Control de un servomotor con respuesta subamortiguada

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control de un servomotor con respuesta subamortiguada"

Transcripción

1 Control de un servomotor con respuesta subamortiguada Objetivo: Implementar el control digital de la posición angular del servomotor CI Antecedentes y descripción del servo Para este laboratorio se cuenta con varias plantas de servo motor de posición angular las cuales cuentan internamente con un motor de CD con caja reductora que ha sido realimentado negativamente para obtener una planta subamortiguada, muy diferente al clásico servo de posición con respuesta integral. En la figura 1 se muestra una fotografía del servo, en la que puede observarse en la parte superior izquierda el conector para las señales (1); al centro la masa del servo con la escala graduada en grados en su parte superior (2) y la aguja señaladora para fines de verificación de la posición (3) y en la parte inferior derecha se encuentra el diagrama electrónico interno (4); el cual también se reproduce en la figura 2 para su mejor visualización Figura 1: Fotografía del servo de posición angular CI

2 Figura 2: Diagrama electrónico del servo CI El servo cuenta con un potenciómetro acoplado al eje de salida de la caja reductora y alimentado con ± 2V, el cual sirve para realimentar internamente la posición y para poder medirla externamente, ya que se encuentra en el grupo de señales del conector. En condiciones normales, al ubicar 180 debajo de la aguja indicadora, la tensión medida en la salida POT será de 0V. El valor de ganancia del potenciómetro es de 90 /V. El servo también cuenta con un interruptor que desconecta el motor de la tierra y permite girar la masa del servo sin dificultad, como por ejemplo para poder obtener la característica estática del sensor de posición (potenciómetro) girando lentamente la masa entre los límites, mientras se toma nota de las tensiones en la salida POT para cada ángulo. La figura 3 muestra una característica típica obtenida por el método descrito Tensión (V) y = x Posición angular ( ) Figura 3: Ejemplo de caracterización del potenciómetro de realimentación 2

3 El movimiento de la masa del servo con el interruptor cerrado (motor energizado) es algo que no se debe intentar; pues la realimentación del servo se opondrá a cualquier movimiento forzado manualmente y eventualmente la masa se deslizará del eje de salida de la caja reductora y por ende del potenciómetro, con lo cual tendremos el problema de que las indicaciones en grados y el valor de tensión del potenciómetro se correrán y en la posición 180 no se obtendrán 0V. Si el servo en su posesión tiene el problema antes indicado, deberá calibrarlo de nuevo con ayuda de una llave allen, con la que se debe aflojar el tornillo prisionero de la masa del servo, ubicar 0V a 180 y luego apretar firmemente el prisionero. Obtención del modelo empírico para el servo Para obtener el modelo del servo realimentado se realiza un experimento en el cual se estimula la entrada SERVO con una señal rectangular, unipolar en este ejemplo; pero, puede ser bipolar; y se registran simultáneamente con un osciloscopio digital las tensiones de excitación y de posición (POT). Los datos son extraidos del osciloscopio, típicamente escritos como archivo CSV en una memoria USB; para luego ser procesados en Matlab. Note en el diagrama electrónico de la figura 2, que la impedancia de la entrada SERVO es de 100kΩ y que ésta podría cargar la salida de una etapa anterior con impedancia de salida alta. Para evitar este potencial problema se recomienda el uso de un amplificador separador con salida de baja impedancia para acoplar el controlador a la entrada SERVO. Posición angular ante un estímulo rectangular 0.1 Posición Entrada 0.08 Amplitud [V] Tiempo [s] Figura 4: Gráficas del experimento realizado para obtener el modelo 3

4 En la figura 4 se muestran las señales capturadas y puede observarse el comportamiento subamortiguado del servo (sobrepaso de la señal de posición) y el error de estado estacionario. Luego del procesamiento de las señales en Matlab, se obtiene el modelo G(s) [V/V] que nos muestra que el sistema es de orden 2 y tipo 0, con una ganancia estática ligeramente mayor a 1 y que claramente corresponde con los resultados de las gráficas experimentales Descripción del problema Como el servo tiene una respuesta subamortiguada y además presenta error de estado estacionario; se desea corregir estas dos características indeseables con un control digital realizado en una placa de desarrollo que utiliza lógica programable. La estructura del control se muestra en la figura 5. + Figura 5: Esquema del control mostrando la instrumentación analógica típica En la figura 5 se observan los valores típicos de las señales del sistema y los 2 acondicionadores de señal y las funciones que éstos deben realizar que son: 1) Cambio de nivel y de escala de las señales de bipolar ± 2V a unipolar de 0 a 3.3V y viceversa, puede ser otro rango dependiendo de la placa de desarrollo a utilizar; 2) Filtrado pasa bajas de la señal de posición, para limitar en banda la señal antes de muestrearla, CAS1; y filtrado pasa bajas del PWM de salida, para recuperar el valor de la componente de CD modulada en la señal de PWM, CAS2. En la figura 6 se muestra la característica estática requerida para el CAS1. Para el CAS 2 simplemente invertir los ejes de entrada y salida. 4

5 En el esquema de control sugerido se utiliza PWM para la salida de control debido a la falta de un DAC en la placa de desarrollo. Los resultados para las constantes del PID utilizadas al final de este documento están basados en el uso de un PWM a 10KHz y de un filtro pasa bajas de segundo orden como el mostrado en la figura 7 con constantes de tiempo de aproximadamente 0.22ms. Si se utiliza un DAC, los valores de las constantes del PID eventualmente podrían cambiar debido que no es necesario utilizar la función pasa bajas del CAS2. y = Salida del acondicionador de señal x= Entrada desde el sensor de posición Figura 6: Característica de transferencia estática del acondicionador de entrada CAS1 Figura 7: Filtro pasa bajas para la señal del PWM 5

6 Requisitos del control para el sistema final De los requisitos de control especificados en la tabla 1 y de la ecuación para el modelo del sistema servomotor se infiere que para corregir el error de estado estacionario hay que aumentar el tipo de sistema a 1. Esto implica el uso de un integrador en el control. Para corregir el sobreimpulso se requerirá el uso de un compensador de adelanto en la forma PD. De todo lo anterior se desprende que la estructura del regulador a utilizar debe ser PID. Tabla 1: Requisitos para el control digital del servo de posición angular CI Parámetro Sobrepaso [%] Tiempo de Error de estado estabilización [s] estacionario [%] Valor requerido 0 menor o igual Para probar la implementación realizada, el servo controlado digitalmente será sometido a cambios en forma escalón en la entrada de referencia mostrada en la figura 5. No deben excederse los límites de 20 y de 340, marcados en la placa de la masa del servo; ya que no existe garantía de que el potenciómetro entregue valores adecuados en ese rango y además cerca del punto de 0 existe una discontinuidad en la salida POT, que cambia abruptamente entre los valores de ± 2V. Derivación de las ecuaciones del regulador PID e implementación digital Uno de los reguladores más conocidos y que se encuentran implementados en prácticamente todos los sistemas de control comerciales, analógicos y digitales, es el llamado regulador PID. La ecuación típica, en el dominio del tiempo, que se encuentra en cualquier libro de Control Automático, para un regulador PID es: Con : e(t) : señal de error (r(t)-y(t)), Kp : Ganancia proporcional, Ki : Ganancia integral, Kd : Ganancia derivativa, donde puede observarse la razón por la que se llama PID; ya que la ecuación tiene tres términos sumados: el primero es el término directamente proporcional (P) al error; el segundo es el término proporcional a la integral (I) del error y el tercero es el término proporcional a la derivada (D) del error. En la figura 8 se muestra la estructura de la implementación paralelo clásica del PID. 6

7 Figura 8: Implementación clásica en paralelo del regulador PID en el dominio del tiempo Derivación de las funciones de transferencia en z para el regulador PID La ecuación, en el dominio de Laplace, para el regulador PID es: Con: E(s) : Transformada de Laplace del error N : Constante del filtro derivativo donde se ha agregado un término de filtro para que el término correspondiente a la derivada sea realizable (propio) ya que originalmente es impropio ( n < q). Transformando al dominio Z, la ecuación del PID obtenemos: Con: E(z) : Transformada Z del error Ts : Periodo de muestreo En la ecuación para el PID(z), la integral ha sido aproximada por el método numérico llamado backward Euler y la derivada ha sido aproximada por el método forward Euler. Como se mencionó antes, el regulador PID se implementa usualmente en forma paralela separando los tres términos así: 7

8 1 1 1 La variante I_PD del regulador PID Cuando la entrada de referencia será sometida a cambios abruptos en forma de escalón, la implementación clásica del PID se cambia a la forma I_PD; en la cual solamente el término integral, que reacciona lentamente, se encuentra en el camino directo de la señal de error; en cambio los términos proporcional y derivativo, que reaccionan muy rápido ante los escalones y con salidas potencialmente excesivas y que pueden llevar el regulador a saturación son colocados en el lazo de realimentación. La estructura del I_PD se muestra en la figura 9, y esta es la implementación que se recomienda para este problema. Con este cambio de la estructura, las ecuaciones para la parte proporcional y derivativa se modifican a esta forma, ya que solamente actúan sobre la realimentación: Con : 1 1 Y(z) : Señal de realimentación (salida del sistema) Figura 9: Estructura de la implementación I_PD en el dominio del tiempo 8

9 Resolviendo el problema de control planteado, con un regulador con estructura I_PD y utilizando un periodo de muestreo de 5ms, adecuado para este problema según las especificaciones recibidas (Ts t S2% /40), se obtienen las constantes buscadas para el regulador y que se muestran en la tabla 2. Tabla 2: Constantes del regulador I_PD y del sistema en tiempo discreto. Parámetro Ts [s] Kp [V/V] Ki [1/s] Kd [s] N [1/s] Valor / /16 3/ Sustituyendo los valores conocidos para el sistema y las constantes encontradas para el control en las ecuaciones del I_PD obtenemos: Implementación digital de las ecuaciones de diferencia del regulador Para poder implementar en un regulador digital las funciones de transferencia en z encontradas para el regulador I_PD se deben transformar primero al dominio del tiempo discreto, a ecuaciones de diferencias, las cuales si pueden ser realizadas en un computador digital La consigna de una buena implementación digital de un regulador es ejecutar lo más rápido posible el cálculo completo del regulador, idealmente en una décima parte del periodo de muestreo, en este caso en 500s. Asumiendo que nuestro computador digital no es lo suficientemente rápido para ejecutar las ecuaciones de diferencias en punto flotante en ese tiempo; se recomienda una implementación en punto fijo. Considerando que el ancho de palabra del computador a utilizar es de 8 bits debemos escalar nuestras constantes por 256, (2 8 ). Ahora se comprenderá por qué se han mantenido las constantes en forma de fracciones hasta este momento. 9

10 Las ecuaciones escaladas y listas para ser implementadas en un computador de 8 bits en punto fijo finalmente son las siguientes: Si, para generalizar, llamamos a las constantes del regulador I_PD con los nombres KP, KI y KD; tenemos: 1 1 La ecuación completa del I_PD, tomando en cuenta los signos del sumador mostrado en la figura 9 es: Figura 10: Algoritmo en C para implementar el I_PD en punto fijo con una máquina de 8 bits 10

11 Resultados de la implementación digital del I_PD para el control del servo Finalmente los resultados de la implementación se muestran en la figura 11. Para obtener este oscilograma se ha aplicado una entrada de referencia en forma de escalón desde 0V hasta +1V, que corresponden a la posición angular 180 y a la posición angular de 90 respectivamente. Figura 11: Respuesta del servo de posición ante una entrada de referencia escalón desde 180 hacia 90 En la figura 11 puede observarse que se cumplen los objetivos dinámicos y estáticos planteados. El resultado final no tiene error de estado estacionario ni sobreimpulso y el tiempo de asentamiento del 2% es de unos 180ms para un recorrido de 90, (¼ del recorrido total). La señal ENTRADA no tiene una amplitud de 1V debido a que no es la verdadera señal aplicada a la entrada del control; sino, que se trata de una salida digital, libre de rebotes, especialmente producida para sincronizar el disparo del osciloscopio. 11

12 Figura 12: Tiempo de ejecución del algoritmo En el oscilograma la figura 12 puede observarse que el algoritmo completo del I_PD se ejecuta, en el computador digital utilizado, en aproximadamente 14, tiempo mucho menor que el presupuesto de tiempo de 500 requerido. La forma de onda se ha producido al encender la salida PULSE al inicio de cada interrupción del reloj de 5ms, al iniciar el procesamiento del algoritmo I_PD, y apagándola al completar el algoritmo; con lo que se produce una forma de onda rectangular que se repite cada 5ms y tiene un tiempo en alto de 14s. EIS/eis

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano Control Automático Regulador PID y ajuste del PID Eduardo Interiano Contenido Regulador PID PID ideal PID real Ajuste empírico del PID (Ziegler-Nichol Ejemplos Ejercicios Referencias 2 El PID ideal El

Más detalles

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta:

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta: INSTITUTO TECNOLÓGICO DE COSTA RICA II SEMESTRE 2013 ESCUELA DE INGENIERIA EN ELECTRÓNICA CURSO: EL-5408 CONTROL AUTOMÁTICO MEDIO: Examen 3 PROF: ING. EDUARDO INTERIANO Nombre: Carné Ordinal Parte I preguntas

Más detalles

Plataforma de contenidos interactivos. Página Web del libro. Mecatrónica Introducción Origen de la mecatrónica 5

Plataforma de contenidos interactivos. Página Web del libro. Mecatrónica Introducción Origen de la mecatrónica 5 Contenido Plataforma de contenidos interactivos XXI Página Web del libro XXII Prólogo XXVII Capítulo 1 Mecatrónica 1 1.1 Introducción 3 1.2 Origen de la mecatrónica 5 1.2.1 Qué es mecatrónica? 9 Mecatrónica

Más detalles

1 Control de procesos

1 Control de procesos 1 Control de procesos Toda una gama de procesos estables y sobreamortiguados de segundo orden y órdenes superiores que tienen un tipo de respuesta tipo S ante una entrada escalón, pueden ser representados

Más detalles

1. PRESENTANDO A LOS PROTAGONISTAS...

1. PRESENTANDO A LOS PROTAGONISTAS... Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

Unidad Temática 9: Análisis y Diseño de Sistemas de Control a Lazo Cerrado

Unidad Temática 9: Análisis y Diseño de Sistemas de Control a Lazo Cerrado Control Automático Ing. Eléctrica Página 1 de 17 Unidad Temática 9: Análisis y Diseño de Sistemas de Control a Lazo Cerrado Algoritmos de Control: Un algoritmo de control se encarga de monitorear el valor

Más detalles

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es:

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es: 1.4.1 CONTROLADOR PID A continuación se hace una breve presentación del controlador PID clásico en el dominio continuo y a la vez que se mencionan los métodos de sintonización, de oscilaciones amortiguadas

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño

Más detalles

HORARIO DE CLASES SEGUNDO SEMESTRE

HORARIO DE CLASES SEGUNDO SEMESTRE HORARIO DE CLASES LUNES MIERCOLES 17 a 18:15 hs 17 a 18:15 hs Ln 14/08/17: CRONOGRAMA DE CLASES y PARCIALES CONTROL I -AÑO 2017- SEGUNDO SEMESTRE Introducción a los sistemas de Control. Definiciones de

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho

Más detalles

TEORÍA DE CONTROL CONTROLADOR PID

TEORÍA DE CONTROL CONTROLADOR PID TEORÍA DE CONTROL CONTROLADOR PID Historia del controlador PID. Nicolás Minorsky 1922 Nicolás Minorsky había analizado las propiedades de los controladores tipo PID en su publicación Estabilidad direccional

Más detalles

Presentado por: Laura Katherine Gómez Mariño. Universidad Central

Presentado por: Laura Katherine Gómez Mariño. Universidad Central Presentado por: Laura Katherine Gómez Mariño. Universidad Central IMPORTANCIA DEL TEMA ESCOGIDO: Es una herramienta usada en simulación, que es parte crucial en un sistema de control industrial. Un controlador

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.

Más detalles

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO 1. SISTEMA A CONTROLAR El sistema a controlar es el conjunto motor eléctrico-freno conocido de otras prácticas: Se realizarán experimentos de control de posición

Más detalles

Capítulo 1 Introducción Mecatrónica Sistemas de medición Ejemplos de diseño... 5

Capítulo 1 Introducción Mecatrónica Sistemas de medición Ejemplos de diseño... 5 ÍNDICE Listas... ix Figuras... ix Tablas... xv Temas para discusión en clase... xvi Ejemplos... xviii Ejemplos de diseño... xix Ejemplos de diseño encadenado... xx Prefacio... xxi Capítulo 1 Introducción...

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID

UNIVERSIDAD POLITÉCNICA DE MADRID UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ELECTRÓNICA, AUTOMÁTICA E INFORMÁTICA INDUSTRIAL Prácticas de Regulación Automática Práctica 5 Reguladores continuos 5.2 Reguladores continuos 5 REGULADORES

Más detalles

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2. 1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.

