Simplificación de funciones lógicas utilizando Karnaugh

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Simplificación de funciones lógicas utilizando Karnaugh"

Transcripción

1 Simplificación de funciones lógicas utilizando Página

2 Objetivos de la simplificación Objetivo: minimizar el costo de la función lógica Medición del costo y otras consideraciones Número de compuertas Número de niveles Fan in y fan out de las compuertas Complejidad en la interconexión Prevención de riesgos Realización en dos niveles Minimiza el número de compuertas (términos de la función) Minimiza el fan in (variables en la función) Página 2

3 Relación entre representaciones TEOREMA: Cualquier función Boolena que puede exprese como una Tabla de Verdad puede escribirse como una expresión en Algebra Booleana utilizando compuertas AND, OR, NOT. Página 3 No única Expresión Booleana Conveniente para manipulación Tabla de verdad Única Representación en compuertas (esquemático) Cerca de implementación No única

4 Mapas de Un mapa de (también conocido como tabla de o diagrama de Veitch, abreviado como K-Mapa o KV-Mapa) es un diagrama utilizado para la simplificación de funciones algebraicas booleanas. El mapa de fue inventado en 950 por Maurice, un físico y matemático de los laboratorios Bell. Los mapas K aprovechan la capacidad del cerebro humano de trabajar mejor con patrones que con ecuaciones y otras formas de expresión analítica. Externamente, un mapa de consiste de una serie de cuadrados, cada uno de los cuales representa una línea de la tabla de verdad. Puesto que la tabla de verdad de una función de N variables posee 2N filas, el mapa K correspondiente debe poseer también 2N cuadrados. Cada cuadrado alberga un 0 ó un, dependiendo del valor que toma la función en cada fila. Las tablas de se pueden utilizar para funciones de hasta 6 variables. Página 4

5 Relación con los diagramas de Venn Para dos variables se pueden expresar las siguientes áreas en diagramas de Venn ab ab ab ab Página 5

6 Relación con los diagramas de Venn Estas área se pueden representar como minterminos. m 0 m2 m m 3 Página 6

7 Relación con los diagramas de Venn Las áreas para dos conjuntos son cuatro. Estas son: AB AB AB AB La idea ahora es colocar las área de tal forma que entre área y área solo cambie una variable Página 7

8 Relación con los diagramas de Venn Con el fin de que solo una variable cambie entre área y área el grupo de las cuatro áreas resulta como: AB AB AB AB Página 8

9 Relación con los diagramas de Venn Estas áreas se pueden representar en una grafica de la siguiente forma Estas áreas se puede asignar números decimales, tal como se muestra Página 9

10 Relación con los diagramas de Veen A B Para este mapa la variable mas significativa es A En este mapa se muestran todas las áreas posibles. Se debe tomar en cuenta que al pasar de un área a otra solo varia un bit. Esto es tanto en el B como en A se utiliza el código Gray. Página 0

11 Mapa de dos variables Página

12 Mapa de tres variables m 0 m 2 m 6 m 4 m m 3 m 7 m 5 Página 2

13 Mapa de tres variables En este caso la variable mas significativa es A Recuerde que los bordes son adyacentes O sea esta figura es como un neumático Página 3

14 Mapa de cuatro variables m 0 m m 3 m 2 m 4 m 5 m 7 m 6 m 2 m 3 m 5 m 4 m 8 m 9 m m 0 Página 4

15 Representación de funciones en mapas de Página 5

16 Ejemplo Representación canónica de minterminos F = ABC+ ABC+ ABC+ ABC F = m + m + m + m (,, ) m(,3,5,6) F A B C = Página 6

17 Mapa de tres variables BC AC ABC Página 7 (,, ) m(,3,5,6) F a b c =

18 Mapa de tres variables BC AC ABC Página 8 (,, ) m(,3,5,6) F a b c =

19 Ejemplo: con cuatro variables Página 9 F( A, B, C, D) = (0,,3,7,8,9,0,5 )

20 Ejemplo: con cuatro variables BC BD Página 20 F( A, B, C, D) BCD = (0,,3,7,8,9,0,5 )

21 Terminología / definiciones Literal Es una variable o su complemento Términos lógicamente adyacentes Dos minterminos son lógicamente adyacentes si difieren entre ellos una sola variables. Página 2

22 Terminología / definiciones Página 22 Implicante Es un termino que puede ser utilizado para cubrir minterminos de una función Implicante primario Es un implicante que no es parte de otro implicante. Implicante primario esencial Es un implicante que cubre por lo menos un mintermino que no esta contenido en otro implicante primario. Cobertor Es un mintermino que ha sido utilizado en por lo menos un grupo.

