CAPÍTULO. 1 Conceptos básicos
|
|
|
- Alfonso Ortiz de Zárate Plaza
- hace 9 años
- Vistas:
Transcripción
1 CAPÍTULO 1 Conceptos básicos Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes arbitrarias. Para encontrar valores determinados de esas constantes se requiere de una o más condiciones iniciales. Recordemos que llamamos problema de valor inicial (PVI) al formado por una ED una condición inicial, por ejemplo: d d D f.; /; con la condición. 0/ D 0 : Discutiremos algunos aspectos relacionados con la eistencia de soluciones de los PVI en la siguiente sección. De hecho, todas las ED PVI que se presentan en este libro tienen solución, a menos que se indique epresamente lo contrario. Puede apreciarse algo con respecto a las soluciones de ED PVI si consideramos las ED de primer orden más simples que puede haber, aquellas en las que f depende sólo de la variable : d d D f./; con la condición. 0/ D 0 : La solución de la ED es d d D f./ ) D f./ d: Es claro que la integral indefinida que está indicada debe contener una constante C aditiva arbitraria, si la condición. 0 / D 0 puede cumplirse para una elección adecuada de C, ella nos dará la solución al PVI. Ejemplo Encontrar la solución del PVI: 0 D 2 C 1 I con la condición.0/ D 1 : H Esta ecuación diferencial se puede resolver por integración: 0 D 2 C 1 ) D.2 C 1/ d ) D 2 C C C : 1. canek.azc.uam.m: 21/ 9/
2 2 Ecuaciones diferenciales ordinarias Sin la condición inicial, la solución general de la ecuación diferencial es la familia de parábolas que se obtienen al trasladar hacia arriba hacia abajo a la parábola D 2 C : Familia de curvas D 2 CCC. Tomando en cuenta la condición inicial, la única solución que cumple.0/ D 1 es aquella que pasa por el punto.0; 1/ del plano cartesiano. Para obtener esta solución sustituimos D 0 & D 1 en la familia de curvas D 2 C C C obtenemos un valor de C : D 2 C C C ) 1 D 0 2 C 0 C C ) C D 1 ) ) D 2 C 1 es la única curva que pasa por el punto.0; 1/ ) ) D 2 C 1 es la única solución del problema: 0 D 2 C 1; sujeta a la condición.0/ D 1:.0; 1/ Solución única: D 2 C 1. Pasa por el punto.0; 1/. Ejemplo Encontrar la solución del PVI 0 D C con la condición. 1/ D 5: H Como se mencionó en el ejemplo??, hemos aceptado que la solución general de la ecuación diferencial 0 D C es D. 1/ C Ce :
3 Ecuaciones diferenciales ordinarias 1 3 Familia de curvas D. 1/CCe. De todas estas curvas sólo eiste una que pasa por el punto. 1; 5/: D 1 & D 5. Sustituendo D 1 & D 5 en la ecuación de la familia para obtener el valor de C tenemos: D. 1/ C Ce ) 5 D. 1 1/ C Ce 1 ) 5 D 2 C Ce 1 ) Ce 1 D 3 ) C D 3e 1 ) ) D. 1/ 3e 1 e es la única curva que pasa por el punto. 1; 5/ ) ) D. 1/ 3e. 1 / es la única solución del problema 0 D C I. 1/ D 5: 1 La única función de la familia que pasa por el punto. 1; 5/: D. 1/ 3e 1. 5 Observaciones: 1. Si bien hemos escrito antes que la solución de d Z d D f./ es D f./ d, debe quedar entendido que la solución la podemos obtener de forma Z eplícita enz el supuesto caso de que se pueda sen realizar la integral. Algunas integrales, como e 2 d o bien d no se pueden epresar en términos de funciones elementales, es decir, como sumas, productos, cocientes, potencias de las funciones: constantes,, e, ln, sen, cos, etc. En casos como ésos tenemos que recurrir como último recurso a la evaluación de dichas integrales mediante métodos numéricos. El capítulo siete de este libro presenta algunos métodos utilizados para la solución de PVI.
4 4 Ecuaciones diferenciales ordinarias 2. La especificación de una condición inicial para una ED no puede ser completamente arbitraria. Por ejemplo, si a la ED 0 D 1 le añadimos la condición.0/ D 5, entonces como la solución general es D ln C C, vemos que no se puede cumplir.0/ D 5 D ln 0 C C, pues ln 0 no está definido, como tampoco estaría definida la derivada 0.0/ D 1. Se deben cumplir ciertos 0 requisitos, que describiremos en la siguiente sección, para que una condición inicial determine una solución particular de la ED. De los ejemplos previos lo discutido sobre soluciones generales de ED, podemos concluir que la solución general de una ED es una familia de curvas. En general, podemos definir una familia de curvas con un parámetro como el conjunto de soluciones de una ecuación de la forma F.; ; C/ D 0; donde, son coordenadas C representa un parámetro, que es un valor numérico que se mantiene constante para cada curva. Ejemplo Presentamos varios ejemplos de familias de curvas. H 1. La familia de todas las rectas que pasan por.0; 0/, ecepto la vertical, se puede representar por la ecuación: D m; donde la pendiente m es un parámetro. La siguiente gráfica muestra las curvas de la familia para algunos valores de m: 2. La familia de todos los círculos con centro.0; 0/ se puede escribir como: 2 C 2 D r 2 ; donde el valor de r 2 (el cuadrado del radio) se puede tomar como parámetro. La gráfica siguiente muestra algunas curvas de esta familia para diferentes valores de r:
5 Ecuaciones diferenciales ordinarias La familia de todas las parábolas con vértice en.0; 0/ el eje como eje de simetría se epresa como: D c 2 ; donde el parámetro c indica hacia dónde abren las parábolas (arriba o abajo). 4. La familia de las curvas que representa la ecuación: 2 2 D c; donde c es el parámetro, con c 2 R, es la familia de hipérbolas cuo centro es el origen con asíntotas oblicuas las rectas D, las cuales también forman parte de esa familia (para el valor c D 0). La gráfica siguiente muestra varias curvas de esta familia. Las rectas D (no dibujadas) son las asíntotas. Las hipérbolas cuas ramas cruzan el eje son las que corresponden a c D 1; 2; 3; 4;, mientras que las que tienen ramas que cortan al eje corresponden a c D 1; 2; 3;.
6 6 Ecuaciones diferenciales ordinarias 5. La familia de todos los círculos en el plano que se encuentran en el primer tercer cuadrante, tangentes a los ejes coordenados,. Para cada círculo de la familia debe suceder que el centro se encuentre en un punto de la forma C D.a; a/ toque a los ejes en.a; 0/.0; a/, por lo que su radio será r D j a j la ecuación será. a/ 2 C. a/ 2 D a 2 ; con a como parámetro. Otra forma de escribir esta ecuación es desarrollando los binomios cancelando el término a 2 : 2 2a C a 2 C 2 2a C a 2 D a 2 ) 2 C 2 2a. C / C a 2 D 0: En los ejemplos anteriores nos fue posible escribir una ecuación (algebraica) con sólo un parámetro que representa a la totalidad de curvas de la familia. Una observación mu interesante es que también eiste una ED que representa a las curvas de la familia, en el sentido de que las curvas solución de la ED son precisamente las curvas de la familia con la cual iniciamos. Para obtener esa ED lo que se hace es derivar (implícitamente por lo regular) la ecuación original de la familia, usando ambas ecuaciones, eliminar el parámetro arbitrario. Ilustramos este procedimiento con las ecuaciones del ejemplo anterior. Ejemplo Usar las familias del ejemplo anterior para obtener la ED asociada a cada familia. H 1. Partiendo de la ecuación D m obtenemos al derivar d D m, de donde, al sustituir esto último en d la primera ecuación: ( ) d d D o bien d d D : Cualquier función de la forma D m satisface a esta ED, como se puede apreciar de inmediato por sustitución: D m ) d d D m & D m ) D m; para 0: 2. Al derivar implícitamente la ecuación 2 C 2 D r 2, obtenemos 2 C 2 d D 0, de donde d d d D : Es claro que la familia de círculos definida por 2 C 2 D r 2 es solución de d d D.
7 Ecuaciones diferenciales ordinarias Si derivamos la ecuación D c 2, obtenemos d d D 2c; de la ecuación original podemos despejar c para obtener c D d (suponiendo 0) al sustituir este valor de c en 2 d resulta: d ( ) d D 2 D 2 ; suponiendo 0: 2 Las funciones D c 2 son soluciones de la ED 0 D 2, pues: D c 2 & 0 D 2c ) 0 D 2c D 2 2 D 2 : 4. De manera análoga a los ejercicios anteriores, al derivar 2 2 D c, implícitamente obtenemos: 2 2 d d D 0; o sea, d d D. 0/: 5. Al derivar implícitamente la ecuación de la familia obtenemos: 2 C 2 0 2a 2a 0 D 0 ). a/ 0 C. a/ D 0 ) 0 D a a : La ED anterior aún contiene al parámetro a que falta eliminar. Para ello podemos audarnos de la ecuación original de la familia: 2 C 2 2a. C / C a 2 D 0 ) a 2 2a. C / C. C / 2 D 2 ) ) Œa C. C / 2 D 2 ) a D. C / 2: Por tanto, la ED de la familia es d d D p. C / 2 C. C / p 2 D 2 C p 2 C 2 p2 : Observaciones: 1. Podemos concluir que cualquier familia de curvas con un parámetro puede representarse por una ED, siguiendo el procedimiento descrito anteriormente: derivar implícitamente eliminar el parámetro. 2. Si la familia de curvas depende de dos o más parámetros, es de esperarse que se tengan que calcular derivadas de orden superior para eliminar los parámetros. Obtendríamos así una ED de orden maor que 1. Ejemplo Encontrar una ED cuas soluciones sean todas las curvas de la familia de dos parámetros A B dada por D A cos C B sen : H Derivando: 0 D A sen C B cos 00 D A cos B sen ; de manera que la suma de con 00 nos da 00 C D. A cos B sen / C.A cos C B sen / D 0; o simplemente 00 C D 0:
8 8 Ecuaciones diferenciales ordinarias Note que en los dos últimos ejemplos estamos partiendo de una familia de curvas o funciones dadas para obtener una ED de la cual todas ellas son soluciones. Esto equivale a comenzar con la respuesta de un problema para terminar con la pregunta del mismo, lo cual tiene un interés meramente teórico. Lo que nos ocupará en los capítulos siguientes es cómo hacer para encontrar las soluciones de una ED dada. Ejercicios Curva solución de un PVI. Soluciones en la página 9 1. Para las siguientes familias de curvas: a. La familia de todas las elipses con centro en.0; 0/ tales que el semieje horizontal sea el doble del semieje vertical. b. La familia de todas las rectas no verticales que pasan por el punto.1; 2/. c. La familia de todas las parábolas que abren hacia arriba que son tangentes al eje. d. La familia de todas las hipérbolas cuas asíntotas son los ejes,. e. La familia de todos los círculos que pasan por los puntos. 1; 0/.1; 0/. Determinar: (i) La epresión algebraica que las describe. (ii) La ecuación diferencial de la cual son soluciones. 2. Dado el círculo 2 C 2 D 1, considere la familia de todas las rectas que son tangentes a dicho círculo. Determine la ecuación F.; ; C/ D 0 que satisfacen todas esas rectas.
9 Ecuaciones diferenciales ordinarias 1 9 Ejercicios Curva solución de un PVI. Página a. i. 4b 2 C 2 b 2 D 1, ii. 0 D 4 ; b. i. 2 D m. 1/, d ii. d D 2 1 ; c. i. D c. a/ 2, ii D 0 2 ; d. i. D c, ii. 0 D ; e. i. 2 C 2 2c D 1, ii. 0 D / D.1 0/ 2.
1.5 Familias de curvas
4 Ecuaciones diferenciales 4. e d C.e C / d D 0; con.4/ D 0I e C D C: 5. d D d C C d; con.0/ D I ln D C: 6.. C sen / d cos d D 0; con./ D p I cos D C: ( ) 7. Œsen sen e d D Œe C cos cos d; con D 0I e C
CAPÍTULO. Conceptos básicos
CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales 1.3.1 Soluciones de una ecuación Ejemplo 1.3.1 Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)
21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?
. Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta
Funciones de varias variables.
Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama
CAPÍTULO. La derivada
CAÍTULO 5 La derivada 5. La recta tangente Los griegos sabían que una recta en el mismo plano que una cónica (en el caso de la parábola o de la hipérbola, una recta no paralela a alguno de sus ejes) o
O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.
MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en
FUNCIONES RACIONALES. HIPÉRBOLAS
www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones
Clase 8 Sistemas de ecuaciones no lineales
Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama
V. 2 DISCUSIÓN DE UNA CURVA
DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
Teoría Tema 9 Representación gráfica de funciones
página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de
10 Funciones polinómicas y racionales
8966 _ 009-06.qd 7/6/08 : Página 9 0 Funciones polinómicas racionales INTRDUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos puntos por
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En
TEMA 1: Funciones elementales
MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace
3 Aplicaciones de primer orden
CAPÍTULO 3 Aplicaciones de primer orden 3.7.1 Traectorias ortogonales Si consideramos la familia de curvas C c; con c > 0; podemos decir que esta familia es el conjunto de las circunferencias de radio
GEOMETRÍA ANALÍTICA: CÓNICAS
GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares
VII. ECUACIÓN GENERAL DE SEGUNDO GRADO
VII. ECUACIÓN GENERAL DE SEGUNDO GRADO 7.. SECCIONES CÓNICAS Cuando un plano corta a un cono circular recto de dos mantos, la sección que resulta de dicho corte determina ciertas curvas llamadas CÓNICAS.
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Geometría Analítica Enero 2016
Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos
Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro.
8 LAS SUPERFICES COMO LUGARES GEOMÉTRICOS Como hemos dicho en la página del presente capítulo, los planos, la superficie esférica, los cilindros los conos pueden tratarse con relativa facilidad en el espacio
2 Métodos de solución de ED de primer orden
CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 9-OCTUBRE-199 1) 3 > 4. +1 ) Sea la función 3 si 1 a + b si 1 . Encontrar los valores de a, b, c para que la función
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x
Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '
Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta llamada directriz.
UNIDAD IV: LA PARABOLA. 4.1. Caracterización geométrica. 4.1.1. La parábola como lugar geométrico. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.
Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un
CALCULO DIFERENCIAL E INTEGRAL II. dy 2
CALCULO DIFERENCIAL E INTEGRAL II TEMA Nº 10 (Última modificación 8-7-015) ECUACIONES DIFERENCIALES En muchos problemas físicos, geométricos o puramente matemáticos, se trata de hallar una función = F()
VIII. CIRCUNFERENCIA
VIII. IRUNFERENI 8.. L IRUNFERENI OMO LUGR GEOMÉTRIO Definición: Una circunferencia es el lugar geométrico de un punto ( ) P, cualquiera, que se mueve sobre el plano, de tal manera que su distancia a un
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
4 Ecuaciones diferenciales de orden superior
CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.
Materia: Matemática de 5to Tema: La Hipérbola. Marco Teórico
Materia: Matemática de 5to Tema: La Hipérbola Marco Teórico Las Hipérbolas son las relaciones que tienen dos asíntotas. Al graficar funciones racionales que a menudo producen una hipérbola. En este concepto,
x = 0, la recta tangente a la gráfica de f (x)
CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas
CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS
CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos
x + x 2 +1 = 1 1 = 0 = lím
UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado
1. Sistema de coordenadas polares.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Sistema de coordenadas polares. En esta sección estudiaremos las coordenadas polares y su relación con las coordenadas cartesianas. Un punto del plano tiene
P. A. U. LAS PALMAS 2005
P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica
2. SISTEMAS DE ECUACIONES LINEALES. Introducción
2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente
1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6
ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media
Métodos de solución de ED de primer orden
CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del
Gráficas de las funciones racionales
Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que
Actividad 12: Lectura Capítulo 7
Actividad 12: Lectura Capítulo 7 Fecha de inicio Fecha de Cierre 17/OCT/13 00:00 09/NOV/13 23:55 La recta De las figuras geométricas la más sencilla es la recta, ya que los parámetros que la caracterizan
Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x
Tipos de Funciones. 40 Ejercicios para practicar con soluciones Representa en los mismos ejes las siguientes funciones: a) y = ; b) y = ; c) y = y= y= y= Representa las siguientes funciones: a) y = b)
INTEGRALES TRIPLES. 46. Dada la integral la integral de todas las formas posibles. f(x, y, z) dzdydx, dibujar la región de integración y escribir
INTEGALES TIPLES. 46. Dada la integral la integral de todas las formas posibles. f(,, ) ddd, dibujar la región de integración escribir Teniendo en cuenta la gráfica adjunta, si D 1, D 2 D 3 son las proecciones
Tipos de funciones. Clasificación de funciones. Funciones algebraicas
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Curvas en paramétricas y polares
Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho
LA INTEGRAL DEFINIDA. APLICACIONES
LA INTEGRAL DEFINIDA. APLICACIONES Página 6 REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.
1.5 Límites infinitos
SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos
UNIDAD DIDÁCTICA 5: Geometría analítica del plano
UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La
DEPARTAMENTO DE CÁLCULO Y GEOMETRIA ANALITICA SEMESTRE 2017-1 SERIE CURVAS EN EL ESPACIO
SEMESTRE 017-1 1. Obtener una ecuación vectorial de la curva que se obtiene por el desplazamiento de un punto tal que su abscisa es -5 mientras que su cota es el triple de la tangente de su ordenada..
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).
TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si
GEOMETRÍA ANALÍTICA EN EL PLANO
GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante
Desigualdades de dos variables
Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que
Aplicaciones de la derivada.
Aplicaciones de la derivada. (Máimos y mínimos) MAXIMOS Y MINIMOS RELATIVOS Entre los valores q puede tener una unción ( ), puede haber uno que sea el más grande y otro que sea el más pequeño. A estos
CAPÍTULO. Conceptos básicos
CAPÍTULO Conceptos básicos.5 Familias de curvas Para continuar con el estudio de las soluciones de las ED, daremos en esta sección una interpretación gráfica del conjunto de soluciones para una ED de primer
LA INTEGRAL COMO ANTIDERIVADA
UNIDAD II La integral como antiderivada LA INTEGRAL COMO ANTIDERIVADA La integración tiene dos interpretaciones distintas ) como procedimiento inverso de la diferenciación, y ) como método para determinar
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Tema II: Programación Lineal
Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución
2.5 Derivación implícita
SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica
1. Encontrar la ecuación de las secciones cónicas con centro en el origen, dadas sus características.
GEOMETRÍA ANALÍTICA Renato Descartes (596-650). Filósofo matemático. Padre de la Filosofía moderna. Nació en La Hae en Touraine, cerca de Poitiers. Desde 967 La Hae se llama Descartes en honor al filósofo.
VOLUMENES DE SÓLIDOS DE REVOLUCION
OLUMENES DE SÓLIDOS DE REOLUCION Los sólidos de revolución son sólidos que se generan al girar una región plana alrededor de un eje. Por ejemplo: el cono es un sólido que resulta al girar un triángulo
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación
Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas
REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano)
Rectas y Parábolas Prof. Gabriel Rivel Pizarro Sistemas de coordenadas rectangulares (Plano Cartesiano) El sistemas de coordenadas rectangulares se representa en un plano, mediante dos rectas perpendiculares.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77
MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.
GEOMETRIA ANALITICA Capítulo 9 La Circunferencia 9.1. Definición Se llama circunferencia al lugar geométrico de los puntos de un plano que equidistan de un punto fijo del mismo plano. Dicho punto fijo
ECUACIÓN GENERAL DE SEGUNDO GRADO
ECUACIÓN GENERAL DE SEGUNDO GRADO CONTENIDO 1. Definición de cónica y cono de revolución. Determinación de las cónicas por medio de sus coeficientes.1 Determinación del tipo de curva considerando los coeficientes
INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.
INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares
Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE
TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función
Funciones: raíz cuadrada, potencia, exponencial y logaritmo
Funciones: raíz cuadrada, potencia, exponencial y logaritmo Función raíz cuadrada La función raíz cuadrada de un número, es el número mayor o igual que cero, que elevado al cuadrado se obtiene el primer
{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la
4 FUNCIONES 4 Conceptos básicos Sean A y B dos conjuntos dados, una unción de A en B es una regla de correspondencia que asigna a cada elemento de A uno y solamente uno de B En una unción: A es el dominio
Capítulo II Límites y Continuidad
(Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado
Circunferencia. Circunferencia centrada en el origen C(0,0)
Circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. El radio de la circunferencia es la distancia de un punto cualquiera de
Superficies. Conceptos generales
Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:
Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0
1.2 Definición de una ecuación diferencial
4 Ecuaciones diferenciales 4. Una parte importante del proceso de solución es tener presente ciertas condiciones, como la velocidad inicial la altura inicial del cuerpo en el ejemplo anterior, que quedarán
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]
UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad
FUNCIONES LINEAL Y POTENCIA
FUNCIONES LINEAL Y POTENCIA La función lineal La función lineal puede describirse en forma genérica con la fórmula y = ax + c, donde a (la pendiente) y c (la ordenada al origen) son constantes. La gráfica
5.1. Recta tangente, normal e intersección de curvas. Recta tangente
5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )
FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN
FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento
Veamos sus vectores de posición: que es la ecuación vectorial de la recta:
T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general.
UNIDAD I. FUNCIONES Y RELACIONES.5. Funciones algebraicas: Polinomiales. Las expresiones algebraicas pueden clasificarse en monomios, binomios, trinomios y polinomios. Monomios. Expresiones de un término.
Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.
Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta
MATEMATICAS GRADO DECIMO
MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de
UNIDAD V LA PARÁBOLA
UNIDAD LA PARÁBOLA OBJETIO PARTICULAR Al concluir la unidad, el alumno identificará y aplicará las propiedades relacionadas con el lugar geométrico llamado parábola, determinando los distintos parámetros,