Más detalles

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL 1. Determina el diagrama de bloques del sistema automático de control de líquido de la figura. Determina de nuevo el diagrama de bloques suponiendo que

Más detalles

Ingeniería en Automática Industrial Software para Aplicaciones Industriales I PROCESAMIENTO PRIMARIO DE LA INFORMACIÓN

Ingeniería en Automática Industrial Software para Aplicaciones Industriales I PROCESAMIENTO PRIMARIO DE LA INFORMACIÓN PROCESAMIENTO PRIMARIO DE LA INFORMACIÓN ariables en un sistema automatizado ariables medidas directamente ariables de perturbación ariables introducidas manualmente SISTEMA DE CONTROL ariables manipuladas

Más detalles

Control PID. Sintonización e implementación

Control PID. Sintonización e implementación Control PID. Sintonización e implementación Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM Julio 2012 1 Control PID Control PID una de las formas más

Más detalles

Práctica 4 Control de posición y velocidad de un motor de corriente continua

Práctica 4 Control de posición y velocidad de un motor de corriente continua Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja

Más detalles

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL

Más detalles

Introducción al control de fuentes conmutadas.

Introducción al control de fuentes conmutadas. Introducción al control de fuentes conmutadas. En una fuente conmutada ideal la tensión de salida es una función de la tensión de entrada y del valor del ciclo de trabajo definido. En la práctica existirán

Más detalles

Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL

Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control. Introducción En esta práctica se realiza

Más detalles

Control PID. Ing. Esp. John Jairo Piñeros C.

Control PID. Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Que es PID? Variable Proporcional Variable Integral Variable Derivativa cuando se puede usar un controlador PI, PID?

Más detalles

Tutorial de controladores PID

Tutorial de controladores PID Page 1 of 8 Tutorial de controladores PID Introduccion El controlador de 3 terminos Las caracteristicas de los controladores P, I y D Problema Ejemplo Respuesta de Lazo Abierto al escalon Control Proporcional

Más detalles

Salida = Valor deseado (referencia) Para todo el tiempo posible!!! jlc

Salida = Valor deseado (referencia) Para todo el tiempo posible!!! jlc Control: Se debe lograr que unas variables de salida de un sistema se comporten de acuerdo a nuestro deseo. La fuerza del ego humana puesta al servicio de la ingeniería Salida = Valor deseado (referencia)

Más detalles

PR-5. PRÁCTICA REMOTA Respuesta de motores de corriente continua. Equipo modular Feedback MS-150

PR-5. PRÁCTICA REMOTA Respuesta de motores de corriente continua. Equipo modular Feedback MS-150 PR-5. PRÁCTICA REMOTA Respuesta de motores de corriente continua. Equipo modular Feedback MS-150 Realizado: Laboratorio Remoto de Automática (LRA-ULE) Versión: Páginas: Grupo SUPPRESS (Supervisión, Control

Más detalles

AUTÓMATAS Y SISTEMAS DE CONTROL CONTROL DE UN MOTOR DC MEDIANTE UN CONTROLADOR PID INDUSTRIAL

AUTÓMATAS Y SISTEMAS DE CONTROL CONTROL DE UN MOTOR DC MEDIANTE UN CONTROLADOR PID INDUSTRIAL 2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 11 CONTROL DE UN MOTOR DC MEDIANTE UN CONTROLADOR PID INDUSTRIAL

Más detalles

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida Amplificadores operacionales. Los amplificadores operacionales, también conocidos como amp ops, se usan con frecuencia para amplificar las señales de los circuitos Los amp ops también se usan con frecuencia

Más detalles

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis Diseño de controladores por el método de respuesta en frecuencia de sistemas discretos. (método gráfico) CONTROL DIGITAL 07--0 Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

Más detalles

Tema: Controladores tipo P, PI y PID

Tema: Controladores tipo P, PI y PID Sistemas de Control Automático. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

PRIMER LABORATORIO EL 7032

PRIMER LABORATORIO EL 7032 PRIMER LABORATORIO EL 7032 1.- OBJETIVOS.- 1.1.- Analizar las formas de onda y el comportamiento dinámico de un motor de corriente continua alimentado por un conversor Eurotherm Drives, 590+ Series DC

Más detalles

TEMA 3 Amplificadores Operacionales

TEMA 3 Amplificadores Operacionales TEMA 3 Amplificadores Operacionales Simbología. Características del amplificador operacional ideal. Modelos. Análisis de circuitos con amplificadores operacionales ideales: inversor y no inversor. Aplicaciones

Más detalles

Clasificación de los Convertidores DAC

Clasificación de los Convertidores DAC Clasificación de los Convertidores DAC Sistemas de Adquisición de datos () Según las características de la señal de entrada digital Codificación: Código: Binario Natural BCD Formato: Serie Paralelo Almacenamiento

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

Diseño de reguladores PID.

Diseño de reguladores PID. Universidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática Área de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 3 Diseño de reguladores PID. 1 Introducción

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

[ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13]

[ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13] [ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13] Este método se aplica al ajuste de los reguladores de un regulador digital de turbinas hidráulicas.

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus montajes típicos que son como

Más detalles

Mantenimiento de equipos electrónicos. El generador de funciones y el generador de baja frecuencia.

Mantenimiento de equipos electrónicos. El generador de funciones y el generador de baja frecuencia. Mantenimiento de equipos electrónicos El generador de funciones y el generador de baja frecuencia 1/11 Aplicaciones de los generadores de funciones y generadores de baja frecuencia y diferencias entre

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

Proyecto de curso. Control I II

Proyecto de curso. Control I II Proyecto de curso Control I - 27141 2017-II Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones Universidad Industrial de Santander Bucaramanga, agosto de 2017 1. Introducción La caracterización

Más detalles

Circuito de Offset

Circuito de Offset Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el

Más detalles

Control Automático. Compensadores de adelanto en el dominio de la frecuencia

Control Automático. Compensadores de adelanto en el dominio de la frecuencia Control Automático Compensadores de adelanto en el dominio de la frecuencia Contenido Introducción Estrategia Ecuaciones del compensador de adelanto Cálculo de un compensador de adelanto para corrección

Más detalles

Controladores Logicos Programables II

Controladores Logicos Programables II Controladores Logicos Programables II Manejo de Señales Analogicas Manejo de señales Analógicas Introducción: En el curso de PLC I, se discutieron técnicas para diseñar sistemas de control lógicos que

Más detalles

Contenido. Circuitos Eléctricos - Dorf. Alfaomega

Contenido. Circuitos Eléctricos - Dorf. Alfaomega CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis

Más detalles

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL A continuación se incluyen preguntas de examen de los últimos años, tanto de teoría como de problemas. Lo indicado entre paréntesis es la puntuación

Más detalles

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III PROBLEMAS RESUELTOS SOBRE CONVERSORES

Más detalles

Servomotor Eléctrico.

Servomotor Eléctrico. Sistemas de control 67-Página Version 003 1 de 5 Servomotor Eléctrico. Vemos en la figura un esquema del circuito parte mecánica del servomotor de corriente continua controlado por armadura, es decir mediante

Más detalles

MICROCONTROLADORES EJERCICIOS PARA PRACTICAR USANDO TEMPORIZADORES

MICROCONTROLADORES EJERCICIOS PARA PRACTICAR USANDO TEMPORIZADORES MICROCONTROLADORES EJERCICIOS PARA PRACTICAR USANDO TEMPORIZADORES 1. Se desea enviar por el pin PB.0 un pulso negativo de 244µs cuando se reciba un flanco de bajada por el pin INT0. Escribe un programa

Más detalles

INFORME 5: Compensadores de atraso y adelanto de fase.

INFORME 5: Compensadores de atraso y adelanto de fase. UNIVERSIDAD NACIONAL DE COLOMBIA, FACULTAD DE INGENIERÍA, DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA. INFORME 5: Compensadores de atraso y adelanto de fase. Diego Mancipe (6406), Alejandro Ospina

Más detalles

Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Ingeniería de Control LABORATORIO DE CONTROL ANALÓGICO P R A C T I C A

Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Ingeniería de Control LABORATORIO DE CONTROL ANALÓGICO P R A C T I C A Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Ingeniería de Control LABORATORIO DE CONTROL ANALÓGICO P R A C T I C A C O N T R O L D E T E M P E R A T U R A Octubre 1998 CONTROL

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Introducción l amplificador operacional es básicamente un amplificador de tensión con la particularidad de tener dos entradas, y amplificar solo la señal diferencia entre ellas.

Más detalles

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo

Más detalles

A b C D E F H I J k B 2. Objetivos generales. Estado del arte. Modelado del motor

A b C D E F H I J k B 2. Objetivos generales. Estado del arte. Modelado del motor A b C D E F H I J k Objetivos generales Estado del arte Modelado del motor Análisis del sistema Objetivos y tareas de Innovación Educativa para Modelado PID por asignación de polos Diseño de controladores

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que

Más detalles

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas

Más detalles

Caracterización de defectos en sistemas de aislamiento mediante detección de descargas parciales

Caracterización de defectos en sistemas de aislamiento mediante detección de descargas parciales Universidad Carlos III de Madrid Repositorio institucional e-archivo Trabajos académicos http://e-archivo.uc3m.es Proyectos Fin de Carrera 2002 Caracterización de defectos en sistemas de aislamiento mediante

Más detalles

MÓDULO Nº10 CONVERTIDORES DIGITAL ANALÓGICO

MÓDULO Nº10 CONVERTIDORES DIGITAL ANALÓGICO MÓDULO Nº0 CONVERTIDORES DIGITAL ANALÓGICO UNIDAD: CONVERTIDORES TEMAS: Introducción al tratamiento digital de señales. Definición y Funcionamiento. Parámetros Principales. DAC00 y circuitos básicos. OBJETIVOS:

Más detalles

Escuela de Ingeniería Eléctrica. Materia: Teoría de Control (E )

Escuela de Ingeniería Eléctrica. Materia: Teoría de Control (E ) Escuela de Ingeniería Eléctrica Departamento de electricidad aplicada Materia: Teoría de Control (E-4.26.1) Síntesis de Correctores en Reacción Publicación E.4.26.1-TE-03B-0 Marzo de 2013 Carrera: Ingeniería

Más detalles

Ejercicios analógicos

Ejercicios analógicos 1. Una empresa de comunicaciones nos ha encargado el diseño de un sistema que elimine el ruido de una transmisión analógica. Los requisitos son tales que toda la componente de frecuencia superior a 10

Más detalles

CONTROL POR COMPUTADOR DE SERVOMECANISMOS

CONTROL POR COMPUTADOR DE SERVOMECANISMOS Práctica 4 CONTROL POR COMPUTADOR DE SERVOMECANISMOS 4.1 Introducción Como es sabido, un sistema dinámico, ante la acción de unas señales de entrada, evoluciona a lo largo del tiempo variando su estado,

Más detalles

Glosario de Términos de Control

Glosario de Términos de Control Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de

Más detalles

PROGRAMA DE LA ASIGNATURA

PROGRAMA DE LA ASIGNATURA PROGRAMA DE LA ASIGNATURA Curso académico 2012/2013 Identificación y características de la asignatura Denominación Créditos (T+P) Titulación Control e instrumentación de procesos químicos 3+3 Ingeniería

Más detalles

CONTROL Y MEDIDA DE NIVEL DE LIQUIDO CON SEÑALES DE ULTRASONIDO DYLAN ANDRES ALZATE

CONTROL Y MEDIDA DE NIVEL DE LIQUIDO CON SEÑALES DE ULTRASONIDO DYLAN ANDRES ALZATE CONTROL Y MEDIDA DE NIVEL DE LIQUIDO CON SEÑALES DE ULTRASONIDO DYLAN ANDRES ALZATE INTRODUCCIÓN Debido a que las pequeñas, medianas y grandes industrias requieren sistemas de producción más eficientes,

Más detalles

Tema: Sistemas de lazo abierto y lazo cerrado

Tema: Sistemas de lazo abierto y lazo cerrado 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Se hará en dos sesiones Tema: Sistemas

Más detalles

INFORMÁTICA MATLAB GUÍA 5 Simulink

INFORMÁTICA MATLAB GUÍA 5 Simulink 1. INTRODUCCIÓN Es un entorno de diagramas de bloques orientados a la simulación y generación de código en varios campos de la ciencia. Se pueden simular sistemas de tipo mecánico, eléctrico, electrónico

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

PRÁCTICA Nº 2 INTRODUCCIÓN A SIMULINK DE MATLAB

PRÁCTICA Nº 2 INTRODUCCIÓN A SIMULINK DE MATLAB UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA

Más detalles

AMPLIFICADOR DRAIN COMÚN

AMPLIFICADOR DRAIN COMÚN AMPLIFICADOR DRAIN COMÚN * Circuito equivalente con el modelo π incluyendo ro * Ganancia de voltaje Se define Rp = RC//RL//r Es menor que 1 La salida está en fase con la entrada Resistencia de entrada

Más detalles

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica Electrónica II. Guía 4 1/1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). COMPARADORES. Objetivos

Más detalles

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

PRACTICA: CONTROL PID. Sistemas de Control y Controladores

PRACTICA: CONTROL PID. Sistemas de Control y Controladores Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Redactor: Prof. Tito González. Revisor: San Cristóbal, Miércoles 05 de Noviembre

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

PRACTICA: MODOS DE CONTROL. Sistemas de Control y Controladores

PRACTICA: MODOS DE CONTROL. Sistemas de Control y Controladores Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Laboratorio de Instrumentación y Control, Código 02 33 905L. Profesor: Tito González. San Cristóbal, Jueves 04 de

Más detalles

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia

Más detalles

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD Para un motor de CD controlado por armadura como el mostrado en la figura si suponemos que la corriente del campo se mantiene constante y se aplica un

Más detalles

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Carrera: Ingeniería Electrónica Área CONTROL Asignatura: CONTROL I GUIA DE APRENDIZAJE Y AUTOEVALUACION

Más detalles

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Ingeniería en Control y Automatización TEORÍA DE CONTROL 1: GUÍA PARA EL EXAMEN EXTRAORDINARIO (TEORÍA) Nombre: Grupo

Más detalles

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN 1. Para la función de transferencia G(s), cuya entrada proviene de un controlador proporcional de ganancia A, y que se encuentran en lazo cerrado

Más detalles

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD DEFINICIÓN Un Sistema de Control es un conjunto de elementos o componentes relacionados entre si que controlan alguna

Más detalles

2. INSTRUMENTACIÓN SÍSMICA

2. INSTRUMENTACIÓN SÍSMICA 2. INSTRUMENTACIÓN SÍSMICA 2.1 MEDICIÓN DE LA VIBRACIÓN La medición de la vibración se puede definir como el estudio de las oscilaciones mecánicas de un sistema dinámico cuando éste es sometido a algún

Más detalles

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I) C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z

Más detalles

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom Tema 07: Acondicionamiento M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Acondicionamiento de una señal Caracterización del

Más detalles

CAPÍTULO 3 ETAPA ELECTRÓNICA. 3.1 Introducción

CAPÍTULO 3 ETAPA ELECTRÓNICA. 3.1 Introducción CAPÍTULO ETAPA ELECTRÓNICA En este capítulo se presenta el estudio de la conmutación en el sentido de los motores de corriente continua, así como la naturaleza de las señales que proceden de los sensores..

Más detalles

CAPÍTULO 3. Conceptos y esquemas de control

CAPÍTULO 3. Conceptos y esquemas de control CAPÍTULO 3 Conceptos y esquemas de control 3 Conceptos y esquemas de control En este capítulo se presentan los diferentes esquemas de control aplicados a la planta piloto. Para ello se describe primero

Más detalles

Control Automático I - Ejercicios C3

Control Automático I - Ejercicios C3 Control Automático I - Ejercicios C3 21 de Junio 2016 1. Arquitecturas en Control SISO 1.1. 100 Para la planta con modelo nominal G 0 (s) =, se desea lograr: s 2 +14s+100 Inverso perfecto de la planta

Más detalles

FORMATO GUIA LABORATORIO CONTROL E INSTRUMENTACIÓN TITULO DEL LABORATORIO MATLAB HERRAMIENTA DE ANÁLISIS Y CIRCUITOS DE CONTROL DE POTENCIA.

FORMATO GUIA LABORATORIO CONTROL E INSTRUMENTACIÓN TITULO DEL LABORATORIO MATLAB HERRAMIENTA DE ANÁLISIS Y CIRCUITOS DE CONTROL DE POTENCIA. FORMATO GUIA LABORATORIO ASIGNATURA ELECTRONICA DE POTENCIA CÓDIGO 1803 AREA ING. APLICADA LINEA CONTROL E INSTRUMENTACIÓN TITULO DEL LABORATORIO MATLAB HERRAMIENTA DE ANÁLISIS Y CIRCUITOS DE CONTROL DE

Más detalles

Control PID Sintonización Elizabeth Villota

Control PID Sintonización Elizabeth Villota Control PID Sintonización Elizabeth Villota Control PID Control PID una de las formas más comunes de usar realimentación en los sistemas de ingeniería. Control PID se encuentra presente en dispositivos

Más detalles

Ingeniería de Control I Tema 11. Reguladores PID

Ingeniería de Control I Tema 11. Reguladores PID Ingeniería de Control I Tema 11 Reguladores PID 1 Tema 11. Reguladores PID Introducción Especificaciones de funcionamiento Acciones básicas de control Ajuste empírico de reguladores. Métodos de Ziegler-

Más detalles

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL Amplificador no inversor Amplificador diferencial básico Seguidor de voltaje CONCEPTOS TEÓRICOS

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles