UNIDAD 8 Funciones lineales
|
|
|
- Carolina Mendoza Henríquez
- hace 9 años
- Vistas:
Transcripción
1 Pág. de 5 I. Conoces las funciones lineales y sus características. Puedes identificarlas y distinguirlas de las que no lo son? Se te dan varias funciones, unas de forma analítica (mediante su ecuación) y otras gráficamente. Identifica cuáles de ellas son lineales y explica por qué no lo es cada una de las otras. a) b) c) d) e) x + 5 f) x g) x h) i) j) x + k) (x ) + 7 x Son funciones lineales a), b), e), g), h), j) y k). c) y d) no son funciones lineales porque su gráfica no es una recta. f) no es una función lineal porque la x está elevada al cuadrado. i) no es una función lineal porque la x está en el denominador. Consulta las páginas 6, 6 y 6 de tu libro de texto. II. Has visto que la pendiente de una recta juega un papel básico en la interpretación y el manejo de las funciones lineales. Conoces su significado y cómo hallarla tanto si la función viene dada analítica como gráficamente? Di cuál de las siguientes definiciones de la pendiente de una recta es correcta. Di por qué no es correcta cada una de las demás. a) La pendiente de una recta es su inclinación. Si la recta viene dada por su expresión analítica, la pendiente es el coeficiente de la y. b) La pendiente de una recta es su inclinación. Si la recta viene dada por su expresión analítica, la pendiente es el coeficiente de la x. c) La pendiente de una recta es la variación de la y (aumento o disminución) cuando la x aumenta. Sirve para medir su inclinación respecto al eje. Si la recta viene dada por su expresión analítica, la pendiente es el coeficiente de la x cuando la y está despejada.
2 Pág. de 5 La definición correcta es la c). Las definiciones a) y b) no son correctas porque: La pendiente no es la inclinación, la pendiente sirve para medir la inclinación. Además, si la recta viene dada por su expresión analítica, la pendiente es el coeficiente de la x cuando la y está despejada. Lee detenidamente la información de la página 6 de tu libro de texto. Escribe la pendiente de cada una de las siguientes rectas: PENDIENTE m = 0 m = m = m = m = PENDIENTE Recta que pasa por (0, 0) y (, ). m = Recta que pasa por ( 5, ) y (, 0). m = x m = 5 5(x + ) 8 m = 5 m = 0 x + m = Mira la información y el ejercicio resuelto de la página 66 de tu libro.
3 Pág. de 5 III. La manera más eficaz de describir una función lineal es mediante su ecuación. Sabes obtener la ecuación de una recta definida de una u otra forma? Escribe la ecuación de las siguientes rectas: a) Su ordenada en el origen es y su pendiente, 8 x + b) Función constante que pasa por (0, 5) 8 c) Función constante que pasa por (, 5) 8 d) Recta que pasa por (, 5) y cuya pendiente es (x +) e) Recta que pasa por (0, 0) y (, ) 8 f) Recta que pasa por ( 5, ) y (, 0) 8 x (x ) Mira la información de las páginas 66 y 67 y el ejercicio resuelto de la página 66. IV. La expresión analítica de una función lineal (ecuación) y su representación gráfica (recta) están íntimamente relacionadas. Sabes representar una recta dada por su ecuación y, recíprocamente, obtener la ecuación de una recta representada sobre unos ejes coordenados? 5 Representa las siguientes funciones lineales dadas por sus ecuaciones: a) x + b) x c)
4 Pág. de 5 d) (x + 5) e) 5x Fíjate en cómo se hace en el ejercicio resuelto de la página 67 de tu libro. 6 Escribe la ecuación de cada una de las siguientes rectas: a) b) c) x 5 x d) e) (x 5) + (x ) Revisa la información de la página 66 de tu libro.
5 Pág. 5 de 5 V. Has observado la relación que existe entre funciones lineales y muchos tipos de problemas reales. Crees que puedes aplicarla en algunos casos? 7 Una receta para hacer un postre recomienda poner 5 gramos de chocolate por cada 00 cm de leche. Dibuja unos ejes coordenados. En el eje señala 00, 00, 00 cm, y en el eje, 5, 0, 5 gramos. Representa los puntos correspondientes a 00 cm 8 5 g; 00 cm 8 0 g; Traza la recta que sirve para relacionar la cantidad de chocolate (en g) en función de la cantidad de leche (en cm ). Pon la ecuación de la recta. CANTIDAD DE CHOCOLATE (g) CANTIDAD DE LECHE (cm ) x 0 Consulta la página 68 de tu libro. 8 La factura mensual del gas consumido por una familia ha sido de,8 por m. Al mes siguiente han pagado,8 por m. a) Escribe la función que expresa el coste según los metros cúbicos consumidos. 0,6x + 7, b) Cuánto pagarán si consumen 8 m? Pagarán,98. Consulta la página 68 de tu libro.
UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:
UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y
PÁGINA Representa: a) y = 2x. b) y = 2 3 x. c) y = 1 4 x. d) y = 7 3 x. 2 Representa: a) y = 3 b) y = 2 c) y = 0. d) y = 5
Soluciones a las actividades de cada epígrafe PÁGINA 6 Pág. Representa: a) y = x y = x y = x 3 b) y = 3 x c) y = x y = x d) y = 7 3 x 7 y = x 3 Representa: a) y = 3 b) y = c) y = 0 y = 3 y = 0 y = d) y
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PRACTICA Representación de rectas ESTÁ RESUELTO EN EL LIBRO Representa las rectas: a) y = x b) y = x c) y = x d) y = a) b) c) d) Representa las rectas: a) y = 0,8x b) y = x c) y =,6x d) y =
Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento.
. RECTAS y FUNCIONES AFINES Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. a) y = c) y = e) y = b) y = d) y = + f) y = a) No es lineal. c)
Podemos razonar de dos formas distintas: Resolución 1: Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n.
. Escribe la ecuación de esta recta: A Y Podemos razonar de dos formas distintas: Resolución : Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n. Pendiente: cuando x aumenta,
Página 267 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones:
0 Página 7 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: y = y = c) y = + ( ) d) y = e) y = f) y = + + 5 + Á {, 0} Á {} c) Á {
FUNCIONES 2º E.S.O. FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES DE PROPORCIONALIDAD DIRECTA
FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES º E.S.O. Ejemplo: En un parque público ha una tienda donde alquilan patines a 0,5 la hora, monopatines a 1 la hora bicicletas a la hora. Patines: = 0,5 horas
FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES
FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES 1º. La edad de Pedro es el doble de la de Juan. Expresa esta función mediante una fórmula y haz una tabla con algunos de sus puntos. 2º. Relaciona cada texto
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
0 Pág. Página PRACTICA Pendiente de una recta Desde el punto A, nos movemos unidades a la derecha y unidades hacia arriba. Así llegamos al punto B. Cuál es la pendiente de la recta AB? Cuando x avanza,
Curso º ESO. UNIDAD 8: FUNCIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas (Morón)
Curso 2º ESO UNIDAD 8: FUNCIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas (Morón) OBJETIVOS CONTENIDOS PROCEDIMIENTOS 1. Conocer qué es una función y cómo expresarla. 2. Reconocer las
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
PÁGINA El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste.
Soluciones a las actividades de cada epígrafe PÁGINA 7 1 El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste. COSTE ( ) 1 1 1 ARROZ 8 1 5
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás
CASOS DE LA FUNCIÓN AFÍN
CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar
que asocia a cada número entero su triple menos dos:
Dada la función f que asocia a cada número entero su triple menos dos: a) Escribe la epresión que nos proporciona f 0,, b) Calcula la imagen para ) Dada la siguiente función : ), ) y 0) a) Calcula b) Determina
< variable independiente < variable dependiente
Estudiar en el libro de Texto: Pág. 152 y 156 EL MODELO LINEAL : y = mx + n Algunos ejemplos Una empresa decide alquilar una fotocopiadora por una cantidad fija anual de 2000 euros, más un coste de 0,05
OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA:
OBJETIVO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: FUNCIÓN LINEAL Una función de proporcionalidad directa o función lineal se expresa de la forma: y = m? x, siendo m un número
TEMA 4 FUNCIONES ELEMENTALES
Tema 4 Funciones elementales Matemáticas CCSSI º Bachillerato TEMA 4 FUNCIONES ELEMENTALES FUNCIÓN EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.
Funciones lineales. DEBERÁS RECORDAR Cuándo dos magnitudes son proporcionales. Cómo se representan las relaciones de proporcionalidad.
Funciones lineales René Descartes (19-10), filósofo matemático francés, influó notablemente en el pensamiento de su época en el de siglos posteriores. GRUPO ANAA, S.A. Matemáticas. ESO. Material fotocopiable
Bloque 3. Funciones. 1. Análisis de funciones
Bloque 3. Funciones 1. Análisis de funciones 1. Concepto de función Una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera le corresponde un único valor de la segunda,
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES
EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES 1.- DEFINICIÓN DE FUNCIÓN Una función es una relación de dependencia entre dos variables de modo que a cada valor de la primera le
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
FUNCIONES ELEMENTALES
0 FUNCIONES ELEMENTALES Página PARA EMPEZAR, REFLEIONA RESUELVE Problema Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con
LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.
LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe
12 Funciones de proporcionalidad
8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación
Guía de Matemática Segundo Medio
Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 58 PRACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valo- y res como esta, y di cuál es el vértice de cada parábola: a) y = + b) y = c)
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se
Funciones. Rectas y parábolas
0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a
UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta
UNIDAD XVII LA LINEA RECTA Modulo 4 Ecuación de la recta OBJETIVO Encontrar y determinar la ecuación de una recta, conocidos los puntos de intersección con los ejes coordenados. 4. 1. LINEA RECTA. Lugar
Nombre y apellidos Nº EXAMEN TEMA 3. ECUACIONES, INECUACIONES Y SISTEMAS 4º E.S.O.
1.- Resuelve las siguientes ecuaciones (1p): a) 2x 2 50 = 0 b) 7x 2 + 5x = 0 2.- Resuelve la siguiente ecuación bicuadrada (1p): x 4 10x 2 + 9 = 0 3.- Resuelve el sistema de ecuaciones por cualquiera de
Ecuaciones, ecuación de la recta y sistemas
Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene
CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA
FUNCIONES Y TRIGONOMETRÍA 1. Determine el dominio de las siguientes funciones: a) f() = + 7 b) g() = + 7, 0 6 c) f() = 5 d) f() = 5 + + 1 e) f() = 1 f ) f() = 1 g) f() = ( 1)( )( ) h) g() = i) g() = 1
9Soluciones a los ejercicios y problemas
PÁGINA 0 Pág. P RACTICA Pendiente de una recta Halla la pendiente de cada una de las rectas dibujadas: f () g() h() f() 8 g() 8 h() 8 Halla gráficamente la pendiente de las rectas que pasan por los siguientes
Plan de Animación para la enseñanza de las Matemáticas
FUNCIONES MATEMÁTICAS I: CONCEPTOS BÁSICOS Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera
MATEMÁTICA Tercer año 2017 Práctica 0
Escuela Superior de Comercio Carlos Pellegrini UBA MATEMÁTICA Tercer año 7 Práctica Irracionales Reales Operaciones con irracionales Ecuaciones e inecuaciones en R Determiná cuáles de las siguientes epresiones
Clase 3 Función lineal
Clase 3 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2016 Definición Una relación de la forma f(x) = mx + n, donde m, n R, se llama función lineal Gráfica de
5Soluciones a los ejercicios y problemas PÁGINA 116
Soluciones a los ejercicios y problemas PÁGINA 6 Pág. P RACTICA Funciones lineales Asocia a cada función su ecuación. Di, en cada caso, cuál es su pendiente. a) y + = 0 b) y = c) y = 6 d) y = b) y = 6
2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x
EJERCICIOS DE ANÄLISIS 1) Estudia el dominio, ceros y signo, continuidad, límites en caso que tienda a + y -, máimos y mínimos relativos de las siguientes funciones. Realiza en cada caso el bosquejo correspondiente.
Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.
Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente
TEMAS 4 LAS FUNCIONES ELEMENTALES
TEMA 4 FUNCIONES ELEMENTALES MATEMÁTICAS CCSSI º Bach. TEMAS 4 LAS FUNCIONES ELEMENTALES Son funciones? EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.
Funciones y Función lineal
Profesorado de Nivel Medio Superior en Biología Funciones Función lineal Analicemos los siguientes ejemplos: 1) El gráfico que figura más abajo muestra la evolución de la presión arterial de un paciente
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES
EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f(2) y f(-3) de las siguientes funciones: 1
EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f() y f(-3) de las siguientes funciones: 1 a) f () b)f () 3 c) f () ) Calcula f(3) f(-1) f(4) y f(-4) 4º ESO B d) f () 3) Cuáles de las siguientes
Del mismo modo, si el coche empieza a descender por una colina, todavía se puede determinar la pendiente.
FUNCIÓN AFÍN. PENDIENTE DE UNA RECTA Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente de su
Tutorial MT-b16. Matemática Tutorial Nivel Básico. Geometría analítica en línea recta
12345678901234567890 M ate m ática Tutorial MT-b16 Matemática 2006 Tutorial Nivel Básico Geometría analítica en línea recta Matemática 2006 Tutorial Geometría analítica en línea recta Marco teórico: 1.
i) ii ii) 2. Dados los siguientes gráficos correspondientes a funciones, determinar las propiedades de cada una de ellas: i) ii) iii) iv) v) vi)
ACTIVIDADES DE APRENDIZAJE 1. a) Indicar si los siguientes gráficos corresponden a funciones. Justificar. b) Hallar PROPIEDADES de los que corresponden a función. i) ii) iii) iv) v) vi) 2. Dados los siguientes
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
5 Pág. Página 5 PRACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice de cada parábola: y a) y = + b) y = c)
Funciones elementales: polinómica, racional y con radicales
8 Funciones elementales: polinómica, racional y con radicales LECTURA INICIAL Las parábolas y las hipérbolas son elementos muy utilizados en las representaciones artísticas o arquitectónicas, para medir
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre
El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.
Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario
La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.
Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,
unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)
Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente
y = F(x) = mx + n Funciones lineales Una función real diremos que es lineal cuando la ecuación que la define es de la forma
Funciones lineales Una función real diremos que es lineal cuando la ecuación que la define es de la forma y = F(x) = mx + n Naturalmente, la gráfica de un función lineal será una línea recta. La forma
1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)
Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas
2) Cuáles de las siguientes gráficas corresponden a funciones lineales constantes? x x x
Practica función lineal dominio máimo por AMEX MATEMATICA Lic David Ordonez C. ) De acuerdo a la gráfica adjunta, la ecuación de la recta m es A) 3 B) C) 3 D) 3 m -3 ) Cuáles de las siguientes gráficas
5 GUÍA DE APRENDIZAJE Contenido: Función
Prof: Víctor Manuel Reyes Feest 5 GUÍA DE APRENDIZAJE Contenido: Función 1.-En diferentes instantes en la vida de un niño, el número medio de millones de glóbulos rojos por mm 3 de sangre, está dado por
Proyecto Guao FUNCIÓN AFÍN Alguna vez has mantenido un seguimiento de la cantidad de libros que has leído en un período de tiempo? Mira a Helena.
FUNCIÓN AFÍN Alguna vez has mantenido un seguimiento de la cantidad de libros que has leído en un período de tiempo? Mira a Helena. Helena y sus amigas han estado leyendo libros regularmente. Todas tienen
Un par ordenado se llama también una coordenada. El valor de se le denomina al eje de ordenadas y el valor de se le denomina el eje de abscisas.
Sistema de Coordenadas Supongamos que todos los años va al médico para un examen de rutina fìsica, y cada cierto tiempo el médico mide su frecuencia cardíaca en reposo en latidos por minuto. El medico
ALGEBRA LINEAL. Capítulo III: Vectores en los espacios bidimensional y tridimensional. MsC. Andrés Baquero. jueves, 2 de julio de 15
ALGEBRA LINEAL Capítulo III: Vectores en los espacios bidimensional y tridimensional MsC. Andrés Baquero jueves, 2 de julio de 15 Introducción a los vectores Vectores Geométricos Vectores Geométricos Vectores
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación
al las coordenadas de A y 8:... d) En qué cuadrante se encuentra B?...
11. FUNCIONES) Gráficas y funciones PARA EMPEZAR Qué es una gráfica los ejes. Estas rectas cortan a los punto. lee primero el número del eje horizontal, la abscisa, y después el del vertical, ordenada.
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
también lo hace la masa, pero el cociente permanece constante. m K, en donde K se conoce con el nombre de V V [m 3 ] m [kg]
Proporciones Proporción directa Dadas dos magnitudes físicas, si están relacionadas, de manera que se duplica una, entonces se duplicará la otra. Si se triplica una, la otra quedará multiplicada por tres.
Listo para seguir? Intervención de destrezas
A Listo para seguir? Intervención de destrezas - Cómo identificar funciones lineales Busca estas palabras de vocabulario en la Lección - el Glosario multilingüe. Vocabulario función lineal ecuación lineal
PÁGINA 84 AB = ( 2, 7) (1, 1) = ( 3, 6) 8 AB = ( 3) = = 45 = CD = (3, 6) (6, 0) = ( 3, 6) 8 = 45 = 3 5
Soluciones a las actividades de cada epígrafe PÁGINA 4 1 Representa los vectores AB y CD, siendo A(1, 1), B(, 7), C(6, 0), D(3, 6) y observa que son iguales. Comprueba que AB = CD hallando sus coordenadas.
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
PENDIENTE MEDIDA DE LA INCLINACIÓN
Capítulo 2 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes
Las unidades correspondientes al segundo trimestre de 2º de ESO son las siguientes:
Las unidades correspondientes al segundo trimestre de 2º de ESO son las siguientes: 1. Estadística. 2. Funciones. 3. Expresiones algebraicas. 1. El siguiente diagrama de barras muestra el número de equipos
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
C : AX+BY +C=0, m =,I
ECUACION PARTICULAR: Y=mX+B, m: PENDIENTE, B: COEFICIENTE DE POSICION. A C C : AX+BY +C=0, m =,I X, 0, I Y 0, B A B EECCUUAACCI IOONN CCAANN OONNI ICCAA: Y-Y 0 ( x 0 ) m x, P, ) 0 ( 0 y0 x ES PUNTO QUE
CAPÍTULO 2. Las mediciones en la física
CAPÍTULO 2. Las mediciones en la física 2.13 Introducción a la graficación de resultados En la ciencia, la tecnología y en muchas otras actividades con frecuencia se prefiere analizar los datos por medio
Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3
EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0
Tema 5 Inecuaciones y sistemas de inecuaciones
Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos
ECUACIÓN GENERAL DE LA RECTA
ECUACIÓN GENERAL DE LA RECTA Sugerencias para quien imparte el curso En los ejemplos que se proponen, se debe tratar en la medida de lo posible que el propio alumno encuentre las respuestas y llegue a
1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?
Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
TEMA 9: FUNCIONES LINEALES Y CUADRÁTICAS
TEMA 9: FUNCIONES LINEALES Y CUADRÁTICAS 9.1 Función de proporcionalidad mx Ejemplo Representa sobre unos mismos ejes la siguientes funciones de proporcionalidad: 1. 3x. 6x 3. 3x. 6x. 1 3 x 6. 1 3 x 7.
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS.- Son aquellas cuya expresión algebraica es un polinomio. El grado del polinomio es el grado de la función polinómica. Ejemplos.- f ( x) = 3 g ( x) = x + 1 h
PROGRAMACION ÁREA DE MATEMÁTICAS QUINTO DE PRIMARIA TEMA 1: LOS NÚMEROS NATURALES CRITERIOS DE EVALUACIÓN: MÍNIMO EXIGIBLE: EVALUACIÓN:
PROGRAMACION ÁREA DE MATEMÁTICAS QUINTO DE PRIMARIA TEMA 1: LOS NÚMEROS NATURALES 1.1. Identifica situaciones en las cuales se emplean los números. 1.2. Interpreta la función que cumplen los números en
En este tipo de relaciones siempre existe una variable que depende de la otra, es decir, una de ellas es independiente y la otra dependiente.
I-MIP71_MAAL1_Cédula Funciones Por:SandraElviaPérez Relacionesyfunciones En la vida diaria es muy común encontrar variables que se relacionan entre sí, por ejemplo la longitud de un bebé con respecto al
Representación gráfica de lugares geométricos
Representación gráfica de lugares geométricos Representará gráficamente ecuaciones de las rectas y de espacios geométricos poligonales, considerando principios, leyes y procedimientos de trazo, aplicables
GRÁFICOS Y FUNCIONES.
GRÁFICOS Y FUNCIONES. COORDENADAS DEL PLANO Para representar los puntos en el plano, necesitamos dos rectas perpendiculares, llamados ejes cartesianos o ejes de coordenadas: El eje horizontal se llama
Inecuaciones y sistemas de inecuaciones
6 Inecuaciones y sistemas de inecuaciones 1. Inecuaciones de 1 er grado Escribe todos los números enteros que verifiquen a la vez: 5 < x Ì 6 P I E N S A C A L C U L A 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 1
