CONDICIONES DE EQUILIBRIO ESTATICO
|
|
|
- Virginia Miranda Robles
- hace 9 años
- Vistas:
Transcripción
1 1 CONDICIONES DE EQUILIBRIO ESTATICO Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física Objetivos específicos Analizar gráficamente y comprender las relaciones: a). El momento de la fuerza como una función del brazo de palanca. b). El momento de la fuerza como función de la fuerza. c). Verificar las condiciones de equilibrio para un cuerpo rígido de manera experimental a través de las mediciones y sistema a montar. Introducción teórica CONDICIONES DE EQUILIBRIO. Una condición necesaria para el equilibrio es que la fuerza neta que actúe sobre un cuerpo debe ser cero. Si el cuerpo se modela como una partícula, entonces ésta es la única condición que debe satisfacerse para el equilibrio. La situación en cuerpos reales (extendidos) es más compleja, porque estos cuerpos no se pueden modelar como partículas. Para que un cuerpo extendido se encuentre en equilibrio estático, debe satisfacer una segunda condición. Ésta comprende un par de torsión neto que actúe sobre el cuerpo extendido. Cuando se ejerce una fuerza sobre un cuerpo rígido que hace pivote alrededor de un eje, el cuerpo tiende a rotar alrededor de ese eje. La tendencia de una fuerza a hacer rotar un objeto alrededor de algún eje se mide por una cantidad vectorial llamada momento de torsión M. Considere una fuerza F 1 que actúa sobre un cuerpo rígido, como se ve en la fig.2. El efecto de la fuerza depende de la ubicación de su punto de aplicación P. Si r 1 es el vector de posición de este punto con respecto a O, el par de torsión asociado con la fuerza F 1 alrededor de O es: M = r 1 x F 1 El vector τ es perpendicular al plano formado por r 1 x F 1. Se puede usar la regla de la mano derecha para determinar la dirección de M. Para calcular la magnitud del momento de torsión M = r 1 F 1 sen θ = Fd (N. m en el S. I) Donde d es la distancia perpendicular desde el punto de pivote(o) a la línea de acción de F, llamado brazo del momento (brazo de palanca) de F y θ es el ángulo entre r 1 y F 1. Como se ve en la fig. 2. la tendencia de F 1 a hacer rotar el objeto alrededor de un eje que pasa por O, depende del brazo de momento d, así como de la magnitud de F. La componente de F 1 que tiende a causar rotación es F 1 sen θ, que es la componente perpendicular a la línea trazada del eje de rotación al punto de aplicación de la fuerza. La componente horizontal Fcos θ, debido a que su línea de acción pasa por O, no tiene tendencia a producir rotación alrededor de un eje que pasa por O.
2 2 De la definición de momento de torsión, vemos que la tendencia de rotación aumenta cuando F aumenta y cuando d aumenta. Si dos o más fuerzas actúan sobre un cuerpo rígido, como en la fig.1, cada una de ellas tiende a producir rotación alrededor del eje en O. Usamos la convención de que el signo de momento de torsión que resulta de una fuerza es positivo si la tendencia de rotación de la fuerza es en sentido contrario a las manecillas del reloj, y es negativo si la tendencia es en el sentido de rotación de las manecillas. Las condiciones necesarias para el equilibrio de un objeto: Equilibrio de traslación ΣF ext. = 0 Equilibrio de Rotación Σ M ext =0 Tarea previa 1. Investigar las siguientes definiciones: a) Eje de rotación b) Brazo de palanca c) Equilibrio traslacional d) Equilibrio rotacional e) Centro de gravedad f) Centro de masa Materiales y equipos - Disco de momento - Dinamómetro de 1 N. -Trípode PASS (bases) -Varillas o soportes -Grapas o sujetadores -Regla plástica -Bulón con espiga -Pesas de 1g, 10g y 50g -Porta pesas -Transportador
3 Procedimiento PARTE A. Momento de la fuerza en función del brazo de palanca Fig.1: Arreglo experimental Fig. 2: Diagrama de fuerzas.
