Sumatorias y productorias (desde 0) Lógica y Computabilidad. Sumatorias y productorias (desde 1)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sumatorias y productorias (desde 0) Lógica y Computabilidad. Sumatorias y productorias (desde 1)"

Transcripción

1 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 3 Sumatorias y productorias, cuantificadores acotados, minimización acotada, codificación de pares y secuencias Sumatorias y productorias (desde 0) Sea C una clase PRC. Si f : N n+1 N está en C entonces también están las funciones g(y, x 1,..., x n ) = h(y, x 1,..., x n ) = y t=0 y t=0 g(0, x 1,..., x n ) = f (0, x 1,..., x n ) g(t + 1, x 1,..., x n ) = g(t, x 1,..., x n ) + f (t + 1, x 1,..., x n ) 1 Idem para h con en lugar de +. Observar que no importa la variable en la que se hace la recursión: podemos definir g (x, t) como la clase pasada y luego g(t, x) = g (u 2 2 (t, x), u2 1 (t, x)) = g (x, t). 2 Sumatorias y productorias (desde 1) Sea C una clase PRC. Si f : N n+1 N está en C entonces también están las funciones g(y, x 1,..., x n ) = y t=1 Cuantificadores acotados Sea p : N n+1 {0, 1} un predicado. ( t) y p(t, x 1,..., x n ) es verdadero sii p(0, x 1,..., x n ) es verdadero y. p(y, x 1,..., x n ) es verdadero h(y, x 1,..., x n ) = y t=1 ( t) y p(t, x 1,..., x n ) es verdadero sii p(0, x 1,..., x n ) es verdadero o (como siempre, sumatoria vacía = 0, productoria vacía = 1) g(0, x 1,..., x n ) = 0 g(t + 1, x 1,..., x n ) = g(t, x 1,..., x n ) + f (t + 1, x 1,..., x n ). p(y, x 1,..., x n ) es verdadero Lo mismo se puede definir con < y en lugar de y. Idem para h con en lugar de + y 1 en lugar de 0 en el caso base. 3 ( t) <y p(t, x 1,..., x n ) y ( t) <y p(t, x 1,..., x n ) 4

2 Cuantificadores acotados (con ) Sea p : N n+1 {0, 1} un predicado perteneciente a una clase PRC C. Los siguientes predicados también están en C: ( t) y p(t, x 1,..., x n ) ( t) y p(t, x 1,..., x n ) ( t) y p(t, x 1,..., x n ) sii y t=0 p(t, x 1,..., x n ) = 1 ( t) y p(t, x 1,..., x n ) sii y t=0 p(t, x 1,..., x n ) 0 la sumatoria y productoria están en C la comparación por = está en C Cuantificadores acotados (con <) Sea p : N n+1 {0, 1} un predicado perteneciente a una clase PRC C. Los siguientes predicados también están en C: ( t) <y p(t, x 1,..., x n ) ( t) <y p(t, x 1,..., x n ) ( t) <y p(t, x 1,..., x n ) sii ( t) y (t = y p(t, x 1,..., x n )) ( t) <y p(t, x 1,..., x n ) sii ( t) y (t y p(t, x 1,..., x n )) 5 6 Más ejemplos de funciones primitivas recursivas y x sii y divide a x. Se define como ( t) x y t = x Notar que con esta definición 0 0. primo(x) sii x es primo. 7 Minimización Sea p : N n+1 {0, 1} un predicado de una clase PRC C. y u g(y, x 1,..., x n ) = α(p(t, x 1,..., x n )) u=0 t=0 Qué hace g? supongamos que existe un t y tal que p(t, x 1,..., x n ) es verdadero sea t0 el mínimo tal t p(t, x1,..., x n ) = 0 para todo t < t 0 p(t0, x 1,..., x n ) = 1 { u t=0 α(p(t, x 1 si u < t 0 1,..., x n )) = y+1 veces {}}{ g(y, x 1,..., x n ) = = t }{{} 0 t 0 veces entonces g(y, x1,..., x n ) es el mínimo t y tal que p(t, x 1,..., x n ) es verdadero si no existe tal t, g(y, x 1,..., x n ) = y + 1 8

3 Minimización Notamos mín p(t, x 1,..., x n ) = t y mínimo t y tal que p(t, x 1,..., x n ) es verdadero Sea p : N n+1 {0, 1} un predicado de una clase PRC C. La función mín t y p(t, x 1,..., x n ) también está en C. si existe tal t Más ejemplos de funciones primitivas recursivas x div y es la división entera de x por y x mín((t + 1) y > x) t x Notar que con esta definición 0 div 0 es 0. mód y es el resto de dividir a x por y p n es el n-ésimo primo (n > 0). Se define p 0 = 0, p 1 = 2, p 2 = 3, p 3 = 5,... p 0 = 0 p n+1 = mín t K(n) (primo(t) t > p n) Necesitamos una cota K(n) que sea buena, i.e. suficientemente grande y primitiva recursiva K(n) = p n! + 1 funciona (ver que p n+1 p n! + 1) Codificación de pares Definimos la función primitiva recursiva Notar que 2 x (2 y + 1) 0. x, y = 2 x (2 y + 1) 1 Hay una única solución (x, y) a la ecuación x, y = z. x es el máximo número tal que 2 x (z + 1) y = ((z + 1)/2 x 1) div 2 Observadores de pares Los observadores del par z = x, y son l(z) = x r(z) = y Los observadores de pares son primitivas recursivas. Como x, y < z + 1 tenemos que l(z) = mín x z (( y) z z = x, y ) r(z) = mín y z (( x) z z = x, y ) Por ejemplo, 2, 5 = 2 2 ( ) 1 = 43 l(43) = 2 r(43) =

4 Codificación de secuencias El número de Gödel de la secuencia es el número a 1,..., a n [a 1,..., a n ] = donde p i es el i-ésimo primo (i 1). n i=1 p a i i, Por ejemplo el número de Gödel de la secuencia es 1, 3, 3, 2, 2 [1, 3, 3, 2, 2] = = Propiedades de la codificación de secuencias Si [a 1,..., a n ] = [b 1,..., b n ] entonces a i = b i para todo i {1,..., n}. Por la factorización única en primos. Observar que pero [a 1,..., a n ] = [a 1,..., a n, 0] = [a 1,..., a n, 0, 0] =... [a 1,..., a n ] [0, a 1,..., a n ] Observadores de secuencias Los observadores de la secuencia x = [a 1,..., a n ] son x[i] = a i x = longitud de x Los observadores de secuencias son primitivas recursivas. x[i] = mín t x ( p t+1 i x) x = mín i x (x[i] 0 ( j) x (j i x[j] = 0)) Por ejemplo, [1, 3, 3, 2, 2][2] = 3 = [2] [1, 3, 3, 2, 2][6] = 0 = [6] [1, 3, 3, 2, 2] = 5 = [1, 3, 3, 2, 2, 0] = [1, 3, 3, 2, 2, 0, 0] = 5 = x[0] = 0 para todo x 0[i] = 0 para todo i 15 En resumen: codificación y decodificación de pares y secuencias (Codificación de pares) l( x, y ) = x, r( x, y ) = y z = l(z), r(z) l(z), r(z) z la codificación y observadores de pares son p.r. (Codificación de secuencias) { a i si 1 i n [a 1,..., a n ][i] = si n x entonces [x[1],..., x[n]] = x la codificación y observadores de secuencias son p.r. 16

5 Para leer Computability, Complexity and Languages, fundamentals of theoretical computer science. Capítulo 3. Martin Davis, Ron Sigal, Elaine Weyuker, Elsevier,

Lenguaje de programación S (Davis/Sigal/Weyuker) Lógica y Computabilidad. Ejemplo 1. Ejemplo 2

Lenguaje de programación S (Davis/Sigal/Weyuker) Lógica y Computabilidad. Ejemplo 1. Ejemplo 2 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 4 Lenguaje S, estado, descripción instantánea, cómputo, funciones parciales computables, minimización

Más detalles

Lógica y Computabilidad

Lógica y Computabilidad Lógica y Computabilidad Santiago Figueira Departamento de Computación, FCEyN, UBA verano 2015 1 Contenido - Computabilidad 1. Introducción, máquinas de Turing, funciones parciales, funciones Turing computables,

Más detalles

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S Tipos de datos en S Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 5 Codificación de programas, Halting problem, diagonalización, tesis de Church,

Más detalles

1. Programas y funciones computables

1. Programas y funciones computables Computabilidad 1 Índice 1. Programas y funciones computables 3 1.1. El lenguaje S........................................... 3 1.2. Programas de S......................................... 3 1.3. Macros...............................................

Más detalles

Tema 5: Procedimientos para obtener funciones computables

Tema 5: Procedimientos para obtener funciones computables Tema 5: Procedimientos para obtener funciones computables Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Procedimientos

Más detalles

Tema 5: Programas Universales

Tema 5: Programas Universales Tema 5: Programas Universales Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2006 07 LC, 2006 07 Programas universales 5.1 Procedimientos

Más detalles

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d.

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d. Tema 3: Funciones Primitivas Recursivas Caracterización de clases de funciones: Maneras básicas de definir una clase de funciones C: Descriptiva: C satisface ciertas propiedades. (Ejemplo: la clase GCOMP)

Más detalles

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Lógica Proposicional - clase 1 Lenguaje de lógica proposicional, semántica, tautología, consecuencia semántica, conjunto satisfacible,

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR AREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO DE SISTEMAS COMPUTACIONALES

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR AREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO DE SISTEMAS COMPUTACIONALES CLAVE LDC847 NOMBRE TEORÍA DE LA COMPUTACIÓN. ÁREA DE CONOCIMIENTO INTERACCIÓN HOMBRE MÁQUINA. SEMESTRE 8 TEÓRICAS 4 PRÁCTICAS 0 CRÉDITOS 8 CARÁCTER DE LA MATERIA OPTATIVA. Teórica SERIACIÓN LDC740 INTRODUCCIÓN

Más detalles

Ejercicios resueltos. Computación. Tema 3

Ejercicios resueltos. Computación. Tema 3 Ejercicios resueltos. Computación. Tema 3 Ejercicio.- Sea f : N 3 N y g 1 : N N, g 2 : N 2 N y g 3 : N 3 N. a) En los siguientes casos, expresar f como composición de funciones de la misma aridad. 1. f(x,

Más detalles

PROYECTO DOCENTE ASIGNATURA: "Computabilidad y Complejidad"

PROYECTO DOCENTE ASIGNATURA: Computabilidad y Complejidad PROYECTO DOCENTE ASIGNATURA: "Computabilidad y Complejidad" Grupo: Grupo de CLASES TEORICAS de COMPUTABILIDAD Y COMP.(86578) Titulacion: INGENIERO EN INFORMÁTICA ( Plan 97 ) Curso: 211-212 DATOS BÁSICOS

Más detalles

Clase práctica 8: Funciones Primitivas Recursivas

Clase práctica 8: Funciones Primitivas Recursivas Clase práctica 8: Funciones Primitivas Recursivas Laski (inspirado en Facundo Carreiro y Hernán Czemerinski) Primer Cuatrimestre 2014 1 Repaso de la teórica Para probar que una función es primitiva recursiva

Más detalles

Divisibilidad y congruencia

Divisibilidad y congruencia Divisibilidad y congruencia Taller de Álgebra I Verano 2017 Algoritmo de la división Teorema Dados a, d Z, d 0, existen únicos q, r Z tales que a = qd + r, 0 r < d. Idea de la demostración: (caso a 0,

Más detalles

Resolución en lógica de primer orden

Resolución en lógica de primer orden Resolución en lógica de primer orden Eduardo Bonelli Departamento de Computación, FCEyN, UBA 15 de mayo, 2006 Clase pasada Repasamos lógica proposicional Introdujimos el método de resolución para lógica

Más detalles

Departamento de Tecnologías de la Información. Tema 6. Funciones recursivas. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 6. Funciones recursivas. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 6 Funciones recursivas Ciencias de la Computación e Inteligencia Artificial Índice 6.1 Funciones recursivas primitivas 6.2 Limitaciones de las funciones

Más detalles

Isabelle como un lenguaje funcional

Isabelle como un lenguaje funcional Capítulo 1 Isabelle como un lenguaje funcional 1.1 Introducción Nota 1.1.1. Esta notas son una introducción a la demostración asistida utilizando el sistema Isabelle/HOL/Isar. La versión de Isabelle utilizada

Más detalles

Manos a la obra: Recursión, división y listas

Manos a la obra: Recursión, división y listas Manos a la obra: Recursión, división y listas Taller de Álgebra I Cuatrimestre de verano de 2015 Calentando motores La clase pasada vimos ejemplos de definiciones recursivas. Hoy vamos a continuar con

Más detalles

Programación imperativa. Algoritmos y Estructuras de Datos I. Ciclos

Programación imperativa. Algoritmos y Estructuras de Datos I. Ciclos Programación imperativa Algoritmos y Estructuras de Datos I Segundo cuatrimestre de 2014 Departamento de Computación - FCEyN - UBA Programación imperativa - clase 6 Ciclos y arreglos Entidad fundamental:

Más detalles

Algoritmos de Búsqueda

Algoritmos de Búsqueda Introducción a la Computación Algoritmos de Búsqueda Esteban E. Mocskos (emocskos@dc.uba.ar) Facultad de Ciencias Exactas y Naturales, UBA CONICET 11/10/2017 E. Mocskos (UBA CONICET) Algoritmos de Búsqueda

Más detalles

LOGICA Y ALGORITMOS. Profesores: Raúl Kantor Ana Casali. Año LyA-2003 / Inducción 1

LOGICA Y ALGORITMOS. Profesores: Raúl Kantor Ana Casali. Año LyA-2003 / Inducción 1 LOGICA Y ALGORITMOS Profesores: Raúl Kantor Ana Casali Año 2003 LyA-2003 / Inducción 1 LOGICA Y ALGORITMOS Módulos!Preliminares: Cardinalidad y conjuntos inductivos!lógica: Proposicional y de Predicados!Formalismos

Más detalles

Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Teoría de la computación Ingeniería en Sistemas Computacionales SCM - 0434 3-2-8

Más detalles

3. Definiciones Recursivas. Recursión - 2

3. Definiciones Recursivas. Recursión - 2 3. Definiciones Recursivas Recursión - 1 Recursión Dado un conjunto inductivo, sabemos exactamente cómo se construyen sus elementos. Esta información sirve para: Probar propiedades de sus elementos (inducción)

Más detalles

Aritmética en Haskell

Aritmética en Haskell Aritmética en Haskell Taller de Álgebra I Primer cuatrimestre de 2014 Algoritmo de división Para obtener el cociente y resto entre dos números enteros, tenemos las funciones div y mod, respectivamente.

Más detalles

Listas y Recursión. Taller de Álgebra I. Primer Cuatrimestre de 2015

Listas y Recursión. Taller de Álgebra I. Primer Cuatrimestre de 2015 Listas y Recursión Taller de Álgebra I Primer Cuatrimestre de 2015 Un nuevo tipo: Listas Tipo Lista Las listas pueden contener elementos de cualquier tipo (incluso listas) [1] :: [Integer] [1, 2] :: [Integer]

Más detalles

Bloque 1. Conceptos y técnicas básicas en programación

Bloque 1. Conceptos y técnicas básicas en programación Bloque 1. Conceptos y técnicas básicas en programación 1. Introducción 2. Datos y expresiones. Especificación de algoritmos 3. Estructuras algorítmicas básicas 4. Iteración y recursión 5. Iteración y recursión

Más detalles

Definiciones recursivas Lógica 2017

Definiciones recursivas Lógica 2017 Definiciones recursivas Lógica 2017 Instituto de Computación 7 de marzo Instituto de Computación (InCo) Definiciones recursivas Curso 2017 1 / 1 Recursión Dado un conjunto inductivo, sabemos exactamente

Más detalles

Especificación de programas. Algoritmos y Estructuras de Datos I. Correctitud de ciclos

Especificación de programas. Algoritmos y Estructuras de Datos I. Correctitud de ciclos Especificación de programas Algoritmos y Estructuras de Datos I Segundo cuatrimestre de 2014 Departamento de Computación - FCEyN - UBA Simulacro Coloquio Final - clase 1 Sean dos programas, cada uno recibe

Más detalles

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos Algoritmos y Estructuras de Datos I 1 cuatrimestre de 009 Departamento de Computación - FCEyN - UBA Programación funcional - clase Tipos algebraicos Tipos algebraicos y abstractos ya vimos los tipos básicos

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11

Más detalles

Introducción a la complejidad computacional

Introducción a la complejidad computacional Introducción a la complejidad computacional definida sobre anillos arbitrarios 18 de junio de 2016 Fuente: http://www.utmmcss.com/ Por qué otro modelo? Continuo vs discreto. Intuición interiorizada del

Más detalles

Complejidad computacional. Algoritmos y Estructuras de Datos I. Complejidad computacional. Notación O grande

Complejidad computacional. Algoritmos y Estructuras de Datos I. Complejidad computacional. Notación O grande Complejidad computacional Algoritmos y Estructuras de Datos I Segundo cuatrimestre de 2014 Departamento de Computación - FCEyN - UBA Algoritmos - clase 10 Introducción a la complejidad computacional y

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

Análisis de algoritmos

Análisis de algoritmos Tema 08: Divide y vencerás (DyV) M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Introducción Divide y vencerás Observaciones

Más detalles

Sintaxis y Propiedades. Estructuras

Sintaxis y Propiedades. Estructuras Sintaxis y Propiedades Predicados 1 Estructuras Def 2.2.1 [estructura] Una estructura es una secuencia ordenada M = tal que: A es un conjunto no vacío, ( Notacion: A =

Más detalles

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión

Más detalles

Introducción a las Ciencias de la Computación

Introducción a las Ciencias de la Computación Introducción a las Ciencias de la Computación Colaboratorio de Computación Avanzada (CNCA) 2015 1 / 22 Contenidos 1 Computación e Informática Caracterización Áreas relacionadas 2 Antecedentes Orígenes

Más detalles

Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES

Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Arreglos. Algoritmos y Estructuras de Datos I. Arreglos en C++ Arreglos y listas

Arreglos. Algoritmos y Estructuras de Datos I. Arreglos en C++ Arreglos y listas Arreglos Algoritmos y Estructuras de Datos I Primer cuatrimestre 2007 Teórica de imperativo 3 Algoritmos de búsqueda secuencias de una cantidad fija de variables del mismo tipo se declaran con un nombre,,

Más detalles

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE FILOSOFIA Y LETRAS

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE FILOSOFIA Y LETRAS UNIVERSIDAD DE BUENOS AIRES FACULTAD DE FILOSOFIA Y LETRAS DEPARTAMENTO: ASIGNATURA: PROFESORES: CUATRIMESTRE: FILOSOFÍA LÓGICA SUPERIOR Segundo AÑO: 2012 PROGRAMA Nº: UNIVERSIDAD DE BUENOS AIRES FACULTAD

Más detalles

Teorema de incompletitud de Gödel

Teorema de incompletitud de Gödel Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. IIC2213 Teorías 79 / 109 Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. Corolario

Más detalles

INDUCCIÓN. Inducción - 2

INDUCCIÓN. Inducción - 2 INDUCCIÓN Inducción - 1 Inducción - Plan Conjuntos Inductivos Inducción como mecanismo primitivo para definir conjuntos Pruebas Inductivas Principios de inducción asociados a los conjuntos inductivos como

Más detalles

Funciones primtivas recursivas y clases PRC (parte I)

Funciones primtivas recursivas y clases PRC (parte I) Funciones primtivas recursivas y clases PRC (parte I) Hernán Czemerinski Miércoles 2 de febrero de 2011 Definición 1. Llamamos funciones iniciales a n(x) = 0 s(x) = x + 1 u n i (x 1,..., x n ) = x i con

Más detalles

Lógica - Conjuntos inductivos

Lógica - Conjuntos inductivos Lógica - Conjuntos inductivos Matemática discreta y Lógica I Mayo de 2017 Las transparencias son tomadas del curso de Lógica del instituto de computación de Facultad de Ingeniería. Inducción - Plan Conjuntos

Más detalles

Teorema de Compacidad

Teorema de Compacidad Teorema de Compacidad Seminario de Teoría de Modelos - FCEyN - UBA 1 de septiembre de 2011 Teorema 1 (Compacidad). Una L-teoría T es satisfacible si y solo si todo subconjunto finito de T es satisfacible.

Más detalles

MODELOS AVANZADOS DE COMPUTACIÓN

MODELOS AVANZADOS DE COMPUTACIÓN Página 1de 11 GUIA DOCENTE DE LA ASIGNATURA MODELOS AVANZADOS DE COMPUTACIÓN MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO FORMACIÓN DE ESPECIALIDAD 1: COMPUTACIÓN Y SISTEMAS INTELIGENTES MODELOS DE COMPUTACIÓN

Más detalles

Capítulo IV. Divisibilidad y Primalidad. Algoritmo de la División

Capítulo IV. Divisibilidad y Primalidad. Algoritmo de la División Capítulo IV Divisibilidad y Primalidad IV.1. Algoritmo de la División (Aquí se enuncia con la posibilidad de divisor negativo y la prueba incluye el caso de dividendo negativo.) Teorema 1 Dados m, d Z,

Más detalles

Funciones recursivas

Funciones recursivas Introducción a la Computación Funciones recursivas Esteban E. Mocskos (emocskos@dc.uba.ar) Facultad de Ciencias Exactas y Naturales, UBA CONICET 13/09/2017 E. Mocskos (UBA CONICET) Funciones Recursivas

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Recurrencias DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción 2 Cuando un algoritmo se llama a sí mismo Su tiempo de ejecución se puede describir

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Ordenamiento de un arreglo. Algoritmos y Estructuras de Datos I. Demostración. Cota inferior de complejidad tiempo para sorting

Ordenamiento de un arreglo. Algoritmos y Estructuras de Datos I. Demostración. Cota inferior de complejidad tiempo para sorting Ordenamiento de un arreglo Algoritmos y Estructuras de Datos I Segundo cuatrimestre de 2014 Departamento de Computación - FCEyN - UBA Algoritmos - clase 12 Algoritmos de ordenamiento, segunda parte Tenemos

Más detalles

CÁLCULO INTEGRAL. HOJA 1. v(q) = Π n i=1(b i a i ). Definimos también el volumen de un rectángulo cerrado como el volumen de su interior.

CÁLCULO INTEGRAL. HOJA 1. v(q) = Π n i=1(b i a i ). Definimos también el volumen de un rectángulo cerrado como el volumen de su interior. CÁLCULO INTEGRAL. HOJA 1. MEDIDA EXTERIOR DE LEBESGUE. CONJUNTOS MEDIBLES EN R N. MEDIDA DE LEBESGUE. Si Q = (a 1, b 1 )... (a n, b n ) es un rectángulo abierto de R n, definimos el volumen de Q como el

Más detalles

Trabajo Práctico 1 - Programación Funcional Fecha de entrega: Jueves 20 de abril, hasta las 21 hs.

Trabajo Práctico 1 - Programación Funcional Fecha de entrega: Jueves 20 de abril, hasta las 21 hs. 1. Introducción Trabajo Práctico 1 - Programación Funcional Fecha de entrega: Jueves 20 de abril, hasta las 21 hs. El presente trabajo tiene por objetivo estudiar el subconjunto de las funciones computables

Más detalles

Paradigma lógico Lógica proposicional Resolución. Programación Lógica. Eduardo Bonelli. Departamento de Computación FCEyN UBA. 10 de octubre, 2006

Paradigma lógico Lógica proposicional Resolución. Programación Lógica. Eduardo Bonelli. Departamento de Computación FCEyN UBA. 10 de octubre, 2006 Departamento de Computación FCEyN UBA 10 de octubre, 2006 Prolog Se basa en el uso de la lógica como un lenguaje de programación Se especifican ciertos hechos y reglas de inferencia un objetivo ( goal

Más detalles

Carlos A. Rivera-Morales. Precálculo 2

Carlos A. Rivera-Morales. Precálculo 2 y Carlos A. Rivera-Morales Precálculo 2 Introducción a y Notación d Tabla de Contenido 1 Definición Sumas Parciales Introducción a y Notación d Tabla de Contenido 1 Definición Sumas Parciales 2 Introducción

Más detalles

Máquinas de estado finito y expresiones regulares

Máquinas de estado finito y expresiones regulares Capítulo 3 Máquinas de estado finito y expresiones regulares En este tema definiremos y estudiaremos máquinas de estado finito, llamadas también máquinas de estado finito secuenciales o autómatas finitos.

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Autómatas Finitos No Determinísticos Minimización de Autómatas Finitos Determinísticos Agosto 2007 Autómatas Finitos Determinísticos Para cada estado y para cada símolo se

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Luis Manuel Hernández Ramos 12 24 de mayo de 2007 1 Centro de Calculo Científico y Tecnológico, Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 2 e-mail: luish@kuaimare.ciens.ucv.ve

Más detalles

Semana04[1/17] Funciones. 21 de marzo de Funciones

Semana04[1/17] Funciones. 21 de marzo de Funciones Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Cálculo Diferencial: Enero 2016

Cálculo Diferencial: Enero 2016 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos

Más detalles

Capítulo III. Inducción y Recursión

Capítulo III. Inducción y Recursión Capítulo III Inducción y Recursión III.1. Inducción Figura III.1: La caída de dominós en cadena ilustra la idea del principio de inducción: si el primer dominó cae, y si cualquiera al caer hace caer al

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO LENGUAJES FORMALES Y AUTÓMATAS 1670 6 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería en Computación

Más detalles

n! = 1 2 n 0! = 1 (n+1)! = (n + 1) n!

n! = 1 2 n 0! = 1 (n+1)! = (n + 1) n! Capítulo 3 Recursión La recursión es un estilo autoreferencial de definición usado tanto en matemática como en informática. Es una herramienta de programación fundamental, particularmente importante para

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Lógica II Luis Dominguez Septiembre 2012 1 / 16 Luis Dominguez Matemáticas Discretas Reglas de sustitución Sea PS un conjunto enumerable de símbolos proposicionales P 0, P 1,...;

Más detalles

NP-Completeness: Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Posgrado en Ingeniería de Sistemas

NP-Completeness: Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Posgrado en Ingeniería de Sistemas Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Posgrado en Ingeniería de Sistemas Complejidad del problema de la Mochila NP-Completeness: (Knapsack problem)

Más detalles

Funcionamiento de las computadoras

Funcionamiento de las computadoras Funcionamiento de las computadoras Introducción a las ciencias de la computación Antonio López Jaimes UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA Plan de la presentación El modelo de von Neuman

Más detalles

LOGICA Y ALGORITMOS. Módulos

LOGICA Y ALGORITMOS. Módulos LOGICA Y ALGORITMOS Módulos!Cardinalidad y conjuntos inductivos "Lógica: proposicional y de 1er orden!formalismos de cálculo: FR y FL!Lenguajes y autómatas 1 Distintos Sistemas Lógicos: LOGICA PROPOSICIONAL

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

Notación Asintótica 2

Notación Asintótica 2 Notación Asintótica 2 mat-151 1 Éxamen Rápido (6 minutos) Cada operación fundamental usa c milisegundos, cuánto tiempo toma contar hasta 1,000,000? Cuál es el valor de N? Cuál es el órden de complejidad

Más detalles

La máquina de Turing

La máquina de Turing La máquina de Turing José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia David Hilbert (1862, Rusia 1943, Alemania) Matemático que aportó diversos resultados

Más detalles

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324 . D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Lenguajes y Autómatas Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB- 9 Horas teoría-horas práctica-créditos

Más detalles

Tipos de datos algebraicos

Tipos de datos algebraicos Tipos de datos algebraicos Taller de Álgebra I Segundo cuatrimestre de 2013 Programación funcional Recordemos que un tipo de datos es un conjunto dotado con una serie de operaciones sobre los elementos

Más detalles

Divisibilidad de un número real entre otro

Divisibilidad de un número real entre otro Divisibilidad de un número real entre otro Objetivos Definir (o repasar) el concepto de divisibilidad de un número real entre otro Establecer algunas propiedades básicas de esta relación binaria Requisitos

Más detalles

TEMA VI DISEÑO DEL PROCESADOR

TEMA VI DISEÑO DEL PROCESADOR TEMA VI DISEÑO DEL PROCESADOR Diseño del procesador 6.1 Repertorio de instrucciones 6.1.1 Procesadores de tres direcciones 6.1.2 Procesadores de dos direcciones 6.1.3 Procesadores de una dirección (procesadores

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

Algoritmos y solución de problemas. Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal

Algoritmos y solución de problemas. Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal Algoritmos y solución de problemas Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal Introducción Departamento de Electrónica, Sistemas e Informática En las ciencias de la computación

Más detalles

LógicaS Modales. Ricardo Oscar Rodríguez Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

LógicaS Modales. Ricardo Oscar Rodríguez Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Segunda Clase. 1er. Cuatrimestre, 2016 Outline 1 Repaso clase anterior Sintáxis Lógicas Modales Autocongruentes

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT

La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT 1 La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT Existen diversas formas de implementar la transformada discreta de Fourier (DFT). Para estudiar algunas de

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. Sonia M. Sabogal P. * Fecha: 8 de marzo de 2005 Números naturales Se sabe que los números naturales constituyen la estructura básica de la Matemática;

Más detalles

Introducción a los códigos compresores

Introducción a los códigos compresores Introducción a los códigos compresores Parte I de la Lección 2, Compresores sin pérdidas, de CTI Ramiro Moreno Chiral Dpt. Matemàtica (UdL) Febrero de 2010 Ramiro Moreno (Matemàtica, UdL) Introducción

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Esquema de Dividir y Vencer

Esquema de Dividir y Vencer Esquema de Dividir y Vencer Amalia Duch Barcelona, marzo de 2006 Índice 1. Esquema general 1 2. Búsqueda binaria (binary search) 2 3. Ordenación por fusión (merge sort) 2 4. Ordenación rápida (quick sort)

Más detalles

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I. Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Tema 4.- Recursión e iteración

Tema 4.- Recursión e iteración UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO PROGRAMACIÓN DECLARATIVA INGENIERÍA INFORMÁTICA ESPECIALIDAD DE COMPUTACIÓN CUARTO CURSO PRIMER

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Análisis de Algoritmos

Análisis de Algoritmos Análisis de Algoritmos Amalia Duch Barcelona, marzo de 2007 Índice 1. Costes en tiempo y en espacio 1 2. Coste en los casos mejor, promedio y peor 3 3. Notación asintótica 4 4. Coste de los algoritmos

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Principio de inducción y Sumatorias

Principio de inducción y Sumatorias Semana06[1/14] 3 de abril de 007 Principio de inducción: Primera forma Semana06[/14] Una categoría importante de proposiciones y teoremas es la de las propiedades de los números naturales. Aquí tenemos,

Más detalles

Verificación de programas. Algoritmos y Estructuras de Datos I. Semánticas formales: Primer cuatrimestre de 2016

Verificación de programas. Algoritmos y Estructuras de Datos I. Semánticas formales: Primer cuatrimestre de 2016 Verificación de programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2016 Departamento de Computación - FCEyN - UBA Programación imperativa - clase 14 Verificación automática de programas

Más detalles

Divide & Conquer. Herman Schinca. Clase de Junio de 2011

Divide & Conquer. Herman Schinca. Clase de Junio de 2011 Divide & Conquer Herman Schinca Clase 20 7 de Junio de 2011 Divide y vencerás Idea aplicable a muchas situaciones de la vida. Origen histórico atribuído a Julio César en relación a sus estrategias militares.

Más detalles

Análisis de algoritmos. Recursividad

Análisis de algoritmos. Recursividad Análisis de algoritmos Recursividad 1 Matrushka La Matrushka es una artesanía tradicional rusa. Es una muñeca de madera que contiene otra muñeca más pequeña dentro de sí. Ésta muñeca, también contiene

Más detalles

Maquina de Turing. 5. Fundamentos de algoritmos. Turing TURING TURING 10/08/2010. MI Elizabeth Fonseca Chávez

Maquina de Turing. 5. Fundamentos de algoritmos. Turing TURING TURING 10/08/2010. MI Elizabeth Fonseca Chávez Maquina de Turing 5. Fundamentos de algoritmos MI Elizabeth Fonseca Chávez matemático inglés Alan Turing Turing Definición de algoritmo: conjunto ordenado de operaciones que permite hallar la solución

Más detalles

Producto de matrices triangulares superiores

Producto de matrices triangulares superiores Producto de matrices triangulares superiores Ejercicios Objetivos Demostrar que el producto de dos matrices triangulares superiores es una matriz triangular superior Deducir una fórmula para las entradas

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles

Hacia las Gramáticas Propias II

Hacia las Gramáticas Propias II Hacia las Hacia las II Gramáticas sin Ciclos Universidad de Cantabria Outline Hacia las 1 Hacia las 2 3 Definición Hacia las Definición Diremos que una gramática libre de contexto G := (V, Σ, Q 0, P) es

Más detalles