Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales"

Transcripción

1 Parte II Cálculo Diferencial para Funciones de Varias Variables Reales

2

3 Capítulo 5 Derivadas Direccionales y Derivadas Parciales Iniciamos, con este capítulo, el cálculo diferencial para funciones de varias variables reales. Aunque el marco de trabajo será, con frecuencia, el de los espacios normados, nuestro interés se centra en la generalización del concepto de derivada, y el estudio de sus propiedades, a las funciones de varias variables reales. Si esta extensión se hace a las funciones definidas sobre un espacio normado, es para aprovechar las técnicas ya estudiadas de los espacios normados y también porque, en ocasiones, necesitaremos de esta generalidad para poder establecer con comodidad algunos de los resultados clásicos del cálculo diferencial. Si f es una función real de una variable real, sabemos que f es derivable en el punto a si existe (5.1) f f(a + h) f(a) (a) = lim. h 0 h Es obvio que el concepto anterior de función derivable puede extenderse, sin modificación alguna, a las funciones de una sola variable, pero que toman valores en un espacio normado cualquiera F. En particular si f : A R R p, es fácil ver que f (a) = (f 1 (a), f 2 (a),..., f p(a)). Esta fórmula es igualmente válida si f es una función de 1 variable que toma sus valores en un producto finito de espacios normados. Sin embargo, cuando f es una función varias variables (o de variable vectorial ), no podemos definir f (a) como en (5.1) pues el h por el que habría que dividir no sería, en ese caso, elemento de un cuerpo. Aún sería esto posible para las funciones de variable compleja, pero éstas no son objeto de estudio en este curso. En lo sucesivo, por tanto, 49

4 50 Derivadas Parciales 5.1 el término variable habrá que entenderlo como variable real, y del mismo modo un espacio normado será, siempre, un espacio normado real. No obstante, hemos de señalar que no existen diferencias esenciales entre un cálculo diferencial real y un cálculo diferencial complejo. Antes de proceder a la extensión definitiva del concepto de derivada a las funciones de varias variables, vamos a dedicar un primer capítulo a la introducción de dos conceptos básicos, el de derivada direccional y el de derivada parcial. Aunque pueda parecer exagerado, se podría afirmar que el Cálculo Diferencial en dimensión finita consiste en el cálculo con derivadas parciales. Derivadas direccionales Definición 5.1 Sea f : A E F, a o A y h 0 un vector de E. Se dirá que f es derivable en el punto a, siguiendo el vector h, si existe f(a + th) f(a) (5.2) D h f(a) = lim. t 0 t Al elemento de F, D h f(a), se le denominará derivada de f en a, siguiendo el vector h. Cuando f admite derivada siguiendo cualquier vector no nulo, se dirá también que f admite derivadas en todos las direcciones. Sea f, para concretar, una función de A R n en R. Consideremos la recta de ecuación x = a + th, t R (recta que pasa por a y tiene a h como vector director). Entonces f(a + th) son los valores que toma f sobre esta recta, y por tanto, por analogía con los límites direccionales, podría pensarse en denominar al límite 5.2, como la derivada de la función f en a siguiendo la recta x = a+th. Esto sería correcto, de no ser porque para cada vector director de esa recta puede resultar un valor distinto para D h f(a). Concretamente, es fácil ver que D λh f(a) = λd h f(a). Debido a esto, se ha convenido en destacar por cada dirección dos de estas derivadas: D h f(a) y D h f(a), siendo h uno de los dos vectores de esa dirección y norma 1, denominando derivada direccional en a al valor D h f(a) = D h f(a). (Sólo hablaremos de derivada direccional en el sentido anterior para funciones escalares varias variables reales, y la norma que se utilizará en ese caso será la norma euclídea).

5 5.4 Derivadas Parciales La existencia de derivadas en todas las direcciones, será una condición necesaria para que una función sea derivable en un punto. Pero ésta condición es muy débil. Es posible, por ejemplo, que una función verifique esto y no sea ni siquiera continua. Ejemplo (Una función no continua en un punto, que admite en ese punto derivadas en todas las direcciones). f(x, y) = x2 y x 4 + y 2 si (x, y) (0, 0); f(0, 0) = 0. Si tomamos v = (h, k) y aplicamos la definición para calcular la derivada en el punto (0,0) siguiendo el vector v, resulta Si k 0, f(th, tk) t 3 h 2 k D v f(0, 0) = lim = lim t 0 t t 0 (t 4 h 4 + t 2 k 2 )t = h2 k Si k = 0, D v f(0, 0) = 0. Sin embargo, esta función no es continua en (0,0), pues aunque los límites iterados y direccionales existen todos y valen 0, los límites siguiendo las curvas y = mx 2 son todos diferentes. Derivadas parciales Definición 5.3 Sea f : A R n F y sea a A. o Se dirá que f admite derivada parcial j-ésima en a, si f es derivable en a, siguiendo el vector e j = (0,..0, 1, 0,.., 0). Emplearemos la notación ( f/ x j )(a) o, también, D j f(a), para designar a la derivada parcial j-ésima de f en a. Es decir: f f(a + te j ) f(a) (a) = D ej f(a) = lim x j t 0 t f(a 1,..., a j + h j,..., a n ) f(a) = lim h j 0 h j f(a 1,..., a j 1, x j, a j+1,..., a n ) f(a) = lim. x j a j x j a j De las igualdades anteriores resulta: Proposición 5.4 La función f admite derivada parcial j-ésima en a si, y sólo si, la aplicación g : x j f(a 1,.., a j 1, x j, a j+1,.., a n ) es derivable en a j, siendo ( f / x j )(a) = g (a j ).

6 52 Derivadas Parciales 5.4 De lo que ya hemos visto, se deduce que la existencia de derivadas parciales en un punto, respecto a cualquier índice, no implica la continuidad en ese punto. Asimismo tampoco puede derivarse la existencia de otras derivadas direccionales. Por ejemplo, la función f(x, y) = xy x 2 + y 2 si (x, y) (0, 0); f(0, 0) = 0. admite derivadas parciales en (0,0), respecto a las dos variables, sin embargo, en ese punto no es, ni continua, ni admite otras derivadas direccionales que las parciales. El concepto de derivada parcial es, a pesar de la aparente descalificación que ejemplos como el anterior suponen, el más importante del cálculo diferencial en dimensión finita. Vamos a ver a continuación un resultado, que se enuncia exclusivamente en términos de derivadas parciales, y que constituye un auténtico teorema de valor medio para funciones de varias variables no necesariamente derivables (en estos momentos aún no sabemos qué es una función derivable de varias variables). Precisaremos de un sencillo lema de carácter geométrico. Lema 5.5 Sean x 0, x 1,..., x p un número finito de puntos de R n alineados, (es decir existe un vector u tal que x 1 = x 0 + t 1 u, x 2 = x 0 + t 2 u,..., x p = x 0 + t p u), y supongamos que 0 t 1 t 2... t p. Entonces x p x 0 = p x i x i 1, i=1 cualquiera que sea la norma que consideremos en R n. Demostración. Es inmediato comprobar que p x i x i 1 = u (t 1 + (t 2 t 1 ) (t p t p 1 )) = t p u, i=1 x p x 0 = t p u. Escribiremos x 0 x 1... x p para denotar que los puntos x 0, x 1,..., x p están en las condiciones del lema.

