Módulo 8 Inestabilidad elástica
|
|
|
- Martín Coronel Vidal
- hace 9 años
- Vistas:
Transcripción
1 Módulo 8 Inestabilidad elástica
2
3
4 INTRODUCCIÓN Al comienzo de este curso se estableció que la selección de elementos estructurales se basa en tres características: resistencia, rigidez y estabilidad. Los procedimientos de análisis de esfuerzos y deformaciones se estudiaron en detalle en los capítulos anteriores. En este capítulo se tratará la cuestión de la posible inestabilidad de sistemas estructurales. En tales problemas se deben hallar parámetros críticos adicionales que determinen si es posible una configuración o patrón de desplazamientos dado para un sistema particular. Este problema es diferente de cualquiera de los vistos antes. Como un ejemplo intuitivo sencillo considérese una barra de diámetro D sometida a una fuerza axial de compresión. Si tal barra actuando como columna, fuera de longitud D no surgiría ninguna cuestión acerca de la inestabilidad y este miembro corto podría soportar una fuerza considerable.
5 Por otra parte, si una misma barra tuviera una longitud de varios diámetros, al ser sometida a una fuerza axial aún menor que la que puede soportar la pieza corta podría llegar a ser lateralmente inestable presentándose en ella pandeo lateral y podría fallar o sufrir colapso. Una regla delgada ordinaria, si se somete a una compresión axial, fallará de esta manera. La consideración de la sola resistencia del material no es suficiente para predecir el comportamiento de la pieza.
6 El mismo fenómeno se presenta en numerosas otras situaciones en que existen esfuerzos de compresión. Placas delgadas completamente capaces de resistir cargas en tracción, resultan muy ineficaces para transmitir compresión. Tanques de almacenamiento, así como silos metálicos, a menos que estén apropiadamente diseñados, pueden deformarse gravemente por la presión externa (viento) o interna (líquidos o granos) y asumir formas que difieren en forma notable de su configuración geométrica original. Un tubo de pared delgada puede arrugarse o plegarse como un papel de seda cuando se somete a una torsión. Además por lo general los fenómenos de pandeo o arrugamiento que se observan en miembros cargados ocurren más bien repentinamente. Por esta razón muchas de las fallas estructurales por pandeo son espectaculares y muy peligrosas.
7 El enorme número de problemas de inestabilidad o pandeo de estructuras sugerido por la lista anterior está fuera del alcance de este curso. Aquí sólo se considerará el problema de la columna. Este se llevará a cabo investigando primero el comportamiento de barras delgadas cargadas axialmente y sometidas simultáneamente a flexión. Tales miembros se llaman vigas columnas. Los problemas de vigas columnas, además de tener un significado propio permiten determinar las magnitudes de cargas axiales críticas a las que ocurre el pandeo. A continuación se tratará el pandeo de columnas ideales cargadas concéntricamente. Esto conduce al examen de los valores característicos (o autovalores) de las ecuaciones diferenciales apropiadas. Las autofunciones correspondientes dan las formas de pandeo de tales columnas. Se describirá el pandeo elástico y se establecerán límites de validez para el caso de comportamiento elasto-plástico y se presentará también alguna información acerca de columnas cargadas excéntricamente. Finalmente se hará una breve clasificación en base a ejemplos sencillos de problemas en estabilidad elástica a los fines de dar un panorama más completo del tema.
8 NATURALEZA DEL PROBLEMA DE LA VIGA COLUMNA El comportamiento de vigas columnas reales se puede entender mejor considerando primer un ejemplo idealizado, que se muestra en la Figura. Aquí, para simplificar, una barra perfectamente rígida de longitud L se mantiene inicialmente en posición vertical por medio de un resorte en A que tiene una rigidez a la torsión k. Luego una fuerza vertical P y una horizontal F se aplican en el extremo superior. A diferencia del procedimiento seguido en todos los problemas anteriores, se deben escribir ahora las ecuaciones de equilibrio para la condición deformada. Teniendo presente que kθ es el momento resistente que desarrolla el resorte en A se obtiene:
9 El aspecto cualitativo de este resultado se muestra en la Figura y la curva correspondiente se ha marcado como la solución exacta. Es interesante observar que cuando θ π, siempre que el resorte continúe funcionando, el sistema puede soportar una fuerza muy grande P. Para una fuerza aplicada verticalmente hacia arriba, indicada con un sentido contrario en la figura, el ángulo θ disminuirá cuando P aumente. En el análisis de problemas de los capítulos anteriores el término PL senθ no había aparecido en lo absoluto.