4 4 1) Con el arreglo mostrado en la fig.1 y manteniendo fijos los valores de m 1 =0.06kg, r 2 =0.12m, varíe r 1 de acuerdo a la Tabla No 1. 2) Para los valores de r 1 (0.0, 0.06, 0.09, 0.12) m, obtenga el valor de F 2 en el dinamómetro para los cuales el disco se mantenga en equilibrio traslacional y rotacional (Σ M=0). ) Complete la tabla Tabla No 1 Distancia r 1 (m) Fuerza en el dinamómetro F 2 (N) ANOTAR MASA DEL DISCO Kg. MEDIDAS DE SEGURIDAD AL REALIZAR SU TRABAJO 1. Tenga cuidado al manipular el dinamómetro, ya que no debe sobrepasar el límite de elasticidad, de lo contrario lo DAÑARÁ. 2. Cuide que no oscile el disco respecto al pivote; es decir verifique que la vertical del disco coincide con la plomada.. Al manipular los pines debe evitar que se deslicen, pues podría extraviarlos. 4. Asegúrese que el dinamómetro se encuentra en forma vertical y que usted hace la lectura perpendicular al sistema.
5 5 Hoja de análisis de resultados PARTE A: 1. Calcular el momento de torsión hecho por la fuerza en el dinamómetro. Tabla No Obs. r 1 (m) r 2 (m) F 1 (N) F 2 (N) M 2 = r 1 F 1 (N.m) 1 2 M 2 = r 2 F 2 (N.m) 2. Aplicar las condiciones de equilibrio, para calcular la fuerza ejercida por el pivote, en cada observación.. Calcular el torque neto respecto al pivote, en cada observación. 4. Calcular el torque neto respecto a un eje que pasa por el punto donde se ha colocado F 1 5. Explique si se cumplen las dos condiciones de equilibrio, en el numeral y 4.
Dinámica del movimiento rotacional
Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición
LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas
No 3 LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo Principal: Comprender las condiciones
Equipo requerido Cantidad Observaciones Balanza de torque ME Soporte 1 Juego de masas 1 Con gancho para poder colgarlas.
No 7 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender las condiciones de equilibrio de traslación y de rotación utilizando
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín
UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede
En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.
TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,
El momento de torsión es un giro o vuelta que tiende a producir rotación. * * * Las aplicaciones se encuentran en muchas herramientas comunes en el
Momento de torsión El momento de torsión es un giro o vuelta que tiende a producir rotación. * * * Las aplicaciones se encuentran en muchas herramientas comunes en el hogar o la industria donde es necesario
LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO
LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO I. LOGRO Comprobar experimental, gráfica y analíticamente la primera y segunda condición de equilibrio a través de diagramas de cuerpo libre.
Física: Momento de Inercia y Aceleración Angular
Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.
ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.
C U S O: ÍSICA COMÚN MATEIAL: C-08 ESTÁTICA En esta unidad analizaremos el equilibrio de un cuerpo grande, que no puede considerarse como una partícula. Además, vamos a considerar dicho cuerpo como un
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA LABORATORIO DE FÍSICA I Practica No 11 Torque de Fuerzas Paralelas
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA LABORATORIO DE FÍSICA I Practica No 11 Torque de Fuerzas Paralelas Objetivos: Calcular el momento de torsión sobre un cuerpo en el
Unidad 6. Objetivos. Equilibrio, momento de una fuerza. Al término de la unidad, el alumno:
Unidad 6 Equilibrio, momento de una fuerza Objetivos Al término de la unidad, el alumno: Definir e identificar los brazos de palanca que se generan por la aplicación de fuerzas que se aplican sobre algunos
Capítulo 10. Rotación de un Cuerpo Rígido
Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema
Estática Sólido rígido momento
Estática Sólido rígido Torque (momento, momento de torsión) Producto Vectorial : Equilibrio de Cuerpos Rígidos Centro de Gravedad Estabilidad y Equilibrio Palancas y Ventaja Mecánica Palancas en el Cuerpo
Módulo 1: Mecánica Sólido rígido. Rotación (II)
Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto
FUERZAS DE SUSTENTACION
1 Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física. FUERZAS DE SUSTENTACION Objetivos específicos a) Medir fuerzas de sustentación y explicar su relación con el ángulo de
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen
PRÁCTICA 4 MOMENTOS. Versión: 02. Fecha de emisión. 08 de agosto de 2016
Manual de prácticas del Página 26/48 PRÁCTICA 4 MOMENTOS Página 26 de 48 Manual de prácticas del Página 27/48 OBJETIVOS Determinar el momento de una fuerza con respecto a un centro de momentos. Determinar
UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA
UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA BIOINGENIERÍA CÁTEDRA: "BIOMECÁNICA" GUÍA DE EJERCICIOS Nº 1: Aplicaciones de Mecánica de Cuerpos Rígidos a la Biomecánica: Cinética de la Postura
TEMAS SELECTOS DE FÍSICA I
TEMAS SELECTOS DE FÍSICA I Mtro. Pedro Sánchez Santiago TEMAS Origen de una fuerza Vectores Cuerpos en equilibrio Momentos de fuerzas Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas
Formato para prácticas de laboratorio
CARRERA TRONCO COMÚN PLAN DE ESTUDIO CLAVE ASIGNATURA 2003-1 4347 ESTÁTICA NOMBRE DE LA ASIGNATURA PRÁCTICA No. LABORATORIO DE CIENCIAS BÁSICAS DURACIÓN(HORAS) NOMBRE DE LA DESCOMPOSICIÓN DE EST-02 2:00
Cuestionario sobre las Leyes de Newton
Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,
Estática. Fig. 1. Problemas números 1 y 2.
Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección
La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.
En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.
Equilibrio Estático y Centro de Masa
EQUILIBRIO ESTÁTICO ESCUELA DE FÍSICA (UNAH) GUÍA DE LABORATORIO FÍSICA GENERAL I (FS-100) AUTOR: CARLOS E. GABARRETE Práctica Equilibrio Estático y Centro de Masa I. Referencias Serway & Jewett. Física
I.T.I. FRANCISCO JOSÉ DE CALDAS Física Mecánica Félix Rodríguez - Carlos Bastidas - 10 Guía 9 Aplicaciones Leyes de la Dinámica II
I.T.I. FRANCISCO JOSÉ DE CALDAS Física Mecánica Félix Rodríguez - Carlos Bastidas - 10 Guía 9 Aplicaciones Leyes de la Dinámica II CONDICIONES DE EQUILIBRIO Cuando un cuerpo está en equilibrio, debe encontrase
Equilibrio Estático y Centro de Masa
EQUILÍBRIO ESTÁTICO ESCUELA DE FÍSICA (UNAH) GUÍA DE LABORATORIO FÍSICA GENERAL I (FS-100) AUTOR: CARLOS E. GABARRETE Práctica Equilibrio Estático y Centro de Masa I. Referencias Serway & Jewett. Física
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:
Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Fundamentos de Estática y Dinámica 2. Competencias Desarrollar y conservar
EQUILIBRIO ROTACIONAL Y MOMENTO
EQUILIBRIO ROTACIONAL Y MOMENTO Un efecto de las fuerzas es modificar el estado de movimiento de un cuerpo, el cual puede ser traslacional y rotacional. Cuando el movimiento producido por una fuerza sobre
Relación entre Torque y Aceleración Angular. En los ejemplos de aplicación de un torque, el efecto observable es un movimiento de rotación que parte del reposo, o también puede ser un movimiento que pase
LABORATORIO DE MECANICA INERCIA ROTACIONAL
No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.
Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Práctica 1. Momento de inercia. Implementos Soporte universal, nueces, varilla delgada (eje de rotación), barra rígida (regla de
EL TORQUE, UNA FUERZA DE ROTACION
EL, UNA FUERZA DE ROTACION Juan Felipe Mateus Maldonado, Silvia A. Alvarado Benitez. Estudiante de Microbiología Industrial/ [email protected]. Estudiante de Microbiología Industrial/ [email protected]
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS
UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERIAS Y TECNOLOGIAS ING. PAUL VISCAINO VALENCIA DOCENTE Esmeraldas - Ecuador Carrera de Ingeniería Mecánica 2017 Estática de los Cuerpos
ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 13: Aceleración angular y momento de inercia. Fotosensores.
IM, Institución universitaria Guía de Laboratorio de Física Mecánica Práctica 13: Aceleración angular y momento de inercia Implementos Sistema rotante (base), hilo, cinta, cilindro con regla de aluminio,
EQUILIBRIO ROTACIONAL Y MOMENTO
EQUILIBRIO ROTACIONAL Y MOMENTO Un efecto de las fuerzas es modificar el estado de movimiento de un cuerpo, el cual puede ser traslacional y rotacional. Cuando el movimiento producido por una fuerza sobre
UD 10. Leyes de la dinámica
UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Tema 1 (16 puntos) Dos muchachos juegan en una pendiente en la forma que se indica en la figura.
CENTRO DE GRAVEDAD DE UN SÓLIDO
CENTRO DE GRAVEDAD DE UN SÓLIDO El centro de gravedad de un sólido es el punto imaginario en el que podemos considerar concentrada toda la masa del mismo. Por tanto, es el punto donde podemos considerar
Ejercicios de la acción de un campo magnético sobre un conductor rectilíneo
Ejercicios de la acción de un campo magnético sobre un conductor rectilíneo Ejercicio resuelto nº 1 Un conductor rectilíneo de 15 cm de longitud, por el que circula una corriente eléctrica de intensidad
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer
NORMAL SUPERIOR LA HACIENDA
NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA 1 1. ESTÁTICA Y EQUILIBRIO 1.1. Estática La mecánica, disciplina que en general estudia el movimiento, es una de las ramas más
Estática. M = r F. donde r = OA.
Estática. Momento de un vector respecto de un punto: Momento de una fuerza Sea un vector genérico a = AB en un espacio vectorial V. Sea un punto cualesquiera O. Se define el vector momento M del vector
MCU. Transmisión de movimiento. Igual rapidez. tangencial. Posee. Velocidad. Aceleración centrípeta variable. Velocidad angular constante
DINÁMICA ROTACIONAL MCU Transmisión de movimiento Igual rapidez tangencial Posee 1 R1 2 R2 Velocidad angular constante Velocidad tangencial variable Aceleración centrípeta variable Fuerza centrípeta variable
Javier Junquera. Equilibrio estático
Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio
Tema 4. ESTÁTICA. Física, J.W. Kane, M. M. Sternheim, Reverté, 1989
Tema 4. ESTÁTICA ísica, J.W. Kane,.. Sternheim, everté, 1989 Tema 4 Estática Caps. 4 y 8 Estática Cap. 4, pp 70-88 Propiedades elásticas Cap. 8, pp 183-195 TS 4.8 Las mandíbulas de los animales Cap.4,
EQUILIBRIO ESTATICO. Primera condición de equilibrio. Inercia: Sumatoria de fuerzas = 0 Sistema lineal de fuerzas. Sistema de fuerzas concurrentes
EQUILIBRIO ESTATICO Primera condición de equilibrio. Inercia: Sumatoria de fuerzas = 0 Sistema lineal de fuerzas Sistema de fuerzas concurrentes Sumatoria Fx = 0 Sumatoria Fy = 0 Wx + Tx + Rx = 0 Wy +
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES
Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR
Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este
27 de octubre de 2010
Pontificia Universidad Católica de Chile Facultad de Física FIZ 11 Mecánica Clásica Profesor: Andrés Jordán Ayudantes: Eduardo Bañados T. [email protected] Ariel Norambuena [email protected] Torque, Momento
Torques y equilibrio de momentos. Bogotá D.C., 4 de marzo de 2014
Torques y equilibrio de momentos Mara Salgado 1*, Diego Villota Erazo 1*, Diego Buitrago 1*, Katherine Aguirre Guataquí 1*. Bogotá D.C., 4 de marzo de 2014 Departamento de Matemáticas, Laboratorio de Física
F 28º 1200 N ESTÁTICA Y DINÁMICA
COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ISICA 11º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE ESTÁTICA SITUACIÓN PROBLEMA Cuando un barco de gran tamaño entra a un puerto o atraviesa
Leyes de Newton o Principios de la dinámica
Leyes de Newton o Principios de la dinámica La dinámica se rige por tres principios fundamentales; enunciados por Isaac Newton en 1687 en su obra Philosophiae naturalis principia mathematica ; conocidos
Estática. Equilibrio de un cuerpo rígido
Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas
PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN
PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN OBJETIVOS Determinar la constante de torsión de un péndulo. Estudiar la dependencia del período de oscilación con el momento de inercia. Determinar experimentalmente
Práctica Módulo de torsión
Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago
Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo
DPTO. FISICA APLICADA II - EUAT
Práctica 2 Estructuras articuladas 2.1. Objetivos conceptuales Profundizar en el estudio de la Estática mediante el análisis de una estructura articulada. 2.2. Fundamento teórico Se llama estructura articulada,
LABORATORIO Nº 4 MOMENTO DE INERCIA. Verificar experimentalmente el teorema de Steiner.
LABORATORIO Nº 4 MOMENTO DE INERCIA I. LOGROS Determinar experimentalmente el momento de inercia de cuerpos s respecto a sus ejes de simetría. Verificar experimentalmente el teorema de Steiner. II. PRINCIPIOS
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA 1. Competencias Plantear y solucionar problemas con base en los principios y
1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.
Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.
34 35
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1. Dos fuerzas se aplican a una armella sujeta a una viga. Determine gráficamente la magnitud y la dirección de su resultante usando: a) La ley
DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO
DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO 1. Un aro de radio R = 0,2m y masa M = 0,4kg, partiendo del reposo, desde un plano inclinado, adquiere una velocidad angular de 20rad/s al cabo de 10s. Si el aro (I
Repaso: Trabajo y energía Trabajo: transferencia de energía. Energía: Capacidad de hacer trab. Ideas para hoy. Rotación Inercia rotacional Torque
Seesaws 1 2.1 Sube y baja Seesaws 2 Repaso: Trabajo y energía Trabajo: transferencia de energía W=F d= energía transferida Energía: Capacidad de hacer trab Veremos que es diferente girar que ir en línea
REPASO DE VECTORES GRM Semestre
Basado en material de Serway-Jewett, Physics, Chapters 3, 6,10; Volume 1 REPASO DE VECTORES GRM Semestre 2012-2 Indice Sistemas de coordenadas 2 Vectores y escalares 8 Propiedades de vectores 11 Suma de
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
El Tensor de los Esfuerzos y los esfuerzos principales
El Tensor de los Esfuerzos y los esfuerzos principales Existen dos +pos principales de fuerzas en un con4nuo: 1. Fuerzas de cuerpo. Actúan en cualquier parte del cuerpo y son proporcionales al volúmen
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO ANGULAR
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE A CANTIDAD DE MOVIMIENTO ANGUAR Cantidad de movimiento angular de una partícula. Así como en el movimiento de traslación
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Introducción a la noción de esfuerzo. El tensor de esfuerzos.
Introducción a la noción de esfuerzo. El tensor de esfuerzos. Porqué pueden efectuar el rescate los rescatistas sin romper el hielo? Existen dos tipos principales de fuerzas en un contínuo: 1. Fuerzas
DPTO. FISICA APLICADA II - EUAT
Práctica 1 Estática en el plano 1.1. Objetivos conceptuales Comprobar experimentalmente las ecuaciones del equilibrio de la partícula y del sólido rígido en el plano. 1.2. Conceptos básicos Un sistema
UNIDAD Nº Momento de una fuerza
UNIDAD Nº 3 3.1 Momento de una fuerza El efecto producido sobre un cuerpo por una fuerza de magnitud y dirección dadas, depende de la posición de la línea de acción de la fuerza. Línea de acción de F 2
Dinámica de Rotaciones
Pontificia Universidad Católica de Chile Instituto de Física FIZ02 Laboratorio de Mecánica Clásica Dinámica de Rotaciones Objetivo Estudiar la dinámica de objetos en movimiento rotacional. Introducción
LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO
No LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BASICAS Objetivos Diseñar y construir un sistema para comprender el análisis
FACULTAD DE INGENIERIA Y NEGOCIOS TECATE
FACULTAD DE INGENIERIA Y NEGOCIOS TECATE 1. Realizar la conversión del momento dado en sistema ingles al sistema internacional. Si M 10 lb in convertirlo en N m a) b) c) d) 2. Identifique la fuerza resultante
IX. Análisis dinámico de fuerzas
Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.
Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Problemas. 1) 4.1. Dibuje un diagrama de cuerpo libre correspondiente a las situaciones ilustradas en la figura 4.19a y b. Descubra un punto donde actúen las fuerzas
ENERGÍA Y CANTIDAD DE MOVIMIENTO
Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento
Curso l Física I Autor l Lorenzo Iparraguirre. Equilibrio de momentos, cuplas, y fuerzas paralelas.
utor l Lorenzo Iparraguirre nexo 9.2: Equilibrio de momentos, cuplas, y fuerzas paralelas. Equilibrio, y equilibrio de rotación En el capítulo de Estática hemos explorado las características de algunos
Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y
Laboratori de Física I Estática Objetivo Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y del sólido rígido. Material Panel vertical con dos poleas
Tema 3: EQUILIBRIO Y ROTACIÓN DE SÓLIDOS
Tema 3: EQUILIBRIO Y ROTACIÓ DE SÓLIDOS 3.1. ITRODUCCIÓ Un sólido macroscópico (no puntual) puede desplazarse en el espacio pero también puede rotar en torno a un punto o eje del propio cuerpo. or lo tanto,
Péndulo de torsión y momentos de inercia
Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2
momento de inercia para sistema de particulas n I = F= Δ P Δ t τ= Δ L L=I ω L=r p sen θ τ=r F sen θ m i r i
FORMULARIO P=mv L=I ω L=r p sen θ τ=r F sen θ F= Δ P Δ t τ= Δ L Δ t momento de inercia para sistema de particulas n I = i=1 m i r i 2 Momento de inercia para cuerpos rígidos con respecrtoa diferentes ejes
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
Interacciones magnéticas
Interacciones magnéticas Ejercicios propuestos 1. En cierto laboratorio se realizó un experimento como el mostrado en la figura, donde se varió la longitud del conductor para obtener datos sobre la fuerza