7 5.6 Derivadas Parciales 53 Teorema 5.6 Sea U un conjunto abierto convexo de R n y f : U R p una función que admite derivadas parciales respecto a cualquier índice en cada punto de U. Supongamos además que existe M > 0 tal que f i (x) x j M, x U; i = 1,..., p ; j = 1,..., n. Entonces f es lipschitziana en U. Más precisamente, para todos x, y U, se tiene (5.3) f(x) f(y) M x y 1. Demostración. Puede suponerse que f es una función escalar, pues si el teorema fuese cierto para funciones escalares, entonces para una función vectorial, f = (f 1, f 2,..., f p ), se tendría también: f(x) f(y) = max 1 i p f i(x) f i (y) M x y 1. Veamos, en primer lugar, que la desigualdad 5.3 se verifica sobre cada n-cubo cerrado contenido en U. Por definición, un n-cubo (cerrado) es un producto cartesiano de n intervalos (cerrados) de R de la misma longitud. Es decir, un conjunto de la forma C = [c 1, d 1 ]... [c n, d n ], con d 1 c 1 = d 2 c 2 =... = d n c n. Por tanto un punto z = (z i ) está en C si y sólo si c i z i d i, para todo i. Supongamos C U y tomemos dos puntos x, y de C. Entonces f(x) f(y) =f(x 1, x 2,..., x n ) f(y 1, x 2,..., x n ) + f(y 1, x 2,..., x n ) f(y 1, y 2, x 3,..., x n )... + f(y 1, y 2,..., y n 1, x n ) f(y 1,..., y n ). Evidentemente cada uno de los nuevos puntos que utilizamos en esta descomposición pertenecen a C, y en cada paso los dos puntos que aparecen sólo se diferencian en una de las coordenadas. Entonces, la existencia de derivadas parciales en cada punto de C, nos permite aplicar en cada uno de los pasos anteriores el teorema de valor medio para funciones de una variable, de lo que resulta que f(x) f(y) = f x j (y 1,..., y j 1, θ j, x j+1,..., x n )(x j y j ),

8 54 Derivadas Parciales 5.6 luego f(x) f(y) M n x j y j = M x y 1. j=1 Veamos ya que la desigualdad anterior se verifica en todo el abierto convexo U: Sean x, y dos puntos de U. Puesto que el segmento K = [x, y] es un compacto contenido en U, K dista una cantidad positiva de U c. Sea entonces 0 < λ < d (K, U c ). Es evidente que cualquiera que sea el punto z de K, el n-cubo cerrado, B [z, λ], está totalmente contenido en U. Sea u el vector unitario en la dirección del vector y x, es decir u = y consideremos los puntos de K, y x y x, x 0 = x, x 1 = x 0 + λu, x 2 = x λu,..., x p = y, donde p es el primer natural para el que x 0 +p λu y. Es claro entonces que cada dos puntos consecutivos de los anteriores se encuentran en un mismo n-cubo contenido en U (basta observar que ellos están a una distancia λ uno del otro). Aplicando la etapa anterior, se tiene entonces que n 1 f(x) f(y) f(x i ) f(x i+1 ) M i=0 n 1 x i x i+1 1 = M x y 1. i=0 Corolario 5.7 Sea U un conjunto abierto de R n y f : U R p una función que admite derivadas parciales en U localmente acotadas. Entonces f es localmente lipschitziana en U. Demostración. Para cada x de U, existe una bola centrada en x, B(x, r x ), tal que en ella todas las derivadas parciales están acotadas por el mismo número M x. Teniendo en cuenta que las bolas son conjuntos convexos, del teorema anterior se sigue que f(u) f(v) M x u v 1, u, v B(x, r x ). Corolario 5.8 Si todas las derivadas parciales de una función f : U R n R p son nulas en U y U es conexo, entonces f es constante.

9 5D Derivadas Parciales 55 Demostración. Puesto que todas las derivadas parciales están acotadas por 0, del corolario anterior se deduce que f es localmente constante. En particular f es continua en U. Resulta por tanto que, si a U, el conjunto A = {x U : f(x) = f(a)} es abierto y cerrado de U, luego A = U ya que U es conexo. Ejercicios 5A Estudiar continuidad y existencia de derivadas parciales para las funciones { ln(1 + (x y) 2 ) si x y > 1 1. f(x, y) = x y + ln 2 si x y 1 5B 2. f(x, y) = x 4 + sen 2 xy x 3 3. f(x, y) = x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) 4. f(x, y) = { sen x sen y x y cos x si x y si x = y (a) Probar que si es una norma cualquiera sobre R n, entonces la aplicación x x es una aplicación lipschitziana que no admite derivadas direccionales en 0. (b) Sea U = {(x, y) R 2 : x 2 + y 2 < 1} \ {0} [0, 1], y consideremos la función f definida sobre U por { y 2 si x > 0 e y 0 f(x, y) = 0 en otro caso 5C Probar que U es un abierto conexo (no convexo) sobre el que f es continua, admite derivadas parciales acotadas, pero no es lipschitziana. (a) Probar que si f es una función lipschitziana sobre un abierto U de R n y admite derivadas parciales, respecto a cualquier índice, en todo punto de U, entonces sus derivadas parciales están acotadas en U. (b) Estudiar si la función f(x, y, z) = sen(x 2 y 2 + z 2 ) es lipschitziana o localmente lipschitziana en R 3. 5D (a) Probar que toda aplicación lipschitziana f : A E F, donde E y F son espacios de Banach, se extiende a una aplicación lipschitziana sobre A.

10 56 Derivadas Parciales 5D (b) Sean A, B dos conjuntos no vacíos de un espacio normado, con B A, y supongamos que cada uno de los conjuntos B, A \ B y A es convexo. Probar entonces que una aplicación f es lipschitziana sobre A si y sólo si es lipschitziana sobre B y sobre A \ B. (c) Estudiar si las aplicaciones f(x, y) = sen x y, g(x, y, z) = sen x 2 + y 2 z 2 son lipschizianas o localmente lipschitzianas. 5E Consideremos la función { x sen ln(x 2 + y 2 ) si (x, y) (0, 0) f(x, y) = 0 si (x, y) = (0, 0) Probar que f es una función continua en todo punto, que admite derivadas parciales acotadas en R 2 \ (0, 0) Es lipschitziana? 5F (a) Sea U un abierto conexo de R n y supongamos que f, g : U R p son dos funciones tales que, en cada punto x U, f i / x j (x) = g i / x j (x), cualesquiera que sean los índices i, j. Probar entonces que las funciones f y g se diferencian en una constante. (b) Determinar las funciones f : R 2 R que satisfacen las ecuaciones f f (x, y) = 1 ; x (x, y) = y, y (x, y). 5G Sea I un intervalo abierto de R, U un abierto de R n y f : (t, x) I U f(t, x) una función escalar. Demostrar que si f (t, x) = 0, t (t, x) I U entonces f no depende de t, es decir f(t 1, x) = f(t 2, x) cualesquiera que sean t 1, t 2, x.

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Derivadas Parciales de Orden Superior

Derivadas Parciales de Orden Superior Capítulo 9 Derivadas Parciales de Orden Superior La extensión a funciones de varias variables del concepto de derivada de orden superior, aunque teóricamente no ofrece ninguna dificultad, presenta ciertas

Más detalles

Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor

Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor Índice general 1. El Espacio Normado R n 1 1. Normas equivalentes....................... 6 2. Continuidad y limites de funciones............... 9 2.1. Reglas de cálculo para límites.............. 13 2.2.

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o Capítulo 11 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor.

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 2 La Diferencial de Fréchet Iniciamos, con este capítulo, el cálculo diferencial para funciones de varias variables reales. Aunque el marco de trabajo será, con frecuencia, el de los espacios

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad - Fernando Sánchez - - 6 Funciones Cálculo II de Rn en Rm Límites y continuidad En este capítulo se van a estudiar funciones f : A R n R m donde A es un conjunto en R n, f = (f 1,..., f m ), x = (x 1,...,

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

Teorema del valor medio

Teorema del valor medio Tema 10 Teorema del valor medio Podría decirse que hasta ahora sólo hemos sentado las bases para el estudio del cálculo diferencial en varias variables. Hemos introducido el concepto general o abstracto

Más detalles

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Integrales paramétricas propias

Integrales paramétricas propias Integrales paramétricas propias ISABEL ARRERO Departamento de Análisis atemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Tipos de integrales paramétricas 1 2.1. Simples..............................................