23 Guía para simplificar funciones Cada área en los mapas K de n variables tienen n áreas lógicas adyacentes. (difieren de exactamente una variable). Cuando se combinan áreas, siempre agrúpelas en potencias de 2 m, donde m=0,,2,. En general, agrupar 2 m variables elimina m variables. Página 23

24 Guía para simplificar funciones Agrupe la mayor cantidad de áreas posibles. Esto elimina la mayor cantidad de variables. Haga los menos grupos posibles. Cada grupo representa un producto de variables. Debe cubrir al menos cada mintermino. Sin embargo, puede ser cubierto mas de una vez. Página 24

25 Procedimiento para simplificar con mapas K Grafique el mapa Haga un circulo en todos los implicantes primarios. Identifique y seleccione todos los implicantes esenciales primarios que va a cubrir. Seleccione un subconjunto mínimo de implicantes primarios residuales para completar la cobertura. Lea el mapa K Página 25

26 Ejemplo Utilice los mapas K para simplificar la siguiente función lógica. F( A, B, C) = (,2,3,5,6 ) Página 26

27 Solución Página 27

28 Solución F ( a, b, c) = ab + bc + bc = ab + b c Página 28

29 Ejemplo (,, ) m( 2,3,6,7) F a b c = Página 29

30 Solución Página 30

31 Solución F ( abc,, ) = ab+ ab= b Página 3

32 Casos Especiales Página 32

33 Mapas con tres variables Página 33 F( abc,, ) =

34 Mapa con tres variables Página 34 F( abc,, ) = 0

35 Mapa con tres variables Página 35 F ( a, b, c) = a b c

36 Condiciones no importa Muchas veces en el diseño de los circuitos digitales, particularmente en los convertidores de código, algunas entradas deben considerarse como casos que no sucederán, y son casos que cuando ocurren no afectan el comportamiento del sistema, esto es no importa si suceden. Por ejemplo, considérese el caso de un contador decimal de cuatro bits, en el cual se pueden generar los estados desde el 0000 hasta el, en el caso de que este se desee representar en BCD los términos 00, 0,00, 0, 0,, que no afectan el comportamiento del contador BCD se deben tomar como condiciones no importa ya que no afectan el comportamiento del sistema. Los términos no importan se pueden tomar como mintérminos en la solución o como maxterminos, dependiendo de la conveniencia. El objetivo de utilizar condiciones no importa es el ayudar en la simplificación de las funciones lógicas. Los términos no importa se representan en los mapas con una X. Las condiciones no importa, se pueden agrupar con los unos o con los ceros en un mapa de dependiendo de la conveniencia en el proceso de síntesis. Página 36

37 Ejemplo Se quiere simplificar la siguiente función lógica: f ( A, B, C) = (0,2,7) N(3,4) El término N(3,4), representa que los minterminos 3 y 4 son condiciones no importa. Página 37

38 Solución Esta condición no importa la sumo como cero Esta condición no importa la asumo como 0 X 0 X 0 Página 38 f ( A, B, C) = AB + AC

39 Ejemplo Utilizando mapas de simplificar la siguiente función: f ( A, B, C, D) = (0,2,6,8,2,3,5) X (3,9,0) Página 39

40 Solución 0 X X 0 0 X Página 40 f ( A, B, C, D) = AC + BD + ABD + ACD

41 Ejemplo Utilice mapas K para simplificar la siguiente expresión (,,, ) m( 0,2,3,6,8,2,3,5) F a b c d = Página 4

42 Solución Página 42 f ( A, B, C, D) = ABC + ACD + ABD + ACD + BCD

43 Mapas con cinco variables F ( abcde,,,, ) Página 43

44 Mapas con cinco variables Utilice dos mapas de cuatro variables. En uno de ellos coloque los términos correspondientes a la variable más significativa en uno. En el otro coloque los términos correspondientes a la variables más significativa en cero. Página 44

