Estática Sólido rígido momento
|
|
|
- Cristóbal Benítez Olivares
- hace 9 años
- Vistas:
Transcripción
1 Estática Sólido rígido Torque (momento, momento de torsión) Producto Vectorial : Equilibrio de Cuerpos Rígidos Centro de Gravedad Estabilidad y Equilibrio Palancas y Ventaja Mecánica Palancas en el Cuerpo
2 Estática Estudio de la fuerzas que actúan sobre un cuerpo que está en equilibrio y en reposo. Ütil para estudiar fuerzas que actúan sobre: puentes, edificios, estructuras tales como: mandíbulas, columna vertebral, etc. Para comprender las máquinas simples y problemas de estabilidad y equilibrio de objetos y animales. Sólido rígido Objeto que no cambia ni su tamaño ni su forma al ser sometido a una fuerza (fuerzas aplicadas no le producen vibraciones ni lo doblan). Ej.: Huesos y vigas de acero. Sólido rígido está en equilibrio si: fuerza neta es nula torque (momento; efecto neto de rotación) neto es nulo Centro de gravedad: punto en que se puede considerar que está concentrado el peso de un sólido rígido
3 Torque (momento) No hay equilibrio rotacional Torque depende de: τ =r F sen θ
4 El torque es mayor cuando la fuerza se aplica perpendicularmente al plano de la puerta
5 τ =rfsenθ τ=r F τ=rf
6 Dirección y sentido del Torque Para objetos que giran sobre un eje fijo: sólo es necesario considerar los momentos debidos a las fuerzas que actúan perpendicularmente a dicho eje
7 Producto Vectorial : C= A B C=ABSenθ AyB
8 Regla de la mano derecha: poner en contacto la cola de ambos vectores y colocar la mano derecha en su intersección orientar los dedos de la mano derecha a lo largo del vector A girar la palma de la mano hacia adelante hasta que los dedos apunten hacia B el pulgar apuntará en el sentido de C = A x B Producto vectorial no es conmutativo: A x B = - B x A
9 Equilibrio de Cuerpos Rígidos 1. La fuerza neta sobre el objeto debe ser cero F neta =0 2. El torque neto sobre el objeto debe ser cero τ neto =0
10 Ejemplo: Dos niños de pesos w1 y w2 están en equilibrio sobre una tabla que puede oscilar alrededor de su centro (a) Cuál es la razón de sus distancias x2/x1 medidas a partir del pivote? (b) Si w1=200n, w2=400n y x1=1m, cuánto vale x2? (Para simplificar, se supone que peso de la tabla es despreciable) w1=200n w2=400n x1=1m x2=? Niños + tabla = cuerpo rígido Torques calculados respecto a P
11 F Ry : N w 1 w 2=0 N w1 w 2=0 τ N τ w1 τ w2 =0 τ i : i w1 x2 0 +w 1 x 1 w2 x 2 =0 a = w2 x1 w1 200 N b x2 = x 1= 1m =0. 5m w2 400 N En condiciones de equilibrio, los momentos calculados respecto a cualquier punto son iguales?
12 Ejemplo: Hallar de nuevo x1/x2 para el columpio del ejemplo anterior, calculando los momentos respecto al punto P1, donde se sienta el niño de peso 1 w1=200n w2=400n Niños + tabla = cuerpo rígido Torques calculados respecto a P1 x1=1m x2=?
13 F Ry : N w 1 w 2=0 N w1 w 2=0 N=w 1 +w 2 τ N τ w1 τ w2 =0 τ i : i Nx 1 0 w 2 x1 +x 2 =0 w1 +w 2 x 1 w 2 x1 w2 x 2 =0 x2 w 1 w 1 x1 w 2 x 2 =0 = x1 w 2
14 Ejemplo: Un modelo para el antebrazo en la posición indicada en la figura es una barra con un pivote en su extremo y sujeta por un cable. El peso w del antebrazo es 12N y se puede considerar concentrado en el punto indicado. Hallar la tensión T ejercida por el bíceps y la fuerza E ejercida por el codo.
15 x1 Pivote x2
16 w=12n T=? x1=0,05m x2=0,15m E=? Brazo en equilibrio Torques calculados respecto al pivote F Ry : T E w =0 τ T τ E τ w =0 τi : i T E w= 0 T=E+w x 1 T+ 0 x 2 w= 0 x 1 E+w x 2 w= 0 x1 E+x 1 w x 2 w= 0 x 2 x 1 E=w x1 0,15 0,05 m E= 12 N =24 N 0,05 m T=24 N+ 12 N= 36 N Brazo de palanca del peso mayor que otros dos brazos de palanca: T,E > w
17 Centro de Gravedad El momento con respecto a cualquier punto producido por el peso de un objeto es igual al que produciría un objeto puntual con su mismo peso y situado en un punto llamado centro de gravedad
18 El C. G. de un objeto colgado siempre está por debajo del punto de suspensión P Un peso w(=w1+w2) concentrado en un punto X(C.G.) producirá un momento igual a la suma de los momentos debidos a w1 y w2 x 1 w 1 +x 2 w2 =X w 1 +w 2 x 1 w 1 +x 2 w2 X= w 1 +w 2 Si w1=w2 donde está situado el C. G.?
19 X= x 1 w 1 +x 2 w 2 +x 3 w3... w1 +w 2 +w 3... Ejemplo: En la figura, un bloque de cemento se encuentra a 4m en el extremo izquierdo,otro está en el centro y otros dos bloques están en el extremo derecho. Dónde está el C.G.? w1=w0 w2=w0 w3=2w0 x1=0 x2=2m x3=4m
20 X= x 1 w1 +x 2 w 2 +x 3 w 3 w 1 +w 2 +w 3 0 2m w 0 4m 2w0 X= =2,5 m w 0 +w 0 2w 0 Si pesos se hallan en puntos de un plano, C.G. Se encuentra en un punto (X,Y) del plano
21 Estabilidad y Equilibrio Un objeto está en equilibrio sólo cuando su centro de gravedad se halla encima del área de la base definida por sus soportes
22 Palancas y Ventaja Mecánica Palanca: barra rígida utilizada con un punto de apoyo (fulcro) x a >< x L x a x L V. M.= FL Fa x a x L En condiciones de equilibrio y considerando que las fuerzas aplicada y de carga son perpendiculares a la palanca, cuál es la V.M. de c/u de las palancas? Las V.M., son mayores, menores o iguales que 1?
23 Escogiendo en los tres casos punto de apoyo = punto de referencia (P.R.), P.R. está en un eje de rotacion que es perpendicular al plano de la transparencia. x L F L x a F a =0 x a F a x L F L =0 x a F a -x L F L=0 xa F L x L F L =x a F a = x L Fa xa V. M.= fuerzas palanca xl V.M.:Tipo 2: >1 Tipo 3: <1 Tipo 1: ><1
24 Palancas en el Cuerpo La columna vertebral se comporta como una palanca de poca V.M. Calcular la V.M. = w/(fuerzas aplicadas por músculos y el sacro) y+ Disco sacrolumbar x+
25 Ejemplo: Encontrar la fuerza T ejercida por los músculos de la columna vertebral y las componentes de la fuerza R ejercida por el sacro (pivote) si el peso que sostiene w1 es (a) cero; (b) 175N wtorso = 0,65(75kg)wobjeto = 0; 175N y+ T=? x+ R=? Masa del hombre es de 77kg. Peso del torso, cabeza y brazos es el 65% del peso total del cuerpo.
26 F i =0 F x : R x TCosα= 0 F y : R y +TSenα w=0 τ i =0 l T Tsenα l w w=0 lw 1 0,6l 1 T= w = 490 N =2020 N l T Senα 0,7l Sen 12 R x =TCosα=1975, 95 N R y =w TSenα= 490 N 2020 N Sen 12 =70, 02 N R =1977,20 N Como el sólo hecho de inclinarse (agacharse), incluso sin levantar un peso, produce una gran T sobre la columna, debe evitarse.
27 Una persona necesita levantar un peso. Lo puede hacer de dos maneras. Qué posición debe adoptar para evitar daños en el sacro? Si se flexionan las rodillas y se mantiene la espalda vertical, los C.G. De todos los pesos están aproximadamente en la vertical del sacro torquessacro son pequeños y los músculos y articulaciones no deben hacer fuerzas grandes. En el caso b) la fuerza sobre el disco es peso total que sostiene: Para el hombre de 77 kg: 490N (tronco: 50 kg) N (objeto de 17,86 kg) = 665 N, tercera parte de T y R del caso a)
28
29
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
PROBLEMAS ESTÁTICA FARMACIA
PBLEMAS ESÁICA AMACIA PBLEMA 1 La figura muestra el diagrama de fuerzas sobre la cadera izquierda de una persona de 70 kg puesta en pie que apoya todo su peso sobre el pie izquierdo (ha encogido la pierna
Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín
UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede
Física: Momento de Inercia y Aceleración Angular
Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.
ANATOMIA DEL MOVIMIENTO
ANATOMIA DEL MOVIMIENTO PLANOS Y EJES DE MOVIMIENTO La figura siguiente nos permite apreciar a un ser humano en lo que denominamos la POSICIÓN ANATÓMICA BÁSICA, que está definida con el sujeto parado,
BIOESTATICA. Llamamos componente X de una fuerza al valor de la X del punto que determina el extremo de la fuerza
UERZAS BIOESTATICA Las fuerzas se representan con flechas. La información que proporcionan es: El tamaño de la flecha es proporcional al módulo, de manera que cuando más intensa sea la fuerza mayor tamaño
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
Estática. Equilibrio de un cuerpo rígido
Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio
Pontificia Universidad Católica de Chile Facultad de Física. Estática
Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas
Campo Eléctrico. Fig. 1. Problema número 1.
Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)
EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
IX. Análisis dinámico de fuerzas
Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
TEMA 6 ESTÁTICA. Bibliografía recomendada:
TEMA 6 ESTÁTICA 0 > Introducción. 1 > Equilibrio. Tipos de equilibrio. 2 > Principios fundamentales y ecuaciones cardinales de la Estática. 3 > Estática de sistemas planos. 3.1 > Reacciones en apoyos y
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo
FUERZAS CENTRALES. Física 2º Bachillerato
FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES
DEPRTMENTO DE ELECTROMECNIC INGENIERI ELECTROMECNIC 1 EJERCICIO Nº1 TRJO PRCTICO Nº 2 SISTEM DE FUERZS EQUIVLENTES Si el peso ubicado en el punto tiene un valor de 20 KN, determine el valor de la carga
Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos
Fuerzas 1. Al igual que las demás fuerzas, las fuerzas gravitatorias se suman vectorialmente. Considerar un cohete que viaja de la Tierra a la Luna a lo largo de una línea recta que une sus centros. (a)
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
Condiciones de Equilibrio:
UNIVERSIDD TECNOLÓGIC NCIONL Facultad Regional Rosario UDB Física Cátedra FÍSIC I Capitulo Nº 11: Condiciones de Equilibrio: EQUILIBRIO Y ELSTICIDD Primera condición de equilibrio: Una partícula está en
OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO
OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
Huesos. Glamil Acevedo Pietri Anatomía y Fisiología
Huesos Glamil Acevedo Pietri Anatomía y Fisiología 1 Dentro Los Huesos El cuerpo humano está compuesto por 208 huesos articulados, que lo sostienen y conservan su forma, protegiendo cada uno de los órganos
Biomecánica: una mirada al funcionamiento de nuestro cuerpo
Biomecánica: una mirada al funcionamiento de nuestro cuerpo Resumen Modesto Sosa 1 humano responsables de producir las condiciones de equilibrio en estructuras óseas y musculares, el trabajo mecánico producido
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
Módulo 1: Mecánica Rotación
Módulo 1: Mecánica Rotación 1 Movimiento de rotación En Física distinguimos entre dos tipos de movimiento de objetos: Movimiento de traslación (desplazamiento) Movimiento de rotación (cambio de orientación
Examen de TEORIA DE MAQUINAS Junio 07 Nombre...
Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
COMPOSICION DE FUERZAS
FUERZAS La fuerza es una magnitud vectorial que modifica la condición inicial de un cuerpo o sistema, variando su estado de reposo, aumentando ó disminuyendo su velocidad y/o variando su dirección. SISTEMAS
MECÁNICA II CURSO 2004/05
1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.
En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.
Centro de gravedad de un cuerpo bidimensional
Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida
Examen de Ubicación. Física del Nivel Cero Enero / 2009
Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles
Física: Dinámica Conceptos básicos y Problemas
Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo
ESCALARES Y VECTORES
ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo
PALANCAS.
PALANCAS Las Palancas Una palanca representa una barra rígida r que se apoya y rota alrededor de un eje. Las palancas sirven para mover un objeto o resistencia. 1 Las palancas están n constituidas de:
IUCCIÓN ESTRUCTURAS. Qué son las estructuras? Para qué sirven las estructuras?
IUCCIÓN ESTRUCTURAS Qué son las estructuras? La estructura de un objeto es el conjunto de elementos que permiten mantener su tamaño y forma (sin deformarse en exceso) cuando sobre él actúan fuerzas externas.
www.forodeentrenamiento.com
Semana : Dia (Martes) Arranque frances barra x(0) / x(0) / x() x(0) / x(0) / x(0) x(0) / x(0) / x(0) / x(0) / x(0) / x(0) x / x SALTOS LATERALES Oblicuo estatico con rotacion brazo x / x / x x0xkg / x0xkg
TORQUE. Estudiar los torques producidos por fuerzas perpendiculares al brazo de palanca.
TORQUE Experimento 1. Objetivo: Estudiar los torques producidos por fuerzas perpendiculares al brazo de palanca. Fundamento teórico: En experiencias anteriores se calcularon fuerzas resultantes y equilibrantes
VECTORES. BIDIMENSIONAL
VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema
Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que
Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,
TALLER DE OSCILACIONES Y ONDAS
TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia
Al representar estos datos obtenemos una curva:
Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA A ENTREGAR POR EL ALUMNO Ing. RONIO GUAYCOCHEA Ing. MARCO DE NARDI Lic. FABRIZIO FRASINELLI Ing. ESTEBAN LEDROZ AÑO 2014 1 ESTÁTICA CUESTIONARIO 1. Que es una magnitud
EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero.
EQUILIBRIO. Un cuerpo está en equilibrio cuando se encuentra en reposo o tiene un movimiento uniforme. Analíticamente se expresa cuando la resultante de las fuerzas que actúan sobre un cuerpo es nula,
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
Módulo 1: Electrostática Campo eléctrico
Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en
DINÁMICA II - Aplicación de las Leyes de Newton
> INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES
I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES
I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50
Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas
2.ESTÁTICA La palabra estática se deriva del griego statikós que significa inmóvil. En virtud de que la dinámica estudia la causa que originan la causa del reposo o movimiento de los cuerpos, tenemos que
Proyecto de Innovación Educativa: Con los cuatro elementos tecnológicos de una palanca se elabora la denominada Ley de la palanca, que dice :
LEY DE LA PALANCA Con los cuatro elementos tecnológicos de una palanca se elabora la denominada Ley de la palanca, que dice : A) La "potencia" por su brazo es igual a la "resistencia" por el suyo: P x
MÁQUINAS SIMPLES UNIDAD 6
MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2013/2014 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA
Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia
Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico
1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES
Mecánica. Cecilia Pardo Sanjurjo. Tema 04. Cables. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA
Mecánica Tema 04. Cables. Cecilia Pardo Sanjurjo DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: CreaHve Commons BY NC SA 3.0 Cables Los hilos o cables son elementos ampliamente
Ejercicios para resolver semana del 11 al 15 de febrero de 2013 EQUILIBRIO DE CUERPO RÍGIDO 3D
1.- La losa de concreto tiene un peso de 5500 lb. Determinar la tensión eistente en cada uno de los tres cables paralelos soportantes cuando la losa es mantenida en el plano horiontal, como se muestra.
DINAMICA. donde la fuerza neta de la que hablamos antes sería la suma vectorial de todas las fuerzas que puedan actuar separadamente sobre el cuerpo.
DINAMICA Introducción Así como la cinemática se encarga de la descripción del movimiento de los cuerpos, aunque sin entrar en detalles de la causa que hace mover a éstos, la dinámica estudia precisamente
C O L E G I O S A N A N T O N I O D E P A D U A T E C N O L O G Í A 1 º E S O - C U R S O 1 2 / 1 3
C O L E G I O S A N A N T O N I O D E P A D U A F R A N C I S C A N O S - C A R C A I X E N T T E C N O L O G Í A 1 º E S O - C U R S O 1 2 / 1 3 DEPARTAMENTO DE MATEMÁTICAS Tecnología 1º ESO El presente
Dinámica de la partícula: Leyes de Newton
Dinámica de la partícula: Leyes de Newton Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice
Fuerza y movimiento. Definiciones. Carrocería no resistente a la torsión PGRT
Definiciones Definiciones Es importe realizar correctamente la fijación de la carrocería, puesto que una fijación incorrecta puede producir daños en la carrocería, la fijación y el bastidor del chasis.
Resolución de problemas aplicando leyes de Newton y consideraciones energéticas
UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
PRÁCTICA 4 ESTUDIO DEL RESORTE
INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos
SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta
ASOCIACIÓN DE POLEAS
ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula
COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO
1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
Guía de Repaso 12: Primera Ley de Newton g=10 m s 2
Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 1) Dos fuerzas F1 y F2 actúan sobre un pequeño cuerpo; F1 es vertical hacia abajo y vale F1=8,0 N, mientras que F2 es horizontal hacia la derecha y vale
ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas.
ESTÁTICA Objetivos: 1. Sumar y descomponer fuerzas (analizando su carácter vectorial) 2. Medir fuerzas resultantes y momentos resultantes de fuerzas paralelas y no paralelas. Analizar el equilibrio mecánico
Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción
ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),
Tema 5- INTRODUCCIÓN A LA BIOMECÁNICA OCUPACIONAL
Tema 5 INTRODUCCIÓN A LA BIOMECÁNICA OCUPACIONAL Trastornos musculoesqueléticos Qué es la biomecánica? Biomecánica ocupacional Lesiones musculoesqueléticos Factores de riesgo asociados Manipulación manual
ERGONOMIA Y POSTURA XABIER IDIAKEZ FISIOTERAPEUTA KEMEN KOZ (LAZKAO)
ERGONOMIA Y POSTURA XABIER IDIAKEZ FISIOTERAPEUTA KEMEN KOZ (LAZKAO) ERGONOMIA QUÉ ES LA ERGONOMIA? - Según la Asociación Internacional de Ergonomía, la ergonomía es el conjunto de conocimientos científicos
Guía de ejercicios Introducción a la lesyes de Newton
Guía de ejercicios Introducción a la lesyes de Newton Departamento de Ciencia Profesor David Valenzuela Unidad: II Dinámica Curso: 2 Medio NOMBRE: Para esta guía considere g = 10 m/s 2 1. Un auto de 500
RECOMENDACIONES ESTIRAMIENTOS IMPORTANTE. Suspender el ejercicio de inmediato si se experimenta cualquiera de estos síntomas:
IMPORTANTE Suspender el ejercicio de inmediato si se experimenta cualquiera de estos síntomas: Palpitaciones Dificultad para respirar Mareo Naúseas Dolor en el pecho Pérdida de control muscular RECOMENDACIONES
Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO
SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares
LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.
LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS
Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4
Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa
EQUILIBRIO DE UN CUERPO RÍGIDO
EQUILIIO DE UN CUEPO ÍGIDO Capítulo III 3.1 CONCEPOS PEVIOS 1. omento de una fuerza respecto a un punto ( O ).- Cantidad vectorial que mide la rotación (giro) o tendencia a la rotación producida por una
Dinámica de los sistemas de partículas
Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza
Curso V-TRAK Cesar Terán. Principios de Biomecánica para posicionamiento en silla de ruedas CEORTEC
Curso V-TRAK Cesar Terán Principios de Biomecánica para posicionamiento en silla de ruedas Modelo Biomecánico normal No se ve afectado por: Discapacidad Crecimiento Trastornos neurológicos El modelo biomecánico
Mecánica para Robótica
Mecánica para Robótica Material de clase: http://www.robotica-up.org/ Education Mechanics for Robotics Conceptos básicos de mecanismos y ensambles Cuerpo rígido (o sólido indeformable): Cuerpo o materia
BMT Learning Nivel 0 En busca de la estabilidad
z Taller de introducción Módulo 1 Qué es BMT? BMT Learning Nivel 0 En busca de la estabilidad P á g i n a 2 8 grupobmt.c om PRESENTACIÓN El material al que has accedido forma parte del contenido académico
Estática: Fuerza. Fuerza es todo lo que tiende a modificar el estado de reposo o movimiento de un cuerpo.
Unidad II: Principios de la Mecánica de los Sólidos I: Estática. Concepto de mecánica. División. Estática: uerza. Tipos. Efectos de la fuerza sobre los cuerpos. Composición de fuerza de misma y distinta
TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R
TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,
Trabajo realizado por Nani Ordoñez, alumna del primer año del profesorado de yoga de Escuela Yoga
Trabajo realizado por Nani Ordoñez, alumna del primer año del profesorado de yoga de Escuela Yoga Nombre de Ásana Adho Muka Svanasana Dibujo Significado del nombre Armado de la Fuerzas opuestas Beneficios
Elementos Uniaxiales Sometidos a Carga Axial Pura
Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).