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Polinomios de Aproximación (Polinomios de Taylor P n )

Polinomios de Aproximación (Polinomios de Taylor P n ) Polinomios de Aproximación ( P n ) Sabemos que la recta tangente a una función en un punto es la mejor aproximación lineal a la gráca de f en las cercanías del punto de tangencia (xo, f(xo)), es aquella

Más detalles

Derivadas de Orden superior

Derivadas de Orden superior Derivadas de Orden superior Para una función cualquiera f, al tomar la derivada, obtenemos una nueva función f y podemos aplicar la derivada a f. La función f se suele escrbir f y recibe el nombre de derivada

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para Lección 3: Aproximación de funciones por polinomios. Fórmula de Taylor para funciones escalares 3.1 Introducción Cuando es difícil trabajar con una función complicada, tratamos a veces de hallar una función

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

1. Lección 9 - Continuidad y Derivabilidad

1. Lección 9 - Continuidad y Derivabilidad 1. Lección 9 - Continuidad y Derivabilidad 1.1. Continuidad El concepto de continuación es el mismo que el visto en el primer cuatrimestre pero generalizado al caso de los campos escalares. Así, sea la

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

Propiedades de la integral

Propiedades de la integral Capítulo 4 Propiedades de la integral En este capítulo estudiaremos las propiedades elementales de la integral. En su mayoría resultarán familiares, pues las propiedades de la integral en R se extienden

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

e x + a si x 0 Calcular a y b para que la función f(x) = ax si 0 < x 1 b / 2x si x > 1

e x + a si x 0 Calcular a y b para que la función f(x) = ax si 0 < x 1 b / 2x si x > 1 PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD e x + a si x 0 Calcular a y b para que la función f(x) = ax 2 + 2 si 0 < x 1 b / 2x si x > 1 sea continua en x = 0 y en x = 1. Es derivable en x = 0 y en x = 1?

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

Límites y Continuidad

Límites y Continuidad Tema 2 Límites y Continuidad Introducción En este tema se trata el concepto de límite de una función real de variable real y sus propiedades, así como algunas de las técnicas fundamentales para el cálculo

Más detalles

Práctica 6. Extremos Condicionados

Práctica 6. Extremos Condicionados Práctica 6. Extremos Condicionados 6.1 Introducción El problema que nos planteamos podría enunciarse del modo siguiente: Sean A R n, f : A R una función de clase C 1 y M A. Consideremos la restricción

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1],

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1], Capítulo 4 Convexidad 1. Conjuntos convexos En este capítulo estudiaremos el concepto de convexidad, el cual es sumamente importante en el análisis. Estudiaremos conjuntos convexos y funcionesconvexas

Más detalles

Cálculo vs Análisis. Trabajos

Cálculo vs Análisis. Trabajos 1. Analizar los dos libros que aparecen en la bibliografía del curso, Cálculo Vectorial, de Marsden, J.E. y Tromba, A.J., y Análisis clásico elemental, de Marsden, J.E. y Hoffman, M.J. Hacer un informe

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Derivadas. Derivabilidad

Derivadas. Derivabilidad Apuntes Tema 4 Derivadas. Derivabilidad 4.1 Derivada de una función Llamamos tasa de variación media al cociente entre el incremento que sufre la variable dependiente y el incremento de la variable independiente.

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

El Teorema de Baire Rodrigo Vargas

El Teorema de Baire Rodrigo Vargas El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

DERIV. DE UNA FUNC. EN UN PUNTO

DERIV. DE UNA FUNC. EN UN PUNTO DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

CÁLCULO DE DERIVADAS.

CÁLCULO DE DERIVADAS. ANÁLISIS MATEMÁTICO BÁSICO. La Función Derivada. CÁLCULO DE DERIVADAS. Definición.. Sea una función f : R R derivable. Se llama función derivada a la función f : R R x f (x). Observación.. Domf { x R :

Más detalles

Teorema del valor medio

Teorema del valor medio Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de

Más detalles

Integrales sobre superficies

Integrales sobre superficies Capítulo 12 Integrales sobre superficies En este capítulo estudiaremos la noción de área de superficies en R 3, y las integrales de campos escalares y vectoriales definidos sobre éstas. Una superficie

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles