ESTADÍSTICA Y PROBABILIDAD
|
|
|
- Inmaculada Méndez Iglesias
- hace 9 años
- Vistas:
Transcripción
1 V ESTADÍSTICA Y PROBABILIDAD Página 9 Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,92; 0,92; ; Responde razonadamente (observa que no se te pide que hagas operaciones, sino que razones a partir de las nubes de puntos). La correlación de I es fuerte y negativa. El único valor razonable de los que se muestran es 0,92 ( 0, es demasiado débil y solo sería si todos los puntos estuvieran alineados). La correlación de II es positiva pero débil. Su valor es 0,. 2 A 0 alumnos de una clase se les toman las siguientes medidas: x número de faltas de asistencia a clase en mes. y nota en matemáticas. x y a) Representa la distribución mediante una nube de puntos y calcula: x, y, q x, q y, q xy. b) Halla el coeficiente de correlación. c) Halla la recta de regresión de Y sobre X. d) Otro alumno de la misma clase que haya faltado vez, qué nota en matemáticas estimas que tendrá? Crees que es una buena estimación?
2 a) NOTA 0 FALTAS 0 x,, y,2 q x 2,, q y 2,82, q xy,8,8 b) r 0,8 2, 2,82,8 c) m yx 0,77 2, 2 Recta de regresión de Y sobre X: y,2 0,77 (x,) 8 y 0,77x + 8,9 d) y^() 0,77 + 8, 7,82 Se estima una nota de 7 u 8 puntos. Pero la estimación es mala, porque la correlación es demasiado baja como para hacer estimaciones fiables. Conocemos las siguientes probabilidades: P[A 0, P[A'» B' 0, P[B' 0,2 Calcula P[B, P[A «B y P[A» B. P [B P[B' 0,2 0,8 A'» B' [A «B' (Ley de Morgan) Por tanto: 0, P[A'» B' P[(A «B)' P[A «B 8 P[A «B 0, 0,9 P[A «B P[A + P[B P[A» B ,9 0, + 0,8 P[A» B P[A» B 0, + 0,8 0,9 0,2 2
3 BLOQUE A IV B Si en el dado sale, sacamos bola de B. Si sale otra puntuación, la sacamos de A. Calcula: P[ / P [ y P[ P[ P [ / Explica lo que significa la última probabilidad. P [ y P[ 0 P [no P [ /no 0 P [ y / + P [no y P[ P[ P [/ / (2,,,, ) P [ P [ P [no y P[ () P [ y /0 P[ /0 P [/ significa que sabemos que ha salido finalmente bola roja y nos preguntamos por la probabilidad de que en el dado hubiera salido. Por cada 00 personas con gafas o lentillas de un cierto colectivo, hemos atendido al color de ojos (Az, V, N, M). Alguno de los resultados se refleja en la siguiente tabla: GAFAS AZ V 20 N M TOTAL 2 LENTILLAS TOTAL 2 00 a) Completa la tabla. b) Calcula P [Az, P [GAFAS, P [Az y GAFAS. c) Calcula P [Az/GAFAS, P [GAFAS/Az. d) Explica por qué los sucesos GAFAS y Az son independientes.
4 a) AZ V N M TOTAL GAFAS 2 LENTILLAS 9 0 TOTAL b) P [AZ 20/00 0,20 P [GAFAS /00 0, P [AZ y GAFAS /00 0, c) P [AZ/GAFAS / / 0,20 P [GAFAS/AZ /20 0, d) Los sucesos GAFAS y AZ son independientes porque P [GAFAS/AZ P [GAFAS 0,, o bien porque P [AZ/GAFAS P [Az 0,20, o bien porque P [GAFAS y AZ P [GAFAS P [Az (0, 0,20 0,) Esto significa que la proporción de personas con ojos azules entre los que usan gafas es la misma que la proporción de personas con ojos azules respecto al total. En una distribución N(0, ) calcula: a) P[0,2 < z <, b) P[ 0,2 < z Ì, c) Calcula k para que: P[ k < z < k 0,90 z es N (0, ). a) P [0,2 < z <, P [z <, P [z < 0,2 f (,) f (0,2) 0,92 0,987 0,278 b) P [ 0,2 < z Ì, f (,) [ f (0,2) 0,92 + 0,987 0,22 0,2, c) P [ k < z < k 2 P [0 < z < k 2 [P [z < k 0, 2[f (k) 0, 2f (k) 0,90 + 2f (k) 0,90 8 f(k) 0,9 8 k, 2 k k
5 BLOQUE IV 7 En una distribución N(20, ) calcula: a) P[x 2 b) P[x < 2 c) P[9 Ì x Ì 2 x 20 x es N (20, ) 8 z es N(0, ) a) P [x 2 0, ya que las probabilidades puntuales son cero en las distribuciones de variable continua b) P [x < 2 Pz< P [z < 0,2 f (0,2) 0,987 [ [ c) P [9 Ì x Ì 2 P Ì z Ì P [ 0,2 Ì z Ì 0,2 f (0,2) ( f (0,2)) 2f (0,2) 2 0,987 0,97 8 En una distribución B(0; 0,) calcula: a) P[x 0, P[x, P[x > b) Los parámetros μ y q. B (0; 0,) 8 n 0; p 0,; q 0, ( ( ) ) 0 a) P [x 0 0, 0 0, 0 0, 0 0, P [x 0, 0, 9 0 0, 0, 9 0,00 8 P[x 0 ó x 0,0 8 8 P[x > 0,0 0,97 b) μ np 0 0, q npq 0 0, 0, 2,, 9 La proporción de personas nacidas un 29 de febrero es /. a) Justifica por qué. b) Cuál es la probabilidad de que en una localidad de habitantes haya menos de 8 personas nacidas un 29 de febrero? a) 29 de febrero hay uno cada cuatro años. Cuántos días son?: + Así, P[29 de febrero.
6 b) Es una distribución binomial con n y p. En una B( ,, µ ,9 ) 0 q ,70 Podemos calcular las probabilidades a partir de la normal N (,9;,70). x es B , 8 x' es N(,9;,70) 8 ( 8 z es N(0, ) con z 7,,9 P [x < 8 P [x Ì 7 P [x' Ì 7, PzÌ P [z Ì,7,70 f (,7) 0,92 0,07 [ ) x',9,70 Es poco probable que haya menos de 8 personas nacidas un día tan singular. 0 a) Calcula k para que la siguiente tabla corresponda a una distribución de probabilidad: x i p i 0, 0, 0,2 0,7 2 k k b) Halla P[ Ì x i Ì. c) Calcula los parámetros μ y q. a) 0, + 0,0 + 0,2 + 0,7 + k + k 8 0, + 2k 8 k 0,2 x i p i 0, 0, 0,2 0,7 2 0,2 0,2 b) P [ Ì x i Ì P [ + P [ + P [ 0,2 + 0,7 + 0,2 0,2 c) μ Sp i x i,92 q Sp i x 2 i μ 2,7
ESTADÍSTICA Y PROBABILIDAD
III ESTADÍSTICA Y PROBABILIDAD Página La gráfica es el polígono de porcentajes acumulados correspondiente a la distribución de las edades, en meses, de los niños de una guardería (repartidos en 7 intervalos
BLOQUE V Estadística y probabilidad
Pág. de Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,2; 0,2; ; Responde razonadamente
MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010
IES ATENEA San Sebastián de los Rees MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I Eamen de la tercera evaluación Nombre apellidos Fecha: 0 de junio de 00.- (, 5 puntos) En seis modelos de zapatillas deportivas
OPCIÓN A. A1. Se ha realizado un test de habilidad espacial a un grupo de niños y se han obtenido los resultados reflejados en la siguiente tabla:
Bloque III Solucionario Actividades de síntesis: Estadística y probabilidad OPCIÓN A A1. Se ha realizado un test de habilidad espacial a un grupo de niños y se han obtenido los resultados reflejados en
C7) Dada la distribución bidimensional de las variables "Numero de desplazamientos diarios" y "Medio de transporte utilizado" es cierto que: a) De los
IS12-Estadística en ITIS Exámen Final Curso 2008-09 Fecha: 28/Enero/09 Nombre alumno: NOTA: MARCAR: (a) Sobre 5 ptos, (b) Sobre 9 ptos C1) Una variable X toma únicamente 4 valores distintos: x1, x2, x3,
Página 238 EJERCICIOS Y PROBLEMAS PROPUESTOS. Sin fórmulas PARA PRACTICAR
Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Sin fórmulas Para cada uno de los siguientes casos indica: Cuáles son las variables que se relacionan. Si se trata de una relación funcional o de
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL Ejercicio nº 1.-
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL Ejercicio nº 1.- En una empresa de televenta se ha anotado el plazo de entrega, en días, que anunciaban en los productos el plazo real, también en días, de entrega
Matemáticas aplicadas a las Ciencias sociales 1. Examen de pendientes de cursos anteriores. 2º parcial.
Matemáticas aplicadas a las Ciencias sociales 1 Examen de pendientes de cursos anteriores. º parcial. 1. Dibuja la gráfica de la siguiente función indicando claramente los puntos de corte con los ejes
INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005
INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 1. En una pequeña empresa con 60 empleados, 25 son personal de fábrica y están cobrando unos sueldos semanales (en euros) en función a su antigüedad de: 300
MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional
MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional 1 Entra en la página web del Instituto Nacional de Estadística y elige una variable numérica de tu interés que disponga de frecuencias
Distribuciones de probabilidad
Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD EJERCICIO 1 Considera el siguiente conjunto de datos bidimensionales: X 1 1 2 3 4 4 5 6 6 y 2.1 2.5 3.1 3.0 3.8 3.2 4.3 3.9 4.4 a)sin efectuar cálculos
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
Tema 3. Relación entre dos variables cuantitativas
Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas
Distribuciones de Probabilidad
Distribuciones de Probabilidad Parte : La distribución binomial MATEMÁTICAS º Bach Tema : Distribuciones de Probabilidad José Ramón Experiencia Dicotómica Si en una experiencia aleatoria destacamos un
ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.
ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a
DISTRIBUCIONES DE VARIABLE CONTINUA
DISTRIBUCIONES DE VARIABLE CONTINUA Página 63 REFLEXIONA Y RESUELVE Tiempos de espera Los trenes de una cierta línea de cercanías pasan cada 0 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso.
DISTRIBUCIÓN NORMAL 1. El peso de las 100 vacas de una ganadería se distribuye según una normal de media 600 kg y una desviación típica de 50 kg. Se pide: Cuántas vacas pesan más de 570 kilos? Cuántas
TEMA 2: DISTRIBUCIONES BIDIMENSIONALES
TEMA : DISTRIBUCIONES BIDIMENSIONALES 1.- DISTRIBUCIONES BIDIMENSIONALES Cuando estudiamos un solo carácter estadístico, los datos que obtenemos forman una variable estadística unidimensional. También
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC
Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda.
Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se deja caer una piedra, existe una fórmula que nos permite
Distribuciones bidimensionales
Distribuciones bidimensionales Ejercicio nº 1.- Se ha medido el número medio de horas de entrenamiento a la semana de un grupo de 10 atletas el tiempo, en minutos, que han hecho en una carrera, obteniendo
PROBLEMAS SOBRE V. ESTAD. BIDIMENSIONALES. PROFESOR: ANTONIO PIZARRO.
1º) (Andalucía, Junio, 98) Se considera la siguiente tabla estadística, donde a es una incógnita: X 2 4 a 3 5 Y 1 2 1 1 3 a) Calcular el valor de a sabiendo que la media de X es 3. b) Mediante la correspondiente
Materia: Matemática de Octavo Tema: Sucesos. Marco teórico
Materia: Matemática de Octavo Tema: Sucesos En esta lección aprenderás términos básicos de la estadística y algunas reglas de la probabilidad. También aprenderás cómo enumerar eventos simples y muestras
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
Variables aleatorias bidimensionales discretas
Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
DISTRIBUCIONES BIDIMENSIONALES
DISTRIBUCIONES BIDIMENSIONALES Página REFLEXIONA Y RESUELVE Relación funcional y relación estadística En cada uno de los siguientes casos debes decir si, entre las dos variables que se citan, hay relación
TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN
4.5.- En cuál de los siguientes casos se podría utilizar la varianza residual en lugar del coeficiente de determinación para medir la calidad del ajuste? Con el mismo conjunto de datos y dos ajustes distintos.
13 EJERCICIOS de ESTADÍSTICA BIDIMENSIONAL
13 EJERCICIOS de ESTADÍSTICA BIDIMENSIONAL Frecuencias, tablas y gráficos: 1. Dos fotógrafos hacen una exposición de fotos grandes, medianas y pequeñas, cuyo número es: Grandes Medianas Pequeñas Fotógrafo
ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL
ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL CONCEPTOS PREVIOS RELACIÓN ESTADÍSTICA Dos variables x e y están relacionadas estadísticamente cuando conocida la primera se puede estimar aproximadamente el valor
Bioestadística: Variables Aleatorias. Distribuciones de Probabilidad II
Bioestadística: Variables Aleatorias. Distribuciones de Probabilidad II M. González Departamento de Matemáticas. Universidad de Extremadura 3. El periodo de incubación de una determinada enfermedad se
PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II
PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II 1.- Las tallas de una muestra de 1000 personas siguen una distribucióormal de media 1,76 metros y desviación
Tema 8: Regresión y Correlación
Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
12 Estadística. bidimensional. 1. Distribuciones bidimensionales. Piensa y calcula. Aplica la teoría
Estadística bidimensional. Distribuciones bidimensionales Piensa y calcula Se ha administrado una sustancia A, otra B y otra C a individuos para estudiar su relación con los niveles de colesterol. Observando
ESTADÍSTICA Hoja 2
Estadística 1 ESTADÍSTICA 05-06. Hoja 2 1. Dada la variable bidimensional (X, Y ), Es cierto que: a) La suma de todas las frecuencias absolutas conjuntas es igual al número de datos.? b) La suma de todas
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
Si dos sucesos A y B son incompatibles, P(A"B) = 0 P(AUB) = P(A) + P(B)
RESUMEN PROBABILIDAD OPERACIONES CON SUCESOS: Unión Intersección Diferencia Diferencia Diferencia simétrica (A o B) (A y B) (Sólo suceso A) (Sólo suceso B) (Sólo suceso A o B) PROPIEDADES DE SUCESOS: Distributiva:
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
VARIABLES ESTADÍSTICAS BIDIMENSIONALES
VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes
13 EJERCICIOS de ESTADÍSTICA BIDIMENSIONAL
13 EJERCICIOS de ESTADÍSTICA BIDIMENSIONAL Frecuencias, tablas y gráficos: 1. Dos fotógrafos hacen una exposición de fotos grandes, medianas y pequeñas, cuyo número es: Grandes Medianas Pequeñas Fotógrafo
Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):
0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta
ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL
ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL. VARIABLES ALEATORIAS Consideremos el experimento de lanzar 3 monedas. Tenemos que su espacio muestral es E CCC, CCX, CXC, XCC, CXX, XCX, XXC, XXX Donde
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto
TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD
TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO
OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO COLEGIO MARAVILLAS Realizada por: D Luis Carlos Romero OBJETIVOS MÍNIMOS QUE EL ALUMNO DEBE
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
Probabilidad, Variables aleatorias y Distribuciones
Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES
TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no
12 ESTADÍSTICA Y PROBABILIDAD
12 ESTADÍSTICA Y PROBABILIDAD 12.1.- TABLAS DE FRECUENCIA ABSOLUTA Y RELATIVA. PARÁMETROS ESTADÍSTICOS. 12.2.- GRÁFICOS ESTADÍSTICOS 12.3.- CÁLCULO DE PROBABILIDADES. REGLA DE LAPLACE. 12.1.- TABLAS DE
PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos
PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.
PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST. Tema
Matemáticas. Selectividad ESTADISTICA COU
Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas
ESTADÍSTICA INFERENCIAL Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas que toman estrictamente valores enteros,
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE 1) Se considera el experimento aleatorio de lanzar un dado. Se pide la probabilidad de obtener a) Número par b) Número par c) Múltiplo de 3 d) Múltiplo de
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
2. ESTADÍSTICAS BIDIMENSIONALES
TEMA. ESTADÍSTICAS BIDIMENSIONALES.... Definición. Objetivos.... Coeficiente de Correlación. Lineal... 4 3. Rectas de regresión.... 7 . Definición. Objetivos En el tema anterior hemos estudiado las distribuciones
INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS
Febrero 2011 EXAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: 62011037 EXAMEN MODELO B DURACION: 2 HORAS X Ciudad A Ciudad B 17-20 10 17 13-16 20 27 9-12 25 15 5-8 15
Cuaderno de actividades 1º
Cuaderno de actividades 1º 1 ITRODUCCIÓ: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población En el caso de dos (o más)
Bioestadística. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si.
1 de 5 15/10/2006 06:04 a.m. Bioestadística. Correlación y regresión lineales. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo,
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez
Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Teoría de la Información Estadística p. 1/1
Teoría de la Información Estadística Pedro Larrañaga, Iñaki Inza Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco http://www.sc.ehu.es/isg/ Teoría de la Información
Tema 7: Teoría de la Información Estadística p. 1/16
Tema 7: Teoría de la Información Estadística p. 1/16 Tema 7: Teoría de la Información Estadística Abdelamlik Moujahid, Iñaki Inza, Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia
Examen global Matemáticas C.C.S.S. 28 Mayo ( ) PRIMERA EVALUACIÓN + + = + =
Examen global Matemáticas C.C.S.S. Mayo (-). (a) Dado el sistema lineal: PRIMER EVLUCIÓN + + + (a-) añade una ecuación para que el sistema sea incompatible. + + + + + + es y el de la matriz ampliada es,
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta
Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 5 6 Introducción Cuándo se utiliza? Utilizamos el cálculo de probabilidades cuando necesitamos obtener conclusiones
También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.
3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------
OPCIÓN A. dependiente del parámetro real a.
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2017-2018 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II MODELO
Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios
1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 6 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas
Tema 10 Cálculo de probabilidades
Tema Cálculo de probabilidades Para realizar las actividades de este tema, indicar que Wiris tiene una pestaña de combinatoria que se puede utilizar para resolver estos problemas, aunque se resolverán
Resuelve. Unidad 8. Distribuciones bidimensionales. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I
Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página Relación funcional y relación estadística En cada uno de los siguientes casos debes decir si, entre las dos variables que se citan, hay relación
Tema 2. Descripción Conjunta de Varias Variables
Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis
MOOC UJI: La Probabilidad en las PAU
4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
f i i=1 y j fij y j f j = ȳ j=1 indep.
APELLIDOS: NOMBRE: GRUPO: 2 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA 1 o. INGENIERÍA INFORMÁTICA Estadística Descriptiva. Curso 2007/2008 Examen Segunda Prueba Ev. Continua. Fecha: 2-6-2008