10 La solución expresada por la ecuación anterior es para rotaciones arbitrariamente grandes. En problemas complejos es muy difícil alcanzar soluciones de tal generalidad. Además en la mayoría de las aplicaciones no se pueden tolerar desplazamientos de gran magnitud. Por consiguiente es posible limitar el estudio del comportamiento de sistemas al caso de desplazamientos pequeños y moderadamente grandes. En este problema lo anterior se puede realizar poniendo senθ θ y cos θ 1. De esta forma la ecuación anterior se simplifica a:
11 Para valores pequeños de θ esta solución es completamente aceptable. En cambio a medida que θ aumenta, la discrepancia entre esta solución linealizada y la solución exacta llega a ser muy grande. Para una combinación crítica de los parámetros k, P y L, el denominador (k - PL) en el último término de la ecuación sería cero y presumiblemente daría lugar a una rotación θ infinita. Esto es completamente irreal y resulta de una formulación matemática impropia del problema. No obstante, tal solución proporciona una buena guía acerca del valor de la magnitud de la fuerza axial P a la que las deflexiones llegan a ser intolerablemente grandes. La asíntota correspondiente a esta solución, obtenida de la igualdad (k - PL)=0, define la fuerza «crítica» P C como
12 Es significativo observar que en sistemas reales las grandes deformaciones asociadas a fuerzas del mismo orden de magnitud que P por lo general causan tensiones tan grandes que hacen inservible el sistema. Por consiguiente, en el análisis de pandeo de miembros a compresión desempeña el papel más importante la determinación de P C con una base simplificada, siguiendo las líneas del método utilizado en el ejemplo anterior. A continuación se emplearán los conceptos anteriores en la resolución de un problema de una viga-columna elástica. Ejemplo Una viga columna se somete a fuerzas axiales P, y a una fuerza transversal hacia arriba, F en su punto medio. Determinar la ecuación de la elástica y la fuerza axial crítica P. (Considérese que EI es constante)
13 El diagrama de cuerpo libre de la viga columna se muestra en la Figura. Este diagrama permite la expresión del momento flector total M, que incluye el efecto de la fuerza axial P multiplicada por el desplazamiento v. El momento total dividido por EI puede hacerse igual a la expresión aproximada habitual de la curvatura para pequeñas rotaciones d 2 v/dx 2. Debido a esto, como en el ejemplo anterior, se obtendrán desplazamientos infinitos en las cargas críticas. Por lo tanto, utilizando la relación M=EIv y observando que en la mitad izquierda de la viga M= -F/2 Pv, se tiene
14 La solución de la homogénea (F = 0) para esta ecuación diferencial es bien conocida y resulta de una suma de funciones armónicas (corresponde por ejemplo a la forma del movimiento armónico simple), en tanto que la solución particular es igual al término independiente dividido por 2. En consecuencia, la solución completa es:
15 Sustituyendo: El desplazamiento máximo ocurre en x=l/2, por lo que luego de algunas simplificaciones:
16 De esto se puede concluir que el momento máximo absoluto que se produce en el punto medio, es: Se puede observar que las expresiones anteriores, se hacen infinitas si L/2 es múltiplo de π/2 puesto que esto hace nulo a cos( L/2) e infinito a tan( L/2). Expresado algebraicamente, esto ocurre cuando: donde n es un entero. Despejando P de esta ecuación, se obtiene la magnitud de esta fuerza que causa desplazamientos o momentos flectores infinitos. Esto corresponde a la condición de la fuerza axial crítica P C para esta barra:
17 Para la fuerza crítica mínima el entero n vale 1. Este resultado fue establecido por primera vez por el matemático Leonhard Euler en 1757 y con frecuencia se la denomina la carga de pandeo de Euler. Es importante observar que la ecuación diferencial es de un tipo diferente al que se utilizó para calcular los desplazamientos de vigas con cargas transversales únicamente y por lo tanto no pueden integrarse de la misma forma.
18 Para una más completa comprensión del problema de la viga columna resulta instructivo deducir varias relaciones diferenciales entre las variables involucradas. Con ese objetivo consideremos un elemento diferencial de viga columna como se indica en Figura. Notar especialmente que el elemento se muestra en su posición deformada. Para vigas ordinarias (comportamiento lineal) cargadas transversalmente esto no es necesario. Por otro lado los desplazamientos que se tratan en este análisis son pequeños en relación con la luz de la viga columna, lo cual permite las siguientes simplificaciones:
19
20 En este desarrollo se puede utilizar la relación usual de la teoría de flexión, v = M/ (EI). Operando con las ecuaciones anteriores y haciendo uso de la relación anterior, se obtienen dos ecuaciones diferenciales alternativas para vigas-columnas: donde para simplificar se supuso que EI es constante y, como antes, 2 = P/ (EI). Si P = 0, las ecuaciones anteriores resultan las mismas ecuaciones vistas para vigas con carga transversal. Para las nuevas ecuaciones, las condiciones de borde son las mismas vistas con anterioridad, excepto que la fuerza de corte se obtiene de la expresión Para referencia futura, la solución homogénea y sus derivadas se listan a continuación:
21 Estas relaciones son necesarias en algunos ejemplos para expresar las condiciones de borde, a fin de evaluar las constantes C 1, C 2, C 3 y C 4
22 Ejemplo Una barra delgada de EI constante se somete simultáneamente a momentos de extremo, M y a fuerzas axiales P, como se indica en la Figura. Determinar el desplazamiento máximo y el mayor momento flector. Dentro del tramo no existe carga transversal alguna. Por consiguiente el término del segundo miembro de la ecuación diferencial es nulo, y la solución homogénea de esta ecuación dada por la (1) será la solución completa. Las condiciones en el contorno son:
23
24 Es importante observar que en miembros delgados los momentos flectores pueden aumentar substancialmente por la presencia de fuerzas axiales de compresión. Cuando existen tales fuerzas, aumentan los desplazamientos causados por la carga transversal. En el caso de fuerzas de tracción los desplazamientos disminuyen.
25 ESTABILIDAD DEL EQUILIBRIO Una aguja perfectamente recta sostenida sobre su punta puede considerarse en equilibrio. Sin embargo, la menor perturbación de éste o la imperfección más pequeña en su fabricación harían imposible tal estado. Se dice que esta clase de equilibrio es inestable, y es imperativo evitar situaciones análogas en sistemas estructurales. Para aclarar más el problema, consideremos de nuevo una barra vertical rígida con un resorte de torsión, de rigidez k, en su base, como se mostró al principio. La respuesta de este sistema a medida que aumenta la fuerza P se indica en la Figura para una fuerza F grande y una fuerza F pequeña.
26 Surge entonces la siguiente pregunta: Cómo se comportará este sistema si F = 0? Este es el caso límite y corresponde al estudio del pandeo perfecto. La barra rígida puede experimentar sólo rotación, ya que no se puede flexionar; es decir, el sistema tiene un grado de libertad. Para una rotación supuesta, θ, el momento en el resorte (restaurador) es kθ, y con F = 0, el momento que produce P (perturbador) será PLsenθ PLθ, por lo tanto, si: Exactamente en el punto de transición kθ = PLθ, el equilibrio no es estable ni inestable sino neutro (o indiferente). La fuerza asociada a esta condición es la carga de pandeo o crítica, que se designará por P C. Para el sistema considerado:
27 Esta condición establece el comienzo del pandeo. Con esta fuerza dos posiciones de equilibrio son posibles, la forma vertical y una forma inclinada infinitesimalmente próxima a ella. Por lotanto, como es posible seguir dos ramas o caminos en la solución, a esta condición se la llama punto de bifurcación de la solución de equilibrio. Para P > k/l el sistema es inestable. Como la solución ha sido linealizada no hay posibilidad de que θ sea arbitrariamente grande en P C. Considerando grandes desplazamientos, hay siempre un punto de equilibrio estable en θ < π. El comportamiento de columnas elásticas, cargadas concéntricamente y perfectamente rectas, es decir columnas ideales, es análogo al comportamiento descripto en el sencillo ejemplo anterior. A partir de una formulación linealizada del problema se puede determinar las cargas críticas de pandeo.
28 Las cargas críticas no describen la acción del pandeo mismo. Utilizando una ecuación diferencial exacta de la curva elástica para deflexiones grandes, es posible hallar posiciones de equilibrio más altas que P C, correspondiente a la fuerza aplicada P. Los resultados de tal análisis se ilustran a continuación. Notar especialmente que aumentando P en sólo 1,5 %P C sobre P C se produce un desplazamiento lateral máximo del 22 % de la longitud de la columna Por razones prácticas, desplazamientos tan grandes rara vez pueden ser aceptados. Además, por lo general el material no puede resistir los esfuerzos de flexión inducidos. Por lo tanto, las columnas reales fallan inelásticamente. En la gran mayoría de las aplicaciones de ingeniería P C representa la capacidad última de una columna recta cargada axialmente en forma concéntrica.
29 CARGA DE PANDEO DE EULER PARA COLUMNAS CON EXTREMOS ARTICULADOS A fin de formular las ecuaciones diferenciales que permitan determinar la carga de pandeo de una columna ideal, se debe permitir que ocurra un pequeño desplazamiento lateral del eje de la columna. Para la columna con extremos articulados e inicialmente recta de la Figura 7.a, lo anterior se indica en la Figura 7.b.
30
31 Carga crítica de Euler
32
33
34 PANDEO ELÁSTICO DE COLUMNAS CON DIFERENTES RESTRICCIONES EN SUS EXTREMOS Procedimientos iguales a los estudiados en la sección anterior se pueden utilizar para determinar las cargas de pandeo elástico de columnas con diferentes condiciones de borde. Las soluciones de tales problemas son muy sensibles a las restricciones de extremo. Por ejemplo la carga crítica de pandeo para una columna empotrada en su base, Figura 8.b, con una carga vertical en su extremo libre superior, es:
35 Las dos últimas ecuaciones indican que mediante la restricción en los extremos las cargas de pandeo críticas van aumentando notablemente por encima del caso fundamental. Todas las fórmulas anteriores pueden asemejarse al caso fundamental siempre que en vez de la longitud real de la columna se utilice la longitud efectiva de la misma. Esta longitud resulta ser la distancia entre los puntos de inflexión de las curvas elásticas o las articulaciones, si las hubiere.
36
37 La longitud efectiva de una columna L e, en el caso fundamental es igual a L, pero en los casos anteriores es 2L, 0,7L y 0,5L, respectivamente. Para el caso general, L e = KL, donde K es el factor de longitud efectiva, el cual depende de las restricciones en los extremos. En contraste con los casos clásicos que se muestran en la Figura 8, los miembros a compresión reales rara vez están verdaderamente articulados o completamente empotrados (fijos contra la rotación) en los extremos. Debido a la incertidumbre respecto al grado de fijación de los extremos, a menudo las columnas se suponen con articulaciones en dichas partes. Con excepción del caso que se muestra en la Figura 8.b, donde no se puede utilizar, este procedimiento es conservador. Las ecuaciones anteriores llegan a ser completamente erróneas para el intervalo inelástico y no se deben utilizar en la forma dada (ver fórmulas generalizadas).
38 LIMITACIÓN DE LAS FORMULAS DE PANDEO ELÁSTICO En las deducciones anteriores de las fórmulas de pandeo para columnas se supuso tácitamente que el material se comportaba de manera linealmente elástica. Para poner de manifiesto esta significativa limitación, la ecuación de Euler puede escribirse en forma diferente. Por definición, I = Ar 2, donde A es el área de la sección transversal y r es su radio de giro. La substitución de esta relación da: donde la tensión crítica C, para una columna se define como un promedio en el área transversal A de la misma, debido a la carga crítica P C. La longitud de la columna es la longitud efectiva L e y r el radio de giro mínimo del área de la sección, puesto que la fórmula original de Euler se da en términos del valor mínimo de I. La relación (L/r) se llama relación de esbeltez ( ) de la columna.
39 De la ecuación anterior se puede concluir que el límite de proporcionalidad del material es el límite superior de la tensión con la cual la columna pandeará elásticamente. La modificación necesaria de la fórmula para incluir la respuesta inelástica del material se estudiará en la siguiente sección.
40
41 FORMULAS GENERALIZADAS DE LA CARGA DE PANDEO DE EULER Un diagrama típico tensión-deformación a la compresión para una probeta en la que se impide el pandeo se puede representar como en la Figura 9.a. En el intervalo de tensiones desde O hasta A el material se comporta elásticamente. Si la tensión en una columna en pandeo no excede de este intervalo la columna pandeará elásticamente. La hipérbola correspondiente a la ecuación C = 2 E/(L/r) 2, es aplicable en este caso. Esta porción de la curva se indica como ST en la Figura 9.b. Es importante reconocer que esta curva no representa el comportamiento de una columna sino más bien el de un número infinito de columnas ideales de diferente longitud. La hipérbola que corresponde a la región situada más allá del intervalo útil se indica en la figura por medio de una línea punteada.
42
43
44 SOLUCIÓN DE JOHNSON PARA EL PANDEO DE COLUMNAS INTERMEDIAS A causa de las desviaciones inevitables de la situación ideal representada por las curvas ACE y BDF, la falla en las columnas ocurren para valores menores que los predictos por la teoría, en particular en las vecindades de los puntos C y D. La modificación más ampliamente utilizada es la parábola propuesta por J.B. Johnson a comienzos del S XX. Parábola de Johnson
45
46
47 Como se puede ver en la gráfica anterior, la parábola es siempre tangente a la curva de euler en el punto (S cr, L e / ) donde. Este punto de tangencia usualmente sirve para distinguir entre columnas «intermedias» (zona de la parábola) y columnas «largas» (zona de Euler), las columnas «cortas» son comunmente acotadas a aquellas con (L e / ) menor a 10, en cuyo caso la carga crítica puede tomarse como S y (en este caso se habla de «puntales»). Para Aceros se cumple que si: L e / 80 entonces puede aplicar Euler. L e / 90 entonces puede aplicar Johnson.
48
49 COLUMNAS CARGADAS EXCÉNTRICAMENTE En el estudio anterior del pandeo de columnas se supuso que tales elementos eran idealmente rectos. Puesto que en realidad todas las columnas tienen imperfecciones, las cargas de pandeo que se obtienen para columnas ideales son las mejores posibles. Tales análisis sólo proporcionan indicios acerca del mejor funcionamiento posible de columnas. Por lo tanto, no es sorprendente que el funcionamiento de columnas haya sido explorado también con base en algunas imperfecciones determinadas estadísticamente o en posibles desalineamientos de las cargas aplicadas. Como una ilustración de este enfoque, se considerará una columna cargada excéntricamente que es un problema importante en si mismo. Una columna cargada excéntricamente se indica en la Figura. Esta fuerza es equivalente a una fuerza axial concéntrica P y a momentos en en los extremos M o = Pe. Tal viga columna ya ha sido analizada en el ejemplo 2, donde se encontró que debido a la flexibilidad del miembro, el máximo momento flexionante M MAX =M o sec( L / 2 ).
50 Por lo tanto, la tensión máxima de compresión, que ocurre a la mitad de la altura en el lado cóncavo de la columna, se puede calcular como
51 A (ec/ 2 ) se le llama usualmente relación (o ratio) de excentricidad
52
ME Capítulo 4. Alejandro Ortiz Bernardin. Universidad de Chile
Diseño de Elementos Mecánicos ME-5600 Capítulo 4 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Constantes de Resorte
CURVATURA EN COLUMNAS
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo
IV. Pandeo y resistencia última de columnas
Objetivos: 1. Análisis de sujetas a cargas axiales y/o a cargas laterales. 1. Revisión de la teoría básica. Columnas ideales La carga última P ult es la carga máxima que una columna puede soportar, y depende
LECCIÓN 9 PANDEO DE PIEZAS A COMPRESIÓN
LECCIÓN 9 PANDEO DE PIEZAS A COMPRESIÓN 1. INTRODUCCIÓN. FENÓMENOS DE INESTABILIDAD. PANDEO TEÓRICO. FÓRMULA DE EULER 3. LONGITUD DE PANDEO 4. CAPACIDAD DE UNA BARRA A PANDEO POR FLEXIÓN EN COMPRESIÓN
Elementos comprimidos - Columnas
Elementos comprimidos - Columnas Columnas simples: Barras prismáticas formadas por perfiles laminados o secciones armadas donde todos los elementos están conectados en forma continua. Secciones compactas
Capítulo 9 PANDEO DE COLUMNAS 9.1. INTRODUCCIÓN. Adaptado de Introducción a la Mecánica de los Sólidos, E. Popov, Ed. Limusa, México D.F
49 Capítulo 9 ANDEO DE COLUMNAS Adaptado de Introducción a la Mecánica de los Sólidos, E. opov, Ed. Limusa, México D.F. 1981. 9.1. INTRODUCCIÓN Al comienzo de este curso se estableció que la selección
Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.
Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,
Mecánica de Materiales I
Mecánica de Materiales I Tema 6 Columnas Sección 1 - Consideraciones iniciales Consideraciones iniciales Una columna es un elemento sometido a compresión, el cual es lo suficientemente delgado respecto
Introducción a las Estructuras
Introducción a las Estructuras Capítulo nueve: Pandeo DOS 6. Método omega. General. Este método simplificado utiliza un coeficiente de seguridad establecido en tablas y determina las cargas y tensiones
Columnas con Cargas Axiales Excéntricas
arte I Columnas con Cargas Axiales Excéntricas Hemos analizado las columnas ideales, donde las cargas actúan a través del centroide de la sección transversal. Bajo estas condiciones, las columnas permanecen
COLUMNAS Y OTRAS BARRAS AXILMENTE COMPRIMIDAS
COLUMNAS Y OTRAS BARRAS AXILMENTE COMPRIMIDAS 06-1-Barras Comprimidas _c 1 Columnas y otras barras axilmente comprimidas Capítulo E Columnas y otras barras comprimidas Apéndice E Columnas y otras barras
Diseño estructural ANÁLISIS Y PREDIMENSIONADO DE COLUMNAS
Diseño estructural ANÁLISIS Y PREDIMENSIONADO DE COLUMNAS JUNIO 2013 Predimensionado de columnas Introducción La columna es el elemento estructural vertical empleado para sostener la carga de la edificación.
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
Deflexiones de vigas y marcos
Deflexiones de vigas y marcos Cuando se carga una estructura, sus elementos esforzados se deforman. Cuando esto ocurre, la estructura cambia de forma y sus puntos se desplazan. Aunque estas deflexiones
CAPÍTULO 5 INESTABILIDAD ELÁSTICA. PANDEO
CAÍTULO 5 INESTABILIDAD ELÁSTICA. ANDEO 1.1. INESTABILIDAD ELÁSTICA Cuando se analizó en Mecánica el equilibrio de un sólido, se definieron las tres formas básicas de equilibrio: equilibrio estable, inestable
II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL
II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método
Sistema Estructural de Masa Activa
Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,
CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo
CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de
CAPÍTULO 5 EFECTOS DE ESBELTEZ
CAPÍTULO 5 EFECTOS DE ESBELTEZ 5.1 Introducción Se entiende por efecto de esbeltez la reducción de resistencia de un elemento sujeto a la compresión axial o a flexocompresión, debida a que la longitud
2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =
3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función
RESISTENCIA DE MATERIALES
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE
ERM2M - Elasticidad y Resistencia de Materiales II
Unidad responsable: 820 - EUETIB - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona Unidad que imparte: 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras en la Ingeniería
Hipótesis en las Ciencias de la Construcción
Hipótesis en las Ciencias de la Construcción Especialización en diseño estructural de obras de arquitectura Trabajo Taller 1: Revisión de las hipótesis en la teoría de la flexión. Grupo de trabajo: Fecha
Hasta ahora vimos solamente cargas del tipo estático. En este capítulo se tratará el caso más común de carga dinámica: el IMPACTO También llamada
Módulo 9 Impacto Hasta ahora vimos solamente cargas del tipo estático. En este capítulo se tratará el caso más común de carga dinámica: el IMPACTO También llamada carga de choque, repentina o de impulso.
CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA?
DEFINICION DE FUERZA AXIAL. Cuando suponemos las fuerzas internas uniformemente distribuidas, se sigue de la estática elemental que la resultante P de las fuerzas internas debe estar aplicadas en el centroide
Capitulo IV Diseño a Flexión. Esc.Ing.Construcción-Universidad de Valparaíso
Capitulo IV Diseño a Flexión 1 Esc.Ing.Construcción-Universidad de Valparaíso 07/03/2018 07/03/2018 Esc.Ing.Construcción-Universidad de Valparaíso. 2 07/03/2018 Esc.Ing.Construcción-Universidad de Valparaíso.
FACTOR k DE LONGITUD DE PANDEO. en pórticos y sistemas continuos
FACTOR k DE LONGITUD DE PANDEO en pórticos y sistemas continuos * APLICACIÓN CIRSOC 301-EL * 06_2 06-3-Barras Comprim 1 Columnas y otras barras axilmente comprimidas Hemos tomado algunas ideas respecto
Mecánica de Materiales I
Tema 5 - Defleión en Vigas Mecánica de Materiales I Tema 5 Defleión en vigas Tema 5 - Defleión en vigas Sección - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este
Estructuras de Edificación: Tema 20 - La pieza recta
Resumen Estructuras de Edificación: Tema 20 - La pieza recta David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de Edificación Segundo
EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO
EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales
B) Para la viga de dos vanos con rótula en R, cargada como se muestra en la figura 2, se pide:
Resistencia de Materiales, Elasticidad y Plasticidad. Examen ordinario 27 de mayo de 2014 Apellidos.................................... Nombre........................ Nº... Curso 3º Ejercicio 1. (Se recogerá
MECANICA DE MATERIALES (TyP)
MECANICA DE MATERIALES (TyP) FICHA CURRICULAR DATOS GENERALES Departamento: Irrigación Nombre del programa: Ingeniero en Irrigación Area: Construcciones Agrícolas Asignatura: Mecánica de Materiales (T
Introducción a la Elasticidad y Resistencia de Materiales
Lección 1 Introducción a la Elasticidad y Resistencia de Materiales Contenidos 1.1. Mecánica del Sólido Rígido y Mecánica del Sólido Deformable............................. 2 1.1.1. Sólido Rígido..........................
(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales.
6. Vigas (Elementos) Compuestos por dos o más Materiales Las ecuaciones obtenidas en la Sección 3 se basan en la hipótesis que el material que forma la sección del elemento, además de ser lineal-elástico,
Figura 1.1 Secciones laminadas y armadas (Argüelles, 2005)
Introducción 1. INTRODUCCIÓN 1.1 Abolladura en vigas armadas En el diseño de puentes es muy habitual el uso de vigas armadas de gran esbeltez. Este tipo de vigas, formadas por elementos planos soldados,
Tabla breve del Contenido
Tabla breve del Contenido PARTE UNO: ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 CAPÍTULO 2 Cargas estructurales 16 CAPÍTULO 3 Sistema de cargas y comportamiento 43 CAPÍTULO 4 Reacciones
Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV
Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES Introducción El método de las flexibilidades, también conocido como método de las deformaciones consistentes, o el método de la
ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 07/03/2018 INGENIERÍA EN CONSTRUCCION- U.VALPO 1
ESTRUCTURAS METALICAS Capítulo III Compresión Axial INGENIERÍA EN CONSTRUCCION- U.VALPO 1 Compresión Axial Casos más comunes de miembros que trabajan a compresión. Columnas. Cuerdas superiores de armaduras.
2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2014 [email protected] RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2014 [email protected] RESISTENCIA DE MATERIALES
Mecánica de Materiales I
Mecánica de Materiales I Tema 3 Torsión en barras Índice de contenido Sección 1 - Deformaciones en un eje circular Tema 3 - Torsión en barras Índice de contenido Sección 2 - Esfuerzos cortantes en barras
El esfuerzo axil. Contenidos
Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos
Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas
Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre
PROBLEMA 1 (10 puntos)
RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:
Resistencia de materiales
Resistencia de materiales April 3, 009 En ingeniería se denomina viga a un elemento constructivo lineal que trabaja principalmente a exión. La teoría de vigas es una parte de la resistencia de materiales
RM - Resistencia de los Materiales
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento
EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO
EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones
CAPITULO III PREDIMENSIONAMIENTO
21 CAPITULO III PREDIMENSIONAMIENTO En el presente capítulo se desarrollarán los criterios que se tomaron en cuenta para el predimensionamiento de los diferentes elementos estructurales que conforman la
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos.
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería
PANDEO DE ESTRUCTURAS APORTICADAS DE ACERO CON CONEXIONES SEMI-RIGIDAS. Resumen
PANDEO DE ESTRUCTURAS APORTICADAS DE ACERO CON CONEXIONES SEMI-RIGIDAS Valencia, F. Lautaro. Universidad de Carabobo. Facultad de Ingeniería. Escuela de Civil. Valencia, Estado Carabobo. Telf.: (0241)
ELASTICIDAD POR FLEXIÓN: UNA EXPERIENCIA DE LABORATORIO ADAPTABLE A LOS DISTINTOS NIVELES EDUCATIVOS
III Taller Iberoamericano de Enseñanza sobre Educación en Ciencia e Ingeniería de Materiales (TIECIM 0) EASTICIDAD POR FEXIÓN: UNA EXPERIENCIA DE ABORATORIO ADAPTABE A OS DISTINTOS NIVEES EDUCATIVOS T.
Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I
Hasta ahora vimos: esfuerzos axiales simples: Tracción y Compresión. Flexión: esfuerzo compuesto, Tracción y Compresión en un mismo sólido distanciados por un brazo de palanca (z). A través de la comprensión
Mercedes López Salinas
ANÁLISIS Y DISEÑO DE MIEMBROS ESTRUCTURALES SOMETIDOS A FLEXIÓN Mercedes López Salinas PhD. Ing. Civil Correo: [email protected] ESTRUCTURAS DE ACERO Y MADERA Facultad de Ciencia y Tecnología Escuela
DISEÑO DE ESTRUCTURAS METÁLICAS (T)
DISEÑO DE ESTRUCTURAS METÁLICAS (T) FICHA CURRICULAR DATOS GENERALES Departamento: Irrigacion Nombre del programa: Ingeniero en Irrigación Area: Construcciones agrícolas Asignatura: Diseño de Estructuras
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior
DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103
DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103 DEFINICIÓN Método de diseño para estructuras sometidas a la acción sísmica. En el diseño de estructuras por capacidad, los elementos estructurales que resistirán
DISEÑO DE ESTRUCTURAS DE ACERO
DISEÑO DE ESTRUCTURAS DE ACERO Traducido y adaptado por Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil Morelaia Mich. 1 Miembros en compresión: Capítulo E: Resistencia en compresión
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES
Mecánica de las estructuras
Mecánica de las Estructuras Página 1 de 6 Programa de: Mecánica de las estructuras UNIVERSIDAD NACIONAL DE CORDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Código: 6406 Carrera:
CAPÍTULO 1. INTRODUCCIÓN A LA ESTRUCTURA METÁLICA. EL ACERO ESTRUCTURAL. CARGAS.
INDICE. ACERO ESTRUCTURAL. Gil-Hernández. CAPÍTULO 1. INTRODUCCIÓN A LA ESTRUCTURA METÁLICA. EL ACERO ESTRUCTURAL. CARGAS. 1.1 INTRODUCCIÓN 1 1.2 VENTAJAS DE LA ESTRUCTURA DE ACERO 1 1.3 LA ESTRUCTURA
UNIDAD 6 FICHA DE ESTUDIO Nº7 (Anexo 1) ESTRUCTURAS SOMETIDAS A TRACCION Y COMPRESION
UNIDAD 6 FICHA DE ESTUDIO Nº7 (Anexo 1) ESTRUCTURAS SOMETIDAS A TRACCION Y COMPRESION OBJETIVO: Los sistemas reticulados. Diseño y dimensionado de elementos estructurales sometidos a solicitación axial.
Contenido " '* Prefacio. Alfabeto griego
Contenido Prefacio Símbolos ix Xlll Alfabeto griego XVI ""' y 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Introducción a la mecánica de materiales 1 Esfuerzo y defonnación unitaria normales 3 Propiedades mecánicas
Índice. DISEÑO DE ESTRUCTURAS METALICAS METODO ASD 4/ED por MCCORMAC Isbn Indice del Contenido
Índice DISEÑO DE ESTRUCTURAS METALICAS METODO ASD 4/ED por MCCORMAC Isbn 9701502221 Indice del Contenido Capítulo 1 Introducción al diseño estructura] en acero 1-1 Ventajas del acero como material estructural
60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min
RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en
Estructuras de acero: Problemas Pilares
Estructuras de acero: Problemas Pilares Dimensionar un pilar de 4 m de altura mediante un perfil, sabiendo que ha de soportar una carga axial de compresión F de 400 una carga horiontal P de 0, que estos
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de
CAPÍTULO 3 COLUMNAS CORTAS BAJO CARGA AXIAL EXCÉNTRICA EN UNA DIRECCIÓN
CAPÍTULO 3 COLUMNAS CORTAS BAJO CARGA AXIAL EXCÉNTRICA EN UNA DIRECCIÓN 3.1 Introducción En este capítulo se presentan los procedimientos necesarios para determinar la resistencia de elementos de concreto
1. INTRODUCCIÓN. 1.1 Preámbulo
1. INTRODUCCIÓN 1.1 Preámbulo Los actuadores hidráulicos hacen parte del grupo de componentes más utilizados en la industria hidráulica de potencia, y su uso abarca diversas aplicaciones, como levantamiento,
CÓDIGO: FOR-DO-062 VERSIÓN: 0 FECHA:26/08/2016 FORMATO RESUMEN DECONTENIDO DE CURSO O SÍLABO
1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 23/11/2016 Programa Ingeniería mecánica Semestre V Nombre Resistencia de materiales Código 714030 Prerrequisitos 71308 Estática
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 8.- ESTRUCTURAS METALICAS. 8.1.-Concepto de estructura. Condiciones que debe cumplir. Las estructuras metálicas son conjuntos
MECANICA Y RESISTENCIA DE MATERIALES
PLANIFICACION DE LA ASIGNATURA MECANICA Y RESISTENCIA DE MATERIALES Equipo Docente: Responsable: Ing. María Marcela Nieto Auxiliar: Ing. Ricardo Loréfice Ing. Manuel Martín Paz Colaboran: Ing. Alejandro
CAPÍTULO 3. RELACIÓN MOMENTO-CURVATURA M-φ
27 CAPÍTULO 3 RELACIÓN MOMENTO-CURVATURA M-φ 3.1 Relación Momento-Curvatura M-φ El comportamiento de las secciones de concreto reforzado sometidos a acciones de diseño puede comprenderse de manera más
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
ÍNDICE I TEORÍA DE LA ELASTICIDAD
TÍTULO DE CAPÍTULO ÍNDICE Prólogo................................................................................... 17 Notaciones y símbolos................................................................
Criterios de plasticidad y de rotura
Lección 5 Criterios de plasticidad y de rotura Contenidos 5.1. Criterio de plasticidad para materiales sujetos a un estado triaxial de tensiones................... 64 5.2. Criterio de plasticidad de Von
RM - Resistencia de los Materiales
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2018 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento
CAPÍTULO Influencia de las deformaciones por corte en los diagramas M-φ
41 CAPÍTULO 5 INFLUENCIA DE LA FUERZA CORTANTE EN LAS RELACIONES M-φ DE SECCIONES DE CONCRETO REFORZADO Y SU IMPACTO EN LA EVALUACIÓN Y DISEÑO SÍSMICO DE ESTRUCTURAS DE CONCRETO REFORZADO 5.1 Influencia
CAPTÍULO VII DISEÑO DE COLUMNAS. La mayoría de las veces la carga axial excede el valor de 0.1Agf c, por lo que no pueden
CAPTÍULO VII DISEÑO DE COLUMNAS. Las columnas son diseñadas como elementos sujetos a efectos de flexocompresión. La mayoría de las veces la carga axial excede el valor de.1agf c, por lo que no pueden ser
N brd = χ A f yd. siendo:
Documento Básico - C E R O a) debidos al peso propio de las barras de longitudes inferiores a 6 m; b) debidos al viento en las barras de vigas trianguladas; c) debidos a la excentricidad en las barras
Introducción a las Estructuras
Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones
CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos
CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B
C 4.1. LONGITUD EFECTIVA Y LIMITACIÓN DE ESBELTECES
COMENTARIOS AL CAPÍTULO 4. BARRAS COMPRIMIDAS C 4.1. LONGITUD EFECTIVA Y LIMITACIÓN DE ESBELTECES La mayor rigidez y resistencia torsional de los tubos comparada con la de otras formas seccionales, incrementa
Prácticas de Resistencia 12-13
Prácticas de Resistencia 12-13 1) Calcular las reacciones en los apoyos de la viga de la figura 1 para los siguientes dos casos de la carga actuante: parábola de 2º grado con tangente horizontal en C;
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS
CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS 19.0. SIMBOLOGÍA E c módulo de elasticidad del hormigón, en MPa (ver el artículo 8.5.1.). f' c resistencia especificada a la compresión del hormigón, en MPa. f '
TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR
Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura
Diseño de Estructuras Metálicas. Miembros estructurales sujetos a flexión Prof. Akram Homsi H. Marzo 2013
Diseño de Estructuras Metálicas Miembros estructurales sujetos a flexión Prof. Akram Homsi H. Marzo 2013 Miembros sujetos a flexión Los miembros estructurales sujetos a fuerzas transversales a su eje longitudinal,
ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 05/04/2016 INGENIERÍA EN CONSTRUCCION- U.VALPO 128
ESTRUCTURAS METALICAS Capítulo III Compresión Axial INGENIERÍA EN CONSTRUCCION- U.VALPO 18 Compresión Axial Casos más comunes de miembros que trabajan a compresión. Columnas. Cuerdas superiores de armaduras.
Mercedes López Salinas
ANÁLISIS Y DISEÑO DE MIEMBROS ESTRUCTURALES SOMETIDOS A FLEXIÓN Mercedes López Salinas PhD. Ing. Civil Correo: [email protected] ESTRUCTURAS DE ACERO Y MADERA Facultad de Ciencia y Tecnología Escuela
Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por:
PRÁCTICAS DE ELASTICIDAD AÑO ACADÉMICO 2012-201 Prob 1. El estado tensional de un punto de un sólido elástico se indica en la Figura donde las tensiones se epresan en MPa. Se pide: a. Calcular el vector
Eurocódigo para Estructuras de Acero: Desarrollo de una Propuesta Transnacional
Curso: Eurocódigo 3 Módulo 4:. Lección 3: Eurocódigo para Estructuras de Acero: Desarrollo de una Propuesta Transnacional Resumen: Los elementos estructurales sometidos a compresión axial son conocidos
Mecánica de las Estructuras I
Mecánica de las Estructuras I Página 1 de 5 Programa de: UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Mecánica de las Estructuras I Código: 5006
