CAPÍTULO. Conceptos básicos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO. Conceptos básicos"

Transcripción

1 CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales Soluciones de una ecuación Ejemplo Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los valores que satisfacen la ecuación. Cuáles son esos valores? Depende en parte del conjunto en donde busquemos (es decir, el universo de trabajo), como se ve a continuación: 1. Si consideramos que R (el universo de trabajo es la recta real), el conjunto solución consta de un sólo punto D 1. Lo mismo sucede si consideramos como universo de trabajo sólo a los números enteros o bien sólo a los racionales. Solución de D 0. D 1. Si el universo es ahora el plano R, el conjunto solución de D 0 consta de todos los puntos.; / que pertenecen a la recta D 1, paralela al eje, que pasa por el punto.1; 0/. 1. canek.azc.uam.m: 1/ 9/ 010 1

2 Ecuaciones diferenciales ordinarias.1; / Solución de D 0..1; 0/ D 1 3. Si el conteto del problema para resolver la ecuación D 0 es el espacio R 3, el conjunto solución consta de todos los puntos.; ; z/ que se encuentran en el plano D 1, paralelo al plano z que pasa por el punto.1; 0; 0/. z Solución de D 0. Observe que la solución de la ecuación considerada cambia dependiendo del universo de trabajo. Ejemplo 1.3. Resolver la ecuación: C D 5. H 1. Si el universo de trabajo es el plano R, el conjunto solución de C D 5 consta de todos los puntos.; / que pertenecen a la circunferencia de radio 5 con centro en el origen. La figura siguiente marca algunas de las soluciones como pares de números reales:

3 1.3 Soluciones de ecuaciones diferenciales 3.0; 5/. 3; 4/.4; 3/. 5; 0/.5; 0/. 3; 4/.0; 5/.4; 3/. Si trabajamos en R 3, el conjunto solución de C D 5 consta de todos los puntos.; ; z/ que pertenecen al cilindro recto circular de radio 5, con eje de simetría el eje z. z 3. Cambiando el enfoque, supongamos que ahora nuestro universo es F D f f W R! R g, el conjunto de las funciones reales de variable real, podemos obtener dos funciones continuas como soluciones de la ecuación C D 5, despejando en función de (suponiendo que deseamos que la variable independiente sea ). C D 5 ) D 5 ) 1 D p 5 D p I ambas con dominio Œ 5; 5 : 5 Las gráficas de estas funciones son las siguientes: 1 D p D p También eisten soluciones discontinuas como la siguiente:

4 4 Ecuaciones diferenciales ordinarias D (p 5 ; si 5 < 0I p 5 ; si 0 5: 5 5 En los ejercicios problemas de este libro estaremos buscando por lo general soluciones f./ F que sean continuas. Observe que una función como g./ D p 5, con 5 0, también es solución continua de la ecuación C D 5; sin embargo, en el universo F D f f W R! R g se tomarán las soluciones con el dominio más amplio posible. Así, es preferible la solución h./ D p 5, con 5 5. De los ejemplos anteriores podemos concluir que una ecuación puede tener una, varias o una infinidad de soluciones esto depende no sólo de la ecuación en sí, sino también del conjunto en el que buscamos las soluciones Solución de una ecuación diferencial Una solución de una ecuación diferencial de orden n en un intervalo I es una función definida en dicho intervalo que puede derivarse al menos n veces que, al sustituirse junto con sus derivadas, satisface a la ED. Esto es, resulta una identidad para los valores de en el intervalo I. Ejemplo Verificar que las funciones D 3 C 7 C Ce 4 (C R, constante) son soluciones de la ecuación diferencial 0 C 4 D 1 C 34 C 7: H Derivamos: D 3 C 7 C Ce 4 ) 0 D 6 C 7 4Ce 4 : Utilizando los valores de & 0 en la ecuación diferencial, resulta: 0 C 4 D 6 C 7 D 6 C 7 D 1 C 34 C 7: 4Ce 4 C 4.3 C 7 C Ce 4 / D 4Ce 4 C 1 C 8 C 4Ce 4 D La ED se satisface para todos los valores de R. Con mucha frecuencia una solución de una ED puede estar definida de manera implícita como en el siguiente ejemplo. Ejemplo Usando derivación implícita, demostrar que las funciones definidas implícitamente por la ecuación C 3 D 1;

5 1.3 Soluciones de ecuaciones diferenciales 5 son soluciones de la ecuación diferencial: H Derivamos con respecto a : 0 D 6 C 6 : C 3 D 1 ) 0 C C 3 0 C 6 D 0: Despejamos 0 : 0. C 6 / D 6 ) 0 D 6 C 6 : Ejemplo Encontrar los valores de r de tal manera que la función D e r sea solución de la ecuación diferencial: H Derivamos dos veces: Sustituendo, 0 & 00 en la ecuación diferencial: 00 C 7 0 C 1 D 0: D e r ) 0 D re r ) 0 0 D r e r : r e r C 7re r C 1e r D 0 ) e r.r C 7r C 1/ D 0 ) r C 7r C 1 D 0: Observe que aquí hemos cancelado el factor e r, que es 0 para todo R. Factorizando: r C 7r C 1 D.r C 4/.r C 3/ D 0: Las soluciones de esta última ecuación son: r 1 D 4 & r D 3. Tenemos entonces dos soluciones de la ecuación diferencial: 1 D e 4 & D e 3 : Ejemplo Encontrar los valores de r de tal manera que la función D r sea solución de la ecuación diferencial: H Derivamos dos veces con respecto a : D 0: D r ) 0 D r r 1 ) 0 0 D r.r 1/ r : Sustituendo, 0 & 00 en la ecuación diferencial, resulta: r.r 1/ r r r 1 3 r D r.r 1/ r r r 3 r D Entonces, suponiendo que 0, se obtiene: D r Œr.r 1/ r 3 D r.r r r 3/ D D r.r r 3/ D 0: r r 3 D 0 ).r 3/.r C 1/ D 0; esta última tiene soluciones r 1 D 3 & r D 1. Eisten entonces dos soluciones: 1 D 3 & D 1 : Advierta en este caso que la segunda función no está definida en D 0, así que podemos decir que 1 D 3 resuelve la ecuación diferencial en el intervalo. 1; 1/, mientras que D 1 resuelve la ecuación diferencial en. 1; 0/ o bien en.0; C1/. Es conveniente aclarar, para toda futura referencia lo que queremos decir por resolver.

6 6 Ecuaciones diferenciales ordinarias Resolver una ecuación diferencial es encontrar todas sus soluciones, es decir, es encontrar su conjunto solución. Siempre que sea posible, al resolver una ecuación diferencial ha que especificar en qué intervalo está definida cada función del conjunto solución. Advierta que en el ejemplo anterior hicimos lo que se indica: especificar en qué intervalo está definida la función del conjunto solución. En el estudio de ED es frecuente interpretar 0 D d como el cociente de diferenciales. De esta forma, d por ejemplo, si la ED es d M.; / D d N.; / ; ésta puede ser escrita como: M.; / d N.; / d D 0: A esta epresión de la ED la denotaremos como su forma diferencial. Ejemplo Probar que 3 3 C C D C define implícitamente la solución general de la ED:. C 1/ d C. / d D 0: H A fin de no recurrir al concepto de derivada, procedemos directamente por diferenciales. Debemos recordar que la diferencial de una función D f./ se define mediante: d D f 0./ d; de lo cual se desprende que las reglas de derivación son idénticas para diferenciales cambiando únicamente la palabra derivada por diferencial. Así, tenemos: d./ D d C d: Para este ejemplo, calculamos la diferencial de ambos miembros de la solución general. Hallamos ( ) 3 d 3 C C D d.c/ ) d C d C 1 d d D 0 ) ) d C d C d d D 0 ). C 1/ d C. / d D 0 que es la ED propuesta Tipos de soluciones de ecuaciones diferenciales Al resolver una ecuación diferencial se encuentran comúnmente dos tipos de soluciones: 1. Una solución particular es la que representa una solución específica de la ecuación diferencial. a. En el ejemplo 1:3:6 hemos visto que 1 D 3 es una solución particular de la ecuación diferencial, para todo R D 0; b. Análogamente, en el ejemplo 1:3:5 vemos que D e 3 es una solución particular de 00 C 7 0 C 1 D 0:. Una solución general representa a una familia de funciones que satisfacen la ecuación diferencial. Esta representación de la familia necesariamente inclue una o varias constantes arbitrarias, como se ve en los siguientes ejemplos:

7 1.3 Soluciones de ecuaciones diferenciales 7 a. La familia de funciones D 3 C4 C CC.C R/ es solución general de 0 D 3 C 8 C, como se aprecia de inmediato al derivar. b. Podemos decir, ampliando el anterior ejemplo, que si f./d D F./ C C; entonces se tiene que D F./ C C es solución general de la ecuación diferencial 0 D f./. En cierta forma la infinidad de soluciones de las ecuaciones diferenciales proviene de este hecho. c. Las funciones 1./ D A cos 3 &./ D B sen 3, para cualesquiera valores de A & B, son ambas soluciones de 00 C 9 D 0; como se comprueba de inmediato al derivar pues 1 00 que al sustituir en la ecuación diferencial resulta D 9A cos 3 & D 9A cos 3 C 9A cos 3 D 0 similarmente 00 D 9B sen 3 C 9B sen 3 D 0I 3 D A cos 3 C B sen 3 es solución general de la misma ecuación diferencial. D 9B sen 3, de modo Además de los tipos anteriores, algunas ecuaciones diferenciales que se encuentran en raras ocasiones en la práctica admiten un tercer tipo de soluciones llamadas singulares, además de la solución general particular. Tal es el caso por, ejemplo, de la ecuación diferencial 0 D. /: Cua solución general es D p p ; donde p es una constante arbitraria. Por otra parte, si consideramos la función D, nos encontramos con que es otra solución de 0 D. /. Lo interesante de este ejemplo es que D no es una solución particular obtenida de la solución general D p p ; por tal motivo a D se le llama una solución singular. Ejercicios Soluciones de ecuaciones diferenciales. En cada uno de los siguientes ejercicios se presenta una ecuación diferencial una función. Verificar que la función es solución de la ED. En cualquier caso, las C (con subíndice o sin él) que aparecen son constantes C D cos I D sen.. 0.tan / D 0I D C cos. 3. L di C Ri D EI dt i D E R C Ce R L t ; donde L 0; R 0 & E son constantes dadas C es una constante arbitraria D 3 I D p D 3 I D 1 3 C C. 6. sen d d C.sen C cos / D e I D e. 1/ C C. sen

8 8 Ecuaciones diferenciales ordinarias 7. 0 C cos D 1 sen I D sen 1 C Ce sen. 8. d d C p D 1 C p 1 1 e I D d 9. C d D 0I D C C C. d d 1 C p D e. / I D ln.c C e /. [ ] d D. a / d d d I D C a C 1 C C. 1.. C /d d D 0I D p C /d C d D 0I D.C ln / D tan.ln /I D e arcsen.c/..e C C/ d 3 d C 3 d 3 d D 0I D C 1 C C C C 3. d d k d d C k D e I D.C 1 C C /e k C e, con k D constante..k 1/ / d d d d A D 0I D e C I D e e t dt C Ce. 19. d d D 1 C 1 C I D C C 1 C. 0.. / 0 D 3. C 1/I D 0 D C 1 e A arcsen C C e A arcsen, donde A es una constante. 5 3 C 5 C p.

1.2 Definición de una ecuación diferencial

1.2 Definición de una ecuación diferencial 4 Ecuaciones diferenciales 4. Una parte importante del proceso de solución es tener presente ciertas condiciones, como la velocidad inicial la altura inicial del cuerpo en el ejemplo anterior, que quedarán

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de primer orden 3.7.1 Traectorias ortogonales Si consideramos la familia de curvas C c; con c > 0; podemos decir que esta familia es el conjunto de las circunferencias de radio

Más detalles

V. 2 DISCUSIÓN DE UNA CURVA

V. 2 DISCUSIÓN DE UNA CURVA DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro.

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro. 8 LAS SUPERFICES COMO LUGARES GEOMÉTRICOS Como hemos dicho en la página del presente capítulo, los planos, la superficie esférica, los cilindros los conos pueden tratarse con relativa facilidad en el espacio

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones MATEMÁTICAS EJERCICIOS RESUELTOS DE INECUACIONES Juan Jesús Pascual Inecuaciones Índice ejercicios resueltos A. Inecuaciones lineales con una incógnita B. Inecuaciones de segundo grado con una incógnita

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAÍTULO 5 La derivada 5. La recta tangente Los griegos sabían que una recta en el mismo plano que una cónica (en el caso de la parábola o de la hipérbola, una recta no paralela a alguno de sus ejes) o

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

iii. ( 1; 1) [ (1; 5) [ (5; 1)

iii. ( 1; 1) [ (1; 5) [ (5; 1) UPR Departamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial 8 de febrero de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada pregunta minuciosamente. No se permite el uso

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

Aplicaciones de la derivada.

Aplicaciones de la derivada. Aplicaciones de la derivada. (Máimos y mínimos) MAXIMOS Y MINIMOS RELATIVOS Entre los valores q puede tener una unción ( ), puede haber uno que sea el más grande y otro que sea el más pequeño. A estos

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D)

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D) Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A B) Encargado de responder a todas las preguntas de la asignatura de todas las tutorías. Bartolo Luque (grupos C D) Este no tiene ni idea. No

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

LA INTEGRAL COMO ANTIDERIVADA

LA INTEGRAL COMO ANTIDERIVADA UNIDAD II La integral como antiderivada LA INTEGRAL COMO ANTIDERIVADA La integración tiene dos interpretaciones distintas ) como procedimiento inverso de la diferenciación, y ) como método para determinar

Más detalles

Funciones: raíz cuadrada, potencia, exponencial y logaritmo

Funciones: raíz cuadrada, potencia, exponencial y logaritmo Funciones: raíz cuadrada, potencia, exponencial y logaritmo Función raíz cuadrada La función raíz cuadrada de un número, es el número mayor o igual que cero, que elevado al cuadrado se obtiene el primer

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Las desigualdades involucran los símbolos: < menor que, >,

Las desigualdades involucran los símbolos: < menor que, >, . Noción de intervalo en la recta real Un intervalo es un conjunto de números reales que satisfacen una desigualdad, por lo que un intervalo puede ser cerrado, abierto o semiabierto, lo podemos representar

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. dy 2

CALCULO DIFERENCIAL E INTEGRAL II. dy 2 CALCULO DIFERENCIAL E INTEGRAL II TEMA Nº 10 (Última modificación 8-7-015) ECUACIONES DIFERENCIALES En muchos problemas físicos, geométricos o puramente matemáticos, se trata de hallar una función = F()

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo Funciones de varias variables Problema Sea f : IR 2 IR definida por: 2 y 2 f, y) = e +y 2 > y, y. i) Estudiar la continuidad de f en IR 2. ii) Definimos g : IR IR como g) = f, ). Analizar la derivabilidad

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

d. x 1 e. Ninguna de las anteriores b. 1 c. 3 d. 2 e. Ninguna de las anteriores d. ( 3; 2) e. Ninguna de las anteriores d.

d. x 1 e. Ninguna de las anteriores b. 1 c. 3 d. 2 e. Ninguna de las anteriores d. ( 3; 2) e. Ninguna de las anteriores d. UNIVERSIDAD DE PUERTO RICO, RECINTO DE MAYAGUEZ DEPARTAMENTO DE CIENCIAS MATEMATICAS EXAMEN DEPARTAMENTAL FINAL: PRE-CALCULO I, MATE 7 NOMBRE: NUM. DE ESTUDIANTE: SECCION: PROFESOR: El plagio no está permitido.

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

Divisibilidad y congruencias

Divisibilidad y congruencias Divisibilidad y congruencias Ana Rechtman Bulajich y Carlos Jacob Rubio Barrios Revista Tzaloa, año 1, número 2 Empecemos por explicar el significado de la palabra divisibilidad. En este texto vamos a

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS UNIDAD 5 FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES Y LOGARÍTMICAS Página. La distancia al suelo de una barquilla de la noria varía conforme ésta gira. Representamos gráficamente la función que da la altura

Más detalles

y = f(x) = (10,000)2 x

y = f(x) = (10,000)2 x SESION. EXPONENTES Y LOGARITMOS.. Eponentes.. Importancia de los eponentes Funciones eponenciales 0,000 = (0,000) 40,000 = (0,000) 80,000 = (0,000) 3 Usamos b > 0 para evitar las raíces de números negativos,

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Matemáticas I: Hoja 1

Matemáticas I: Hoja 1 Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

Profr. Efraín Soto Apolinar. La función racional

Profr. Efraín Soto Apolinar. La función racional La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que

Más detalles

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación 96 CAPÍTULO Derivación. La derivada el problema de la recta tangente Hallar la pendiente de la recta tangente a una curva en un punto. Usar la definición de ite para calcular la derivada de una función.

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas. ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas

Más detalles

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner.

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner. Interpolación. Hallar el número de operaciones en la evaluación de un polinomio p n () = a + a + + a n n por el método estándar y el de Horner.. Hallar el polinomio de interpolación de Lagrange y de Newton

Más detalles

Clase 8 Sistemas de ecuaciones no lineales

Clase 8 Sistemas de ecuaciones no lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones

Más detalles

CAPÍTULO. La derivada. espacio recorrido tiempo empleado

CAPÍTULO. La derivada. espacio recorrido tiempo empleado 1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será, de nuevo, Geogebra.

Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será, de nuevo, Geogebra. Más ecuaciones con regla y compás. La ecuación de segundo grado x +ax-a = 0 Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será,

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

70 Ecuaciones diferenciales. ln e/ D e.0 1/ D e ) C D e: D e: y. y ln. 11..x 2 8xy 4y 2 / dy D.x 2 C 2xy 4y 2 / dx.

70 Ecuaciones diferenciales. ln e/ D e.0 1/ D e ) C D e: D e: y. y ln. 11..x 2 8xy 4y 2 / dy D.x 2 C 2xy 4y 2 / dx. 70 Ecuaciones diferenciales Considerando la condición inicial.1/ D e: ( ) 1 C D e ln D e.ln 1 e ln e/ D e.0 1/ D e ) C D e: Por lo tanto, la solución del PVI es ln ( ) x D e: Ejercicios 2.5.1 Ecuaciones

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

3 Aplicaciones de ED de primer orden

3 Aplicaciones de ED de primer orden CAPÍTULO 3 Aplicaciones de E de primer orden 3.2 ecaimiento radioactivo Si observamos cierta cantidad inicial de sustancia o material radioactivo, al paso del tiempo se puede verificar un cambio en la

Más detalles

Superficies. Conceptos generales

Superficies. Conceptos generales Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

EJERCICIOS RESUELTOS DE ECUACIONES

EJERCICIOS RESUELTOS DE ECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones EJERCICIOS RESUELTOS DE ECUACIONES 1. Determinar si cada una de las siguientes igualdades es una ecuación o una identidad:

Más detalles

Se dice que una ecuación es entera cuando las incógnitas esta sometidas únicamente a las operaciones de suma, resta y multiplicación.

Se dice que una ecuación es entera cuando las incógnitas esta sometidas únicamente a las operaciones de suma, resta y multiplicación. III. UNIDAD : ECUACIONES DE PRIMER GRADO III.. ECUACIONES DE PRIMER GRADO III... Ecuaciones de Primer Grado con una incógnita Se dice que una ecuación es entera cuando las incógnitas esta sometidas únicamente

Más detalles

1 Unidad I: Ecuaciones Diferenciales de Primer Orden

1 Unidad I: Ecuaciones Diferenciales de Primer Orden ITESM, Campus Monterrey Departamento de Matemáticas MA-841: Ecuaciones Diferenciales Lectura #6 Profesor: Victor Segura 1 Unidad I: Ecuaciones Diferenciales de Primer Orden 1.3.4 Factores Integrantes Dentro

Más detalles

Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Tema 2. Divisibilidad. Múltiplos y submúltiplos. Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se

Más detalles

Representación de números enteros: el convenio complemento a dos

Representación de números enteros: el convenio complemento a dos Representación de números enteros: el convenio complemento a dos Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

Inecuaciones en dos variables

Inecuaciones en dos variables Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado

Más detalles