45 Utilice dos mapas de cuatro variables Mapa A=0 Mapa A= Página 45

46 Ejemplo de cinco variables = F abcde,,,, m5,7,3,5,2,23,29,3 ( ) ( ) Página 46

47 Solución A=0 A= Página 47

48 Solución f ( A, B, C, D, E) = ACE + BEC + ABCE Página 48

49 Ejemplo Utilice los mapas K para simplificar la siguiente función Booleana. (,, ) M (,2,3,5,6) F a b c = Página 49

50 Paso. Colocar los maxterminos Página 50

51 Paso 2. Agrupe los implicantes primarios AB BC Página 5 BC f ( A, B, C) = AB + BC + CB

52 Paso 3. Aplique el teorema de Morgan En el paso anterior se encontró el modelo lógico para el complemento de f. Para encontrar el modelo es necesario aplicar el teorema de Morgan, esto es: f f f ( A, B, C) ( A, B, C) ( A, B, C) = = = AB AB + BC + CB + BC + CB ( A + B)( B + C)( C + B) Página 52 f f f ( A, B, C) ( A, B, C) ( A, B, C) = = = ABC + BC + ABC BC ( A + ) + ABC BC + ABC

53 Ejemplo Este ejemplo es igual al anterior solo que cambiando el mapa. Lo primero que hacemos es transformar el mapa para que acepte maxtérminos. Esto es colocar las variables donde se encuentran negadas. Página 53

54 Transformación del mapa para maxterminos Para transformar el mapa coloque la variable sin negar donde se encuentra la variable negada y repítalo con todas las variables. Coloque todos los términos de la expresión lógica B+C A B A+B C C C+B Página 54

55 Página 55 Solución CB ABC C B A f A CB ABC C B A f CB CAB BAC C B A f B C CB CA BB BA C B A f B C B A C B C B A f + = + + = + + = = = ),, ( ) ( ),, ( ),, ( ) )( ( ),, ( ) )( )( ( ),, (

56 Sistemas con varias funciones de salida Suponga que se cuenta con un sistema discreto que produce tres funciones de salida, bajo la presencia de tres variables de entrada. Esto es: f f f 2 3 ( A, B, C) ( A, B, C) ( A, B, C) = = = (0,2,3,5,6) (,2,3,4,7) (2,3,4,5,6) Página 56

57 Genere los mapas de las funciones f B A C 6 Página 57

58 Mapa para f 2 f 2 B A 4 5 C 7 6 Página 58

59 Mapa para f 3 f 3 B A 4 5 C 7 6 Página 59

60 Todos los mapas Página 60

61 Tabla de minterminos Página 6 Mintermino m0 m m2 m3 m4 m5 m6 m7 f X X X X X f 2 X X X X X f 3 X X X X X

62 Conclusión Si se observa en la lámina donde se encuentran los tres mapas, se puede concluir que los términos de f 3 son generados por f 2 y f. En otras palabras los términos de f 3 son producidos en las otras funciones Página 62

63 Cobertura de minterminos Página 63

64 Solución f ( A, B, C) = AB + BC + ABC + ABC f 2 ( A, B, C) = AB + BC + AC + ABC f 3 ( A, B, C) = AB + BC + ABC + ABC Página 64

65 Técnica de variables en el mapa Reduce el tamaño del mapa de 3, 4, 5, 6 y 7 variables. La idea es no sólo cubrir unos, ceros, sino que cubrir variables también, incluso expresiones booleanas. El principio teórico e utilizar el teorema de adyacencia lógica. Página 65

66 Ejemplo (entradas al mapa) Supongamos la función que se define con la siguiente tabla de verdad Página 66

67 Expresión de salida La salida se puede expresar como: f ( A, B, C) = ABC (0) + ABC(0) + ABC () + ABC() + ABC () + ABC(0) + ABC ( X ) + ABC( X ) Página 67

68 Disminuir la tabla de verdad a dos variables Página 68

69 Disminuir la tabla Como se puede observar ahora se puede representar la función en un mapa de dos variables. Esto es: 0 0 C 2 X 3 Página 69

70 Otro ejemplo Página 70

71 Disminuir la tabla Página 7

72 Mapa de tres variables para f A f C B D DX D 0 DX 7 6 Página 72

73 Mapa de tres variables para f 2 A f C B 3 2 D+DX DX D D 0 X 7 6 Página 73

74 Lectura del mapa Página 74 Paso. (Agrupar las áreas) Agrupar las variables de entrada que no se pueden agrupar con otras áreas del mapa. Recuerde que una variable en un área no se puede agrupar con su complemento de otra, ya que no son idénticas. Agrupe las mismas variables en distintas áreas adyacentes. Se pueden agrupar variables con un área que contenga un. Se pueden agrupar variables con un área que contenga un X. Continúe agrupando las variables hasta cubrir con todas las variables de entrada.

75 Lectura del mapa Página 75 Paso 2. Transformación del mapa Sustituya todas las variables de entrada al mapa en cero. Si el área tiene un cero, consérvelo, y si tiene una condición no importa, consérvelo. Si el área tiene un uno, se mantiene si no está totalmente cubierta, se coloca un X si esta totalmente cubierta, por ejemplo cubierta con la variable y su complemento. Si a la variable de entrada lo acompaña una condición no importa, donde aparece coloque un cero. Si en el área se encuentra la variable de entrada (+) la misma variable complementada con una condición no importa coloque si no cubre totalmente o si solo se cubre el complemento. Debe colocarse una X (no importa) si se cubre totalmente o si el término necesario se cubre

76 Ejemplo de lectura de mapas con variables Este es el mapa 0 C 0 2 C 3 Página 76

77 Transformación del mapa El uno se puede representar como la suma de la variable de entrada y su complemento 0 C 0 2 C+C C 3 Página 77

78 Paso. Agrupar las variables B(C) 0 C C+C C A(C) Página 78

79 Paso 2. Transformar el mapa Ahora se deben agrupar los unos AB Página 79

80 La solución Será la unión de todos los términos. Esto es: f ( A, B, C) = BC + AC + AB Página 80

81 Ejemplo Reagrupar las variables 0 0 C+CX 2 C 3 Página 8

82 Paso. Agrupar las áreas 0 0 C+CX B 2 C+C C 3 Página 82

83 Paso 2. Transformar el mapa AB 0 0 X Página 83

84 Solución f ( A, B, C) = B + AB Página 84

85 Otro ejemplo Página 85

86 Mapa para la función f AD f 0 B 3 2 X D DX A DX D AC C 7 6 AB Página 86

87 Mapa para la función f 2 AD f 2 B A C 3 2 D+DX D 0 DX D DX 7 6 ABD CD Página 87

88 Mapa transformado para f AC f 0 B 3 2 X 0 0 A ACB C 7 6 Página 88

89 Mapa transformado para f 2 Página 89 AB A f C B AC X 7 6

90 Solución para f f A, B, C, D) = AD + AB + ( ACB Página 90

91 Solución para f 2 f A, B, C, D) = AD + CD + ABD + AC + 2 ( AB Página 9

Mapas de Karnaugh para 4 variables

Mapas de Karnaugh para 4 variables REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA Mapas de Karnaugh para 4 variables San Cristóbal, enero de 2009 Índice Página Introducción.......................................................

Más detalles

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E. Prof. Rodrigo Araya E. raraya@inf.utfsm.cl Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta

Más detalles

Plantel Aztahuacan 011 Módulo: operación de circuitos electrónicos digitales

Plantel Aztahuacan 011 Módulo: operación de circuitos electrónicos digitales Plantel Aztahuacan Nombre Fecha Grupo Tema.. Mapas de Karnaugh Docente: Alfredo Alonso Quintana Correo institucional: alfredo.alonso.acad@df.conalep.edu.mx Unidad de aprendizaje : Operación de circuitos

Más detalles

Álgebra de Boole. Tema 5

Álgebra de Boole. Tema 5 Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Álgebra de Boole Simplificar funciones utilizando el Álgebra de Boole Analizar circuitos mediante Álgebra de Boole y simplificarlos

Más detalles

Simplificación de expresiones booleanas usando mapas de Karnaugh

Simplificación de expresiones booleanas usando mapas de Karnaugh Simplificación de expresiones booleanas usando mapas de Karnaugh José Alfredo Jiménez Murillo El método del mapa de Karnaugh es un procedimiento simple y directo para minimizar las expresiones booleanas,

Más detalles

GUIA 4: ALGEBRA DE BOOLE

GUIA 4: ALGEBRA DE BOOLE GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos

Más detalles

Álgebra de Boole. Tema 5

Álgebra de Boole. Tema 5 Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Algebra de Boole Simplificar funciones utilizando el Algebra de Boole Analizar circuitos mediante Algebra de Boole y simplificarlos

Más detalles

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS LABORATORIO # 4 Realización: SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. OBJETIVOS Los objetivos de este laboratorio es que Usted, aprenda a: Simplificar funciones utilizando mapas de Karnaugh Utilizar compuertas

Más detalles

Mapas de Karnaugh. Apunte N 4

Mapas de Karnaugh. Apunte N 4 Mapas de Karnaugh Apunte N 4 M é todos de Simplificación Para determinar cuándo una expresión booleana es la más simple de todas las equivalentes a ella, se adopta el criterio de expresión minimizada o

Más detalles

5-Mapas de Karnaugh. 5: Karnaugh 1

5-Mapas de Karnaugh. 5: Karnaugh 1 5-Mapas de Karnaugh 5.1 Representación y mapas de diferentes dimensiones. 5.2 Generalizaciones sobre mapas de Karnaugh. 5.3 Ejemplos de uso de mapas de Karnaugh. 5: Karnaugh 1 Representación Los mapas

Más detalles

IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES

IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 5. ÁLGEBRA BOOLEANA

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 5. ÁLGEBRA BOOLEANA MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 5. ÁLGEBRA BOOLEANA RESPUESTA Y DESARROLLO DE EJERCICIOS AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO 5.1.- a) F = A'B'C' + A'B'CD

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009 ELO211: Sistemas Digitales Tomás rredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: ontemporary Logic Design 1 st / 2 nd edition. Gaetano orriello and Randy Katz.

Más detalles

TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA

TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 5.2 FUNCIONES LÓGICAS Puertas lógicas Simplificación de funciones lógicas 2 TEMA 5.2 FUNCIONES

Más detalles

IV II III GUIA 7: MAPAS DE KARNAUGH AB CD

IV II III GUIA 7: MAPAS DE KARNAUGH AB CD GUIA 7: MAPAS DE KARNAUGH Simplificación de funciones con mapas de Karnaugh Obtener la función de un Mapa de Karnaugh es el procedimiento inverso a la de la realización del mapa. Un termino de la función

Más detalles

Álgebra Booleana y Simplificación Lógica

Álgebra Booleana y Simplificación Lógica Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo

Más detalles

Tema 1: Circuitos Combinacionales

Tema 1: Circuitos Combinacionales Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos

Más detalles

13/10/2013. Clase 05: Mapas de Karnaugh. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar.

13/10/2013. Clase 05: Mapas de Karnaugh. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar. Clase 05: Mapas de Karnaugh Ing. Christian Lezama Cuellar Semestre 2013-I Sistemas Digitales y Arquitectura de Computadoras 1 MAPAS DE KARNAUGH Método de simplificación gráfico basado en los teoremas booleanos.

Más detalles

LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)

LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de

Más detalles

6-Simplificación. 6.1 Ejemplos en dos niveles 6.2 Simplificación en dos niveles 6.3 Algoritmos de simplificación. 6: Simplificación 1

6-Simplificación. 6.1 Ejemplos en dos niveles 6.2 Simplificación en dos niveles 6.3 Algoritmos de simplificación. 6: Simplificación 1 6-Simplificación 6.1 Ejemplos en dos niveles 6.2 Simplificación en dos niveles 6.3 Algoritmos de simplificación 6: Simplificación 1 Ejemplo: comparador de dos bits N1 N2 A B C D LT EQ GT A B < C D A B

Más detalles

Introducción volts.

Introducción volts. Constantes y Variables Booleanas Tabla de Verdad. Funciones lógicas (AND, OR, NOT) Representación de las funciones lógicas con compuerta lógicas básicas (AND, OR, NOT) Formas Canónicas y Standard (mini

Más detalles

Tabla 5.2 Compuertas básicas A B A B A B

Tabla 5.2 Compuertas básicas A B A B A B Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de

Más detalles

ANALÓGICO vs. DIGITAL

ANALÓGICO vs. DIGITAL ANALÓGICO vs. DIGITAL Una señal analógica se caracteriza por presentar un numero infinito de valores posibles. Continuo Posibles valores: 1.00, 1.01, 200003,, infinitas posibilidades Una señal digital

Más detalles

Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006

Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006 EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar

Más detalles

Álgebra de Boole. Diseño Lógico

Álgebra de Boole. Diseño Lógico Álgebra de Boole. Diseño Lógico Fundamentos de Computadores Escuela Politécnica Superior. UAM Alguna de las trasparencias utilizadas son traducción de las facilitadas con el libro Digital Design & Computer

Más detalles

Algebra de Boole. » a + a = 1» a a = 0

Algebra de Boole. » a + a = 1» a a = 0 Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a

Más detalles

Organización de computadoras y lenguaje ensamblador

Organización de computadoras y lenguaje ensamblador Organización de computadoras y lenguaje ensamblador Algebra de Boole Instituto Tecnológico de Costa Rica IC-2100 II Semestre 2011 Prof. Marlen Treviño 0 Mapas de Karnaugh Agenda Mapas de Karnaugh Mapas

Más detalles

2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.

2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS. 2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas

Más detalles

SENA; Conocimiento para todos los Colombianos

SENA; Conocimiento para todos los Colombianos MAPA DE KARNAUGH Es una herramienta gráfica que se usa para simplificar una ecuación lógica, o para convertir una tabla de verdad a su circuito lógico correspondiente mediante un proceso simple y ordenado.

Más detalles

Diseño de circuitos combinacionales

Diseño de circuitos combinacionales Diseño de circuitos combinacionales Mario Medina C. mariomedina@udec.cl Diseño de circuitos combinacionales Métodos de minimización vistos permiten obtener funciones de dos niveles Tópicos en diseño de

Más detalles

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

UNIDAD 4. Álgebra Booleana

UNIDAD 4. Álgebra Booleana UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,

Más detalles

El número decimal 57, en formato binario es igual a:

El número decimal 57, en formato binario es igual a: CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello

Más detalles

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0. Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes

Más detalles

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas

Más detalles

Los Mapas de Karnaugh son una herramienta muy utilizada para la simplificación de circuitos lógicos.

Los Mapas de Karnaugh son una herramienta muy utilizada para la simplificación de circuitos lógicos. Mapas de karnaugh Los Mapas de Karnaugh son una herramienta muy utilizada para la simplificación de circuitos lógicos. Cuando se tiene una función lógica con su tabla de verdad y se desea implementar esa

Más detalles

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana y Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

Algebra de Boole: Teoremas

Algebra de Boole: Teoremas Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema

Más detalles

NOT. Ejemplo: Circuito C1

NOT. Ejemplo: Circuito C1 Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen

Más detalles

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana y Circuitos Lógicos UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.

Más detalles

Álgebra de Boole A p u n te N 3

Álgebra de Boole A p u n te N 3 Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole

Más detalles

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES LECCIÓN Nº 01 SISTEMAS COMBINACIONALES 1. GENERALIDADES PUERTAS LOGICAS Una puerta lógica es un elemento que recibe varias entradas binarias (variables) y, dependiendo del estado de las entradas, su salida

Más detalles

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Álgebra Booleana Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Krscia Daviana Ramíre Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.

Más detalles

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación

Más detalles

5.3. Álgebras de Boole y de conmutación. Funciones lógicas

5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.

Más detalles

Diagramas de Veitch y Karnaugh

Diagramas de Veitch y Karnaugh Diagramas de Veitch y Karnaugh Estos diagramas permiten simplificar en forma sistemática las funciones Booleanas sin aplicar las propiedades propias del álgebra de Boole. Para entender como aplicar estos

Más detalles

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra

Más detalles

4-N-Cubos. 4.1 Representación y cubos de diferentes dimensiones. 4.2 Generalizaciones sobre N-Cubos. 4: N-Cubos 1

4-N-Cubos. 4.1 Representación y cubos de diferentes dimensiones. 4.2 Generalizaciones sobre N-Cubos. 4: N-Cubos 1 4-N-Cubos 4.1 Representación y cubos de diferentes dimensiones. 4.2 Generalizaciones sobre N-Cubos. 4: N-Cubos 1 Representación Los n-cubos permiten visualizar las funciones booleanas en espacios n-dimensionales

Más detalles

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura

Más detalles

Análisis y síntesis de sistemas digitales combinacionales

Análisis y síntesis de sistemas digitales combinacionales Análisis Algoritmo de análisis, para un circuito lógico combinacional Síntesis. Conceptos Circuitos combinacionales bien construidos Circuitos combinacionales mal construidos Criterios de optimización

Más detalles

Algebra de Boole y puertas lógicas

Algebra de Boole y puertas lógicas Algebra de Boole y puertas lógicas Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Postulados y propiedades fundamentales del Álgebra de Boole Funciones

Más detalles

EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES

EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0

Más detalles

Universidad Autónoma de Baja California

Universidad Autónoma de Baja California Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2

Más detalles

Práctica 1 Introducción al Transistor BJT Diseño Región de Corte Saturación

Práctica 1 Introducción al Transistor BJT Diseño Región de Corte Saturación Práctica 1 Introducción al Transistor BJT Diseño Región de Corte Saturación Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 1,

Más detalles

EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE:

EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE: EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE: Algebra de Boole El álgebra de Boole es una forma adecuada y sistemática de expresar y analizar las operaciones de los circuitos lógicos. El álgebra de Boole son

Más detalles

Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones

Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica

Más detalles

Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones

Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 1, Segundo Semestre

Más detalles

Figura 4-11 Mapas de Karnaugh y tablas de verdad para (a) dos, (b) tres y (c) cuatro variables.

Figura 4-11 Mapas de Karnaugh y tablas de verdad para (a) dos, (b) tres y (c) cuatro variables. El mapa de Karnaugh es un método gráfico que se utiliza para simplificar una ecuación lógica para convertir una tabla de verdad a su circuito lógico correspondiente en un proceso simple y ordenado. Aunque

Más detalles

FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales

FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,

Más detalles

Sistemas informáticos industriales. Algebra de Boole

Sistemas informáticos industriales. Algebra de Boole Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de

Más detalles

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. 1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales

Más detalles

CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 4

CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 4 CIRCUITOS ELECTRÓNICOS DIGITALES GRADO EN INGENIERÍA INFORMÁTICA TECNOLOGÍAS INFORMÁTICAS BOLETÍN DE PROBLEMAS 4 1.- Indique cuántos bits son necesarios, como mínimo, para representar cada uno de los siguientes

Más detalles

UNIDAD 4. Algebra de Boole

UNIDAD 4. Algebra de Boole UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

ALGEBRA BOOLEANA (ALGEBRA LOGICA)

ALGEBRA BOOLEANA (ALGEBRA LOGICA) ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un

Más detalles

Algebra de Boole y simplificación de funciones lógicas. Capítulo 4

Algebra de Boole y simplificación de funciones lógicas. Capítulo 4 Algebra de Boole y simplificación de funciones lógicas Capítulo 4 Contenido 1. Expresiones y operaciones Booleanas 2. Propiedades y Reglas del Algebra de Boole 3. Teoremas de DeMorgan 4. Análisis booleano

Más detalles

El álgebra booleana fue estudiada por Pitágoras y George Boole.

El álgebra booleana fue estudiada por Pitágoras y George Boole. ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas

Más detalles

2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO

2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO 2. CONTROL DE CIRCUITO ELECTRÓNICO COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º EO INTRODUCCIÓN Las agujas de un reloj, que giran representando el avance del tiempo, lo hacen en forma aná- loga (análogo =

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2011

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2011 ELO211: Sistemas Digitales Tomás rredondo Vidal 1er Semestre 2011 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.

Más detalles

GUIA 6: MAPAS DE KARNAUGH. A B C f A A

GUIA 6: MAPAS DE KARNAUGH. A B C f A A RQUITETUR DEL OMPUTDOR Prof. Sandro ostantini GUI 6: MPS DE RNUGH Los mapas de arnaugh constituyen un método sencillo y apropiado para la minimización de funciones lógicas. El tamaño del mapa depende depende

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica

Más detalles

Sistemas Digitales. Unidad I. Sistemas numéricos, códigos y aritmética binaria

Sistemas Digitales. Unidad I. Sistemas numéricos, códigos y aritmética binaria Sistemas Digitales Unidad I. Sistemas numéricos, códigos y aritmética binaria Sistemas numéricos Sistema analógicos y sistemas digitales Las cantidades analógicas pueden variar a través de un intervalo

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los

Más detalles

MAPAS DE KARNAUGH. Los mapas de Karnaugh se utilizan en funciones hasta de 6 variables.

MAPAS DE KARNAUGH. Los mapas de Karnaugh se utilizan en funciones hasta de 6 variables. MPS DE KRNUGH MURICE KRNUGH Nace en Nueva York el 4 de octubre de 924. Estudió matemáticas y física en el City College de Nueva York (944-948), luego en la Universidad de Yale donde hizo su licenciatura

Más detalles

Electrónica Digital: Sistemas Numéricos y Algebra de Boole

Electrónica Digital: Sistemas Numéricos y Algebra de Boole Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: andres.suarez@correounivalle.edu.co

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL. Simplificación por Karnaugh: CIRCUITO LÓGICO:

PROBLEMAS DE ELECTRÓNICA DIGITAL. Simplificación por Karnaugh: CIRCUITO LÓGICO: PROBLEMAS DE ELECTRÓNICA DIGITAL.- Un contactor R para el accionamiento de un motor eléctrico, está gobernado por la acción combinada de tres finales de carrera A, B y C. Para que el motor pueda funcionar,

Más detalles

TEMA 5 SIMPLIFICACIÓN DE FUNCIONES BOOLEANAS

TEMA 5 SIMPLIFICACIÓN DE FUNCIONES BOOLEANAS TEMA 5 SIMPLIFICACIÓN DE FUNCIONES BOOLEANAS 1 2 3 4 5 6 (1) Una expresión irreducible no es necesariamente mínima (2), (3) La expresión mínima para una función no es siempre única Método poco sistemático

Más detalles

Diseño combinacional (Parte #2) Mapas de Karnaugh

Diseño combinacional (Parte #2) Mapas de Karnaugh Departamento de Electrónica Electrónica Digital Diseño combinacional (Parte #2) Mapas de Karnaugh Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos Procedimiento de diseño de un circuito

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL PROBLEMAS DE ELECTRÓNICA DIGITAL.- Un contactor R para el accionamiento de un motor eléctrico, está gobernado por la acción combinada de tres finales de carrera A, B y C. Para que el motor pueda funcionar,

Más detalles

EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos

EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos Instituto Tecnológico de osta Rica Escuela de Ingeniería Electrónica urso: EL-3307 Diseño Lógico I Semestre 2007 Pro. Ing. José lberto Díaz García 24 de Febrero 2007 EJERIIOS I PRTE Simpliicación de unciones

Más detalles

LÓGICA SECUENCIAL Y COMBINATORIA

LÓGICA SECUENCIAL Y COMBINATORIA LÓGICA SECUENCIAL Y COMBINATORIA SESIÓN # 3 1.9 Códigos alfanuméricos. Además de los datos numéricos, una computadora debe ser capaz de manejar información no numérica. En otras palabras, una computadora

Más detalles

Simplificación de Funciones Booleanas. Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC

Simplificación de Funciones Booleanas. Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC Simplificación de Funciones Booleanas Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC Temario 1.Representación con mapas 2.Método de simplificación con mapas 3.Condiciones de indiferencia

Más detalles

1.1 Circuitos Digitales

1.1 Circuitos Digitales TEMA III Circuitos Digitales Electrónica II 27. Circuitos Digitales Del mundo analógico al digital. Ventajas de la señal digital. Inconvenientes de la señal digital. Algebra de Boole. Puertas Lógicas.

Más detalles

Jorge Aliaga Verano Si No- Si Si- No

Jorge Aliaga Verano Si No- Si Si- No Si No- Si Si- No Parece raro que alguien se pudiera comunicar con solo dos palabras. Es lo que hacemos con todos los dispositivos digitales que usan el código binario ( 0 y 1 ) o dos estados lógicos (falso

Más detalles

Circuitos lógicos combinacionales. Tema 6

Circuitos lógicos combinacionales. Tema 6 Circuitos lógicos combinacionales Tema 6 Qué sabrás al final del capítulo? Implementar funciones con dos niveles de puertas lógicas AND/OR OR/AND NAND NOR Analizar sistemas combinacionales, obteniendo

Más detalles

Sistemas Digitales. Guía 04 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE ELECTRONICA. I. Objetivos. II. Introducción Teórica

Sistemas Digitales. Guía 04 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE ELECTRONICA. I. Objetivos. II. Introducción Teórica UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE ELECTRONICA CICLO: 01-2013 Guía de laboratorio Nº4 Nombre de la práctica: Mapas de Karnaugh Lugar de ejecución: Laboratorio de electrónica

Más detalles

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS

Más detalles

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas

Más detalles

Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.

Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. Programa Analítico de la Asignatura: SISTEMAS LÓGICOS Código: E-3.23.2 Plan de Estudio: 1996 Carrera: INGENIERÍA ELECTRICISTA Departamento:

Más detalles

Tema 2. Funciones Lógicas. Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL.

Tema 2. Funciones Lógicas. Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL. Tema 2. Funciones Lógicas Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL. Minimización de Funciones Lógicas Minimización en dos niveles. Mapas de Karnaugh de 3 y 4 variables.

Más detalles

Lógica Digital - Circuitos Combinatorios

Lógica Digital - Circuitos Combinatorios Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase

Más detalles