSA: Implementación Para poder implementar RSA necesitamos algoritmos eficientes para los siguientes problemas: (1) Generar primos P y Q (2) Generar números e y d tales que e d modφ(n) = 1 (3) Calcular

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales Parte II Cálculo Diferencial para Funciones de Varias Variables Reales Capítulo 5 Derivadas Direccionales y Derivadas Parciales Iniciamos, con este capítulo, el cálculo diferencial para funciones de varias

Más detalles

6. Optimización de funciones de una variable.

6. Optimización de funciones de una variable. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. 6. Optimización de funciones de una variable. En esta sección estudiaremos cómo calcular los extremos absolutos (si estos existen) de una función suficientemente

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

El triángulo simétrico-lateral

El triángulo simétrico-lateral El triángulo simétrico-lateral Francisco J. García apitán Marzo de 2004 esumen En este documento damos respuesta a las cuestiones planteadas por Martin costa en http://www.cabri.net:16080/problemes/. Usamos

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro.

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. Sucesiones Concepto de sucesión Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles