GEOMETRÍA CON PAPEL: POLIEDROS
|
|
|
- Ernesto San Segundo Salinas
- hace 9 años
- Vistas:
Transcripción
1 1 GEOMETRÍA CON PAPEL: POLIEDROS Covadonga Blanco García, Fernando Lazo Pérez, María Teresa Otero Suárez e José Ignacio Royo Prieto LA PAPIROFLEXIA EN LA EDUCACIÓN MATEMATICA ALGUNOS BENEFICIOS Y CUALIDADES La papiroflexia puede ser una gran ayuda en la educación matemática, a continuación exponemos algunos beneficios y cualidades que podemos encontrar en esta disciplina. Da al profesor de matemáticas una herramienta pedagógica que le permite trabajar con diferentes contenidos no solo conceptuales, sino también de procedimiento, desarrollando habilidades motoras finas y gruesas que a su vez permitirán al alumno desarrollar otros aspectos, como lateralidad, percepción espacial y psicomotricidad. Desarrolla la destreza manual y la exactitud en el desarrollo del trabajo, exactitud y precisión manual. Relaciona las matemáticas con otras áreas como las artes por ejemplo. Motiva al estudiante a ser creativo ya que puede elaborar sus propios modelos e investigar la conexión que tiene con la geometría no sólo plana, sino también espacial. La papiroflexia no es solamente divertida sino que es un método valioso en la clase de matemáticas. Estimula: HABILIDADES DE COMPORTAMIENTO Es un ejemplo de aprendizaje esquemático. Para lograr el éxito, el alumno debe observar cuidadosamente, escuchar atentamente e interpretar unos diagramas con las instrucciones específicas que luego llevará a la práctica. APRENDIZAJE EN GRUPO La papiroflexia es muy adecuada para trabajar en el aula con 0 o más alumnos, tiende a eliminar las diferencias de conocimiento y muchos profesores han observado que los alumnos que no se destacan en otras actividades, son generalmente los más rápidos en aprender a hacer figuras geométricas en papel y ayudar a sus compañeros. DESARROLLO COGNITIVO A través del doblado, los alumnos utilizan sus manos y siguen un conjunto de pasos en secuencia que producen un resultado visible que es al mismo tiempo llamativo y satisfactorio. Los pasos se deben llevar a cabo en cierto orden para lograr el resultado buscado. Piaget sostenía que la actividad
2 motora en la forma de movimientos coordinados es vital en el desarrollo del pensamiento intuitivo y en la representación mental del espacio. CONTENIDOS MATEMÁTICOS trabajados con la papiroflexia en el aula. Transformar un trozo de papel en una figura tridimensional, es un ejercicio único en la comprensión espacial. La papiroflexia es también importante en la enseñanza de la simetría, pues muchas veces al doblar, lo que se hace en un lado, se hace igual al otro lado. Esto es, por lo tanto, una regla fundamental del Álgebra que se muestra fuera del marco formal de una lección de Matemática. Dentro del campo de la geometría, fomenta el uso y comprensión de conceptos geométricos, tales como diagonal, mediana, vértice, bisectriz etc. Además, el doblado de papel, también permite a los alumnos crear y manipular figuras geométricas como cuadrados, rectángulos y triángulos y visualizar cuerpos geométricos. POLIEDROS 3R Un poliedro se puede definir como un conjunto conexo de formado por un número finito de polígonos planos que se juntan de una manera razonable. Razonable en el sentido de que cada polígono pertenece exactamente a otro polígono del poliedro y de manera que los polígonos que concurren en cada vértice forman un circuito simple. Los poliedros más famosos son los llamados platónicos que no son mas que los cinco poliedros regulares que existen: tetraedro, cubo, octaedro, icosaedro y dodecaedro. La demostración de que sólo existen éstos se atribuye a Teeteto ( a.c.) de la escuela de Platón. La demostración más elegante de este resultado se hace mediante la fórmula de Euler. Platón en su libro Timeo (ap ) atribuye a cada uno de estos sólidos uno de los 4 elementos, en el pasaje en el que describe la creación del universo. El tetraedro es el fuego, el octaedro, el aire, el cubo, la tierra y el icosaedro las moléculas de agua. Concluye Platón que el Creador utilizó el dodecaedro para formar el universo. También es interesante la visión de Kepler y su interpretación del sistema solar a partir de los sólidos platónicos a los que identificaba con los 5 planetas en su época conocidos.
3 3
4 4 SÓLIDOS PLATÓNICOS: PAPIROFLEXIA MODULAR Los cinco poliedros regulares, cuyas caras son todas de la misma forma y tamaño, pueden parecer simples, pero, en realidad son muy difíciles de plegar utilizando una sola hoja de papel cuadrado. En especial, el dodecaedro regular, que está basado en el pentágono regular, es sumamente complicado. Kazuo Haga, profesor en la universidad de Tsukuba, abordó este problema y realizó una labor excelente para superar las dificultades. el método del profesor Haga es el único que se ha desarrollado hasta la fecha, para plegar los más difíciles, como el icosaedro y el dodecaedro a partir de una única hoja de papel. Vamos a construir los sólidos platónicos utilizando la papiroflexia modular. El módulo Sonobè puede considerarse el punto de origen de la papiroflexia modular. Su fundador, Mitsunobu Sonobè lo denominaba caja de color, aunque hoy día el término empleado no es otro que módulo de Sonobè. Utilizaremos módulos en la construcción de los sólidos platónicos. HEXAEDRO O CUBO Realizamos un cubo modular a partir de las caras. Para ello necesitamos seis módulos de idéntica forma y tamaño. El módulo empleado es una variación del módulo Sonobè tradicional y sigue su mismo esquema de montaje. TETRAEDRO, OCTAEDRO E ICOSAEDRO. La búsqueda de un módulo universal para la realización de todos los sólidos platónicos ha sido y sigue siendo un reto al que se enfrentan los matemáticos en el mundo de la papiroflexia. En el taller utilizaremos el mismo módulo para la construcción del tetraedro, del octaedro y del icosaedro. Es importante la utilización de módulos simétricos para el tetraedro y el icosaedro pero no para el octaedro. DODECAEDRO Ya hemos indicado que la construcción del dodecaedro con una sola hoja de papel entraña grandes dificultades y también como en el caso del tetraedro, octaedro e icosaedro recurrimos al origami modular para su construcción. Para construir el dodecaedro es necesario un módulo que permita la aparición de caras pentagonales y que en cada vértice concurran tres aristas, vamos a realizar a continuación un estudio de varios módulos pentagonales que nos permiten otras tantas construcciones distintas del dodecaedro.
5 EL MÓDULO PENTAGONAL. Diversas maneras de obtener un módulo pentagonal: Partiendo del papel más próximo a nosotros, es decir un A4, veamos cómo en un número mínimo de dobleces podemos obtener un pentágono. Procedimiento 1 ( David Brill ): 5
6 Procedimiento ( David Brill ): 6
7 7 Estudio del procedimiento 1 de David Brill: Comprobaremos si los pentágonos así obtenidos son regulares. Qué dimensiones tendría que tener un rectángulo de papel para que los pentágonos resultantes sean regulares? a b d b tg α = a Queremos que el ángulo γ sea de 108º, evidentemente α ha de ser de 36º. Por lo tanto, tgα = tg36º =.( * ) + 5 Aplicamos el teorema de los senos en el triángulo ABC. d l = sen108º sen36º d sen108º sen7º = = l sen36º sen36º 1+ 5 cos 36º =. 4 tg 36º + 1 = sec 36º = sen36º.cos 36º sen36º =.cos 36º. tg36º = 5 5 = El ángulo γ, como ha de ser de 108º, cumple que : tgγ = 3, Por lo tanto el rectángulo que irremediablemente nos conduciría al pentágono perfecto sería el de proporción =0,
8 8 Volvamos a nuestro A4, resulta que nuestro folio tiene la proporción 1 = 0, Por lo tanto, hay una diferencia inferior a dos centésimas. En resumen: PROPORCIÓN RECTÁNGULO ÁNGULO α ÁNGULO γ Tang γ 36º 108º =-3, º º 8 -. =-, Estudio del procedimiento de David Brill: b El rectángulo de partida es un A4, es decir, a el ángulo obtenido, α, es de 108º. = 1. Hemos de comprobar que a a / b A C x B a x
9 9 Los cuatro ángulos son iguales, _ α Observemos el triángulo ABC; aplicando el Teorema de Pitágoras: a x = x b +, a b x =. 4a Teniendo en cuenta que a = b, resulta que: x =. b 8 Por último: tg( 180 α ) = tgα = b 4 = =. b 8 Procedimiento 3 (Silvana Mamino ): Estudio del procedimiento 3 de Silvana Mamino: Los rectángulos obtenidos son A6. Veamos que ángulos obtenemos al identificar dos vértices opuestos. a / b / b 3. 3b 1 tgα = = = 3., tgα =, α = 64, a a
10 10 A C En el triángulo ABC, calculamos el ángulo X: B X _ X _ X α = 180, X = α 90. tg X = - ctg α. Por lo tanto: tg α ctgα = = = tgα tgα tgα 1 tg α 3 Teniendo en cuenta que: tg α =. Obtenemos que : X = 15º 31. Una vez está calculado el ángulo X, no tenemos más que sumarle el ángulo de 90º, obteniendo que el ángulo del módulo pentagonal es de 105 º.
11 11 REFERENCIAS ÚTILES: IMPRESAS Y EN LA RED BRILL, David. Brilliant Origami. Ed. Japan Publications (001). CLEMENTE, Eduardo. Papiroflexia. Ed. Plaza y Janés (1999) DE LA PEÑA HERNÁNDEZ, Jesús. Matemáticas y Papiroflexia. Ed. Asociación Española de Papiroflexia (001) FUSÈ, Tomoko. Multidimensional transformations. Unit Origami. Ed. Japan Publications, Inc. (000) KASAHARA, Kunihito; TAKAHAMA, Toshie. Papiroflexia para Expertos. Ed. EDAF (000). MACCHI, Pietro; SCABURRI, Paola. Nuevos Objetos de Papiroflexia. Ed. de Vecchi (1997) MULATINHO, Paolo. Origami. Manualidades en papel. Ed. Parramón (1997) SIMONS,L. GURKEWITZ, R. ARNSTEIN, B. Modular Origami Polyhedra, Dover (1999). Origami: geometría con papel. Paolo Bascetta Origami y construcciones geométricas Origami axiomático o las matemáticas del papel doblado ths.html Página de Jose Ignacio Prieto Royo Página de la Asociación Española de Papiroflexia. Página de la Asociación inglesa de Papiroflexia.
12 GALERÍA DE FOTOGRAFÍAS SÓLIDOS PLATÓNICOS Figuras Realizadas por los ponentes Fotografía: José Luis Mosquera
13 Los sólidos Platónicos en la interpretación de los planetas de Keppler
14 CUBO SONOBÈ 6 MÓDULOS
15 ESTRELLADO SONOBÈ 30 MÓDULOS
16 COLECCIÓN SONOBÈ 6,1,30 MÓDULOS
17 CUBO VARIACIÓN SONOBÈ 6 MÓDULOS
18 CUBO TRUCADO KASAHARA
19 TETRAEDRO TOMOKO FUSÈ MÓDULOS
20 ICOSAEDRO TOMOKO FUSÈ 10 MÓDULOS
21 COLECCIÓN TOMOKO FUSÈ ICOSAEDRO 10 MÓDULOS OCTAEDRO 4 MÓDULOS TETRAEDRO MÓDULOS
22 DODECAEDRO SILVANA MAMINO 30 MÓDULOS
23 DODECAEDRO RAYAS SILVANA MAMINO 30 MÓDULOS
24 TETRAEDRO CUBO OCTAEDRO CUBO TOMOKO FUSÈ Construidos por aristas
25 En marzo florecen todos os campos... Refraneiro popular E tamén o papel
26
27
Geometría con papel (papiroflexia matemática)
Geometría con papel (papiroflexia matemática) Covadonga Blanco García y Teresa Otero Suárez Profesora Titular de Escuela Universitaria y Catedrática de Enseñanza Secundaria Departamento de Matemáticas,
Visualizar la geometria doblando papel
Visualizar la geometria doblando papel Dice Miguel de Guzmán: Euclides no tenía para sus clases en Alejandría la abundancia de papel que nosotros hoy disfrutamos. Pero seguro que de haber dispuesto de
10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.
Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1
ORIGAMI. Herramienta didáctica para la enseñanza de la Geometría. Carmen Alexandra Reyes P. I Foro Internacional de Matemáticas
ORIGAMI Herramienta didáctica para la enseñanza de la Geometría Carmen Alexandra Reyes P. I Foro Internacional de Matemáticas Universidad SurUnUniversidad Sur Colombiana. Neiva Pensamiento espacial y sistemas
CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.
CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los
Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.
CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo
DE PRISMAS Y POLIEDROS. A LA BÚSQUEDA DEL CUBOIDE PERFECTO
DE PRISMAS Y POLIEDROS. A LA BÚSQUEDA DEL CUBOIDE PERFECTO De poliedros En el espacio euclídeo tridimensional podemos resumir algunas nociones básicas de geometría clásica Un poliedro es la zona espacial
MATEMÁTICAS (GEOMETRÍA)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
Poliedros Regulares Convexos
Poliedros Regulares Convexos Características y relaciones entre ellos AUTOR: Begoña Soler de Dios 1 Máster en Profesor de Educación Secundaria Esp. Matemáticas 1 [email protected] Poliedros Regulares
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
4. GEOMETRÍA // 4.4. POLIEDROS.
4. GEOMETRÍA // 4.4. POLIEDROS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 Bibliografía. Bibliografía. 1. Alsina, C., Pérez, R., Ruiz, C., Simetría dinámica, Serie Matemáticas:
Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.
Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las
Ámbito científico tecnológico
Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS
UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos
Diferencias entre Figuras y
10 Lección Refuerzo Matemáticas Diferencias entre Figuras y Cuerpos Geométricos APRENDO JUGANDO Competencia Aplica conocimientos acerca de las principales características de polígonos y cuerpos geométricos.
IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos
Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares
TEMA 9 CUERPOS GEOMÉTRICOS
Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Construimos el prisma con hojas de papel
QUINTO GRADO - Unidad 1 - Sesión 04 Construimos el prisma con hojas de papel En esta sesión, los niños y las niñas aprenderán a construir el prisma con hojas de papel, para adornar el sector de Matemática.
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.
CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
Geometría en el espacio. Poliedros
Geometría en el espacio. Gemma Hermida Granado Trinidad Gómez Ramírez 28 de junio de 2006 Geometría en el espacio. 1 Programación de la unidad Objetivos didácticos Conceptos Procedimientos Actitudes Criterios
Parte II. Geometría.
Parte II Geometría. 71 Capítulo 6 El Tangram. 6.1 Tipos y reglas de uso. Un antiguo pasatiempo chino conocido también como La Tabla de las Siete Sabidurías o Siete Vivezas. Rompecabezas cuyo carácter
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1
GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos
CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS
CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las
Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana
Minicurso de Teoría de Gráficas Escuela de Verano 014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Índice 1. Conceptos básicos 1 1.1. Nomenclatura...................................
Hay 5 sólidos platónicos
1 Un sólido es un poliedro, o sea una figura tridimensional conformada por planos de diversas formas (polígonos) que se intersectan. Hay 5 sólidos platónicos Fueron estudiados y descriptos por los geómetras
congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida
COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD
MATEMÁTICA MÓDULO 3 Eje temático: Geometría
MATEMÁTICA MÓDULO 3 Eje temático: Geometría 1. TEOREMA DE EUCLIDES Tal como se hizo con los contenidos vinculados a este tema, se sugiere demostrar en clases este teorema y así evitar que se presente como
Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.
Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar
Polígonos y Poliedros
09 Lección Apertura Matemáticas Polígonos y s Competencia Socializa sus ideas y llega a acuerdos con los que asimila conceptos relacionados con polígonos y poliedros. Diseño instruccional El maestro aclarará
Puntos y rectas en el triángulo
Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante
Recuerda lo fundamental
12 Figuras planas y espaciales Recuerda lo fundamental Curso:... Fecha:... TRIÁNGULOS Mediana de un triángulo es un segmento que...... Las tres medianas de un triángulo se cortan en el...... Las mediatrices
Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz
CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl SISTEMATIZACIÓN DE CONOCIMIENTOS ACERCA DE FIGURAS Y CUERPOS
UNIDAD 7. SISTEMA MÉTRICO DECIMAL
UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,
Matemáticas Grado 4 Identificar, describir y clasificar objetos bidimensionales y tridimensionales
Matemáticas Grado 4 Identificar, describir y clasificar objetos bidimensionales y tridimensionales Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a identificar, describir y clasificar
11. MOSAICOS. El ángulo interior de un polígono regular de n lados es
11. MOSAICOS Cuando una o varias piezas recubren un plano sin solaparse tenemos un recubrimiento o mosaico. Los mosaicos más sencillos son los que solo utilizan una pieza de una única forma y tamaño. Aun
Seminario de problemas-eso. Curso Hoja 10
Seminario de problemas-eso. Curso 011-1. Hoja 10 5. Dado un triángulo cualquiera, demuestra que es posible recubrir el plano con infinitos triángulos iguales al dado, de forma que estos triángulos no se
Activ. 1: Buscando figuras planas (1 sesión)
IES EL PASO MATEMÁTICAS 3º ESO INTRODUCCIÓN El interés por descubrir elementos geométricos en el entorno, despertará en el alumnado la inquietud por aspectos matemáticos intrínsecos. El material para el
SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL
G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización
El proceso de trabajo para obtener el rectángulo raíz de dos y sus líneas estructurales características es el siguiente:
JULIÁN GIL Serie Pliegues Raíz de dos Las obras de la serie Pliegues Raíz de dos están basadas en los rectángulos raíz de dos y sus relaciones proporcionales, a través del mecanismo de pliegues. Se puede
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
LAS CIENCIAS DE LA PLANIFICACIÓN
LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):
La papiroflexia como herramienta en el estudio de las matemáticas
La papiroflexia como herramienta en el estudio de las matemáticas Covadonga Blanco García* y Teresa Otero Suárez** *Universidad de La Coruña **IES Antonio Fraguas, Santiago de Compostela INTRODUCCIÓN La
CUERPOS GEOMÉTRICOS. POLIEDROS
INTRODUCCIÓN CUERPOS GEOMÉTRICOS - POLIEDROS Este texto te servirá para que estudies los contenidos sobre poliedros que fueron desarrollados por los distintos grupos en clases y tiene como objetivos que
DIBUJO TÉCNICO NIVEL ESO. Educación Plástica, Visual y Audiovisual SERIE DISEÑA
Educación Plástica, Visual y Audiovisual DIBUJO TÉCNICO SERIE DISEÑA NIVEL II ESO Dibujo Técnico II para Educación Secundaria Obligatoria es una obra colectiva concebida, diseñada y creada en el Departamento
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
Geometría. Cuerpos Geométricos. Trabajo
Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
Trabajo de Investigación Cuerpos Geométricos
Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:
27/01/2011 TRIGONOMETRÍA Página 1 de 7
β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados
DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.
RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN
Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento.
Qué entendemos por Mosaico? Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento. En otro lenguaje, formar un mosaico es embaldosar una
LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA
GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES
Conceptos geométricos II
Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada
TESELAS. Alumno: Fecha
Llamamos mosaico o tesela al recubrimiento que hacemos en el plano mediante polígonos y que cumple dos condiciones: No deben superponerse los polígonos No deben dejar huecos. MOSAICOS REGULARES Fíjate
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
COMPETENCIA MATEMÁTICA
Servicio de Inspección Educativa 0 1 1 / EVALUACIÓN DIAGNÓSTICA º DE EDUCACIÓN SECUNDARIA COMPETENCIA MATEMÁTICA 1 Nombre y apellidos:... Centro escolar:... Grupo/Aula:... Localidad:... Fecha:... Instrucciones
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente:
Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: 7.3.4 Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del
geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia
geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia CBC TALLER DE DIBUJO Cátedra Arq. VÍCTOR MURGIA 2008 3 INTRODUCCIÓN AL LENGUAJE GEOMÉTRICO línea recta Este texto trata sobre conceptos básicos
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos
ACTIVIDAD 7. Congruentes o iguales? 4 o de Primaria. Actividades imprimibles
ACTIVIDAD 7 Congruentes o iguales? 4 o de Primaria Actividades imprimibles 4º de primaria Actividad 7 Congruentes o iguales? Campo formativo Asignatura Contenido Matemáticas Pensamiento matemático Eje
RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS
RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS. 1.-Calcule la superficie total de un tetraedro cuya arista mide 2 (12 3 ) 2.- Se tiene un tetraedro cuya arista mide 6 3 cm. Calcular.- 2.1.-La superficie
ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos
ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.
MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) TALLER DE REPASO PARA EL BIMESTRAL 3P
COLEGIO COLOMBO BRITANICO Formación en la Libertad y para la Libertad MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) GRADO:7 O DOCENTES: Natalia A. Gil V. Nubia E. Niño C. FECHA: 18 / 08 /15 Taller Adicional
POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA
POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA Introducción La construcción de polígonos regulares inscritos en una circunferencia dada, se basan en la división de dicha circunferencia en un número
PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE
PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Tercero Duración: 2 horas pedagógicas UNIDAD 6 NÚMERO DE SESIÓN 3/15 I. TÍTULO DE LA SESIÓN Resolvemos problemas aplicando razones trigonométricas de triángulos
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
Matemáticas III. Matemáticas III. Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares.
Matemáticas III Tema 6 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares. 2 1 Introducción
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica
Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un
MATEMÁTICAS 2º ESO SEMEJANZA Y TEOREMA DE THALES
MATEMÁTICAS º ESO SEMEJANZA Y TEOREMA DE THALES S1 SEMEJANZA DE FIGURAS. RAZÓN DE SEMEJANZA O ESCALA. Dos figuras son semejantes si tienen la misma forma, aunque quizá distinto tamaño. La razón de semejanza
Construcciones con regla y compás
Universidad de Buenos Aires - CONICET Semana de la Matemática - 2009 Algunos ejemplos Vamos a hacer algunos dibujos usando un papel, un lápiz, un compás y una regla sin medidas marcadas. Algunos ejemplos
Definición y Clasificación de Polígonos. Definición
Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono
Profr. Efraín Soto Apolinar. Polígonos
Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el
Parcelación de Algebra y Trigonometría
Parcelación de Algebra y Trigonometría 1. Identificación del curso División: Ciencias Básicas Departamento: Matemáticas y Estadística Nombre del curso: Algebra y Trigonometría Código del curso: MAT 1011
Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a):
Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.1.2 Construcción de figuras congruentes o semejantes (triángulos, cuadrados
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos
EMBALDOSADOS Autoras: Nora Legorburu y Ruth Schaposchnik
EMBALDOSADOS Autoras: Nora Legorburu y Ruth Schaposchnik Para salvar a la abeja reina, en este capítulo del programa CZR 2, Pablo y Ernesto necesitan saber cómo es un panal. Strudel y Strogonoff les dan
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
Los cuerpos geométricos
Los cuerpos geométricos Se denominan cuerpos geométricos a aquellos elementos que, ya sean reales o ideales que existen en la realidad o pueden concebirse mentalmente ocupan un volumen en el espacio desarrollándose
Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?
Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando
Geometría del Triángulo con la TI Voyage 200 Fermí Vilà
Fermí Vilà TI Voyage 200 1 Geometría del Triángulo con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 2 Las tres medianas de un triángulo se cortan en un único punto, que se denomina BARICENTRO del
TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS
TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS TRIÁNGULO, HEXÁGONO Y DODECÁGONO nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-4 A continuación, con
UNIDAD 6: ECUACIONES OBJETIVOS
UNIDAD 6: ECUACIONES Conocer los conceptos de ecuación, así como la terminología asociada. Identificar y clasificar los distintos tipos de ecuaciones polinómicas en función de su grado y número de incógnitas.
