Mapas de Karnaugh para 4 variables
|
|
|
- Mario Velázquez Mora
- hace 8 años
- Vistas:
Transcripción
1 REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA Mapas de Karnaugh para 4 variables San Cristóbal, enero de 2009
2 Índice Página Introducción Conceptos Básicos, Suma de Productos Producto de Sumas Conclusión
3 Introducción Para comenzar, es de gran importancia explicar brevemente quién es el creador del método tabular, mejor conocido como Mapas de Karnaugh. Maurice Karnaugh, es un ingeniero de telecomunicaciones estadounidense. Graduado en la universidad de Yale en el 1952, es actualmente gobernador del ICCC (International Council for Computer Communication). Ha trabajado como investigador en los Laboratorios Bell desde 1952 a 1966 y en el centro de investigación de IBM de 1966 a Así mismo, ha impartido de informática en el Politécnico de Nueva York de 1980 a 1999, y desde 1975 es miembro del IEEE (Institute of Electrical and Electronics Engineers) por sus aportaciones sobre la utilización de métodos numéricos en las telecomunicaciones. Los mapas de Karnaugh sirven principalmente para minimizar expresiones del tipo suma de productos o producto de sumas, obteniendo otra suma de productos o producto de sumas. Por ejemplo en la suma de productos, la expresión obtenida será mínima, si no existe otra con menor número de sumandos, ni otra con igual número de sumandos con menor cantidad de variables. Mediante los diagramas de Karnaugh, se representa la función, y se obtiene directamente la forma canónica, considerando los unos o ceros obtenidos del diagrama. La propiedad más importante de los mapas de Karnaugh es la adyacencia de celdas, ya que si en dos celdas adyacentes existen unos, se puede sacar factor común entre dichas celdas y eliminar así, una variable. Dos celdas son adyacentes si no difieren en más de un bit. Habiendo explicado esto inicialmente, se hace más fácil abordar el tema principal de la investigación, el cual es la elaboración de mapas de Karnaugh con 4 variables. 3
4 Conceptos Básicos - Literal: se refiere a una variable o a su complemento (X, X ) - Término Producto: es un grupo de literales que se encuentran relacionados entre si por un AND (A B, C A) - Término Suma: es un grupo de literales que se encuentran relacionados entre si por un OR (A+B, C+A) Empleando suma de productos (SDP) Mapas de Karnaugh para 4 variables La simplificación de expresiones lógicas mediante el mapa de Karnaugh utiliza un método gráfico basado en la Suma de Productos. El mapa se realiza por medio de una matriz de 16 celdas, la cual representa los 16 mintérminos posibles (2 4 ) que se pueden obtener con cuatro variables de entrada, en un arreglo de 4 x 4. 4
5 La minimización por medio de un mapa de 4 variables se puede efectuar con las celdas adyacentes entre sí y las celdas de los bordes que se pueden concatenar para reducir la expresión. Por ejemplo, m 13 y m 15 son celdas adyacentes así como m 0, m 8, m 2 y m 10. El mapa se construye colocando un 1 en las celdas correspondientes a los mintérminos presentes en la función de salida. Por ejemplo, para el término F(1,1,0,0)= A B C D = 1 se situaría un 1 en la celda Para los mintérminos no presentes en la función se pone un 0. Por ejemplo el término F(1,1,1,1)= A B C D= 0, será una celda con valor 0 en la celda Se procede con la agrupación de unos, la determinación del término producto correspondiente a cada grupo y la suma de los términos producto obtenidos. Las reglas para reducir términos en un mapa de Karnaugh de 4 variables son las siguientes: 1. Una celda representa un mintérmino, dando como resultado un término de cuatro literales. 2. Dos celdas agrupadas pueden representar la asociación de dos mintérminos, dando como resultado un término de tres literales. 3. Cuatro celdas agrupadas pueden representar la asociación de cuatro mintérminos, dando como resultado un término de dos literales. 4. Ocho celdas agrupadas pueden representar la asociación de ocho mintérminos, dando como resultado un término de un literal. 5. Dieciséis celdas agrupadas pueden representan un valor de función igual a 1. Ejemplo: Simplifíquese la función de Boole F 2 = (m1,m3,m8,m10,m14) 5
6 El primer grupo se forma con los mintérminos m 1 y m 3 y el segundo grupo se forma con los mintérminos m 8, m 10 y m 12, m 14. Del primer grupo resulta el término A B D ya que en la columna 1 no se presentan cambios para las variables A y B y se presenta transición en la variable C en las columnas 2 y 3. El segundo grupo da como resultado el término A D. La razón radica en la simplificación de la variable B en la tercera y cuarta fila y en la variable C en la primera y cuarta columna. Sumando los mintérminos obtenidos se obtiene la ecuación simplificada: F 2 = A B D + A D Empleando producto de sumas (PDS) La simplificación de expresiones lógicas mediante el mapa de Karnaugh también es posible mediante el método de producto de sumas. En este método, cada celda representa un maxtérmino. La construcción del mapa es similar a la suma de productos. La diferencia radica en que cada celda representa un maxtérmino. La representación de la función lógica se hace simplemente copiando los ceros de la tabla de verdad en las celdas del mapa. Este método es más apropiado cuando en la columna de resultados de la tabla de verdad predominan los ceros. Ejemplo: Utilizar el mapa de Karnaugh para minimizar el producto de sumas: F 4 = (A+B+C+D) (A+B +C) (A+B +C +D ) (A +B +C+D ) (A + B+C +D ) (A +B+C+D ) (A +B+C +D ) El segundo término tiene que ampliarse a (A+B +C+D) (A+B +C+D ). La función completa se pasa al mapa de Karnaugh. 6
7 El término suma para cada grupo se muestra en la figura y el producto de sumas resultante es: F 4 = (A+C+D) (A+B'+D') (A'+D') 7
8 .
Simplificación de funciones lógicas utilizando Karnaugh
Simplificación de funciones lógicas utilizando Página Objetivos de la simplificación Objetivo: minimizar el costo de la función lógica Medición del costo y otras consideraciones Número de compuertas Número
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
13/10/2013. Clase 05: Mapas de Karnaugh. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar.
Clase 05: Mapas de Karnaugh Ing. Christian Lezama Cuellar Semestre 2013-I Sistemas Digitales y Arquitectura de Computadoras 1 MAPAS DE KARNAUGH Método de simplificación gráfico basado en los teoremas booleanos.
Álgebra Booleana y Simplificación Lógica
Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?
CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE
Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
Operaciones Booleanas y Compuertas Básicas
Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
SIMPLIFICACIÓN DE FUNCIONES LÓGICAS
LABORATORIO # 4 Realización: SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. OBJETIVOS Los objetivos de este laboratorio es que Usted, aprenda a: Simplificar funciones utilizando mapas de Karnaugh Utilizar compuertas
Análisis y síntesis de sistemas digitales combinacionales
Análisis Algoritmo de análisis, para un circuito lógico combinacional Síntesis. Conceptos Circuitos combinacionales bien construidos Circuitos combinacionales mal construidos Criterios de optimización
Diseño de circuitos combinacionales
Diseño de circuitos combinacionales Mario Medina C. [email protected] Diseño de circuitos combinacionales Métodos de minimización vistos permiten obtener funciones de dos niveles Tópicos en diseño de
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
5.3. Álgebras de Boole y de conmutación. Funciones lógicas
5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2
LECCIÓN Nº 01 SISTEMAS COMBINACIONALES
LECCIÓN Nº 01 SISTEMAS COMBINACIONALES 1. GENERALIDADES PUERTAS LOGICAS Una puerta lógica es un elemento que recibe varias entradas binarias (variables) y, dependiendo del estado de las entradas, su salida
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
Tema 3. 2 Sistemas Combinacionales
Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :
SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II P1) Dado el sistema neumático mostrado en la figura: a) Identifica los elementos -y su funcionamiento- cuya sección
PROBLEMAS DE ELECTRÓNICA DIGITAL. Simplificación por Karnaugh: CIRCUITO LÓGICO:
PROBLEMAS DE ELECTRÓNICA DIGITAL.- Un contactor R para el accionamiento de un motor eléctrico, está gobernado por la acción combinada de tres finales de carrera A, B y C. Para que el motor pueda funcionar,
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
Algebra de Boole y simplificación de funciones lógicas. Capítulo 4
Algebra de Boole y simplificación de funciones lógicas Capítulo 4 Contenido 1. Expresiones y operaciones Booleanas 2. Propiedades y Reglas del Algebra de Boole 3. Teoremas de DeMorgan 4. Análisis booleano
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos
Instituto Tecnológico de osta Rica Escuela de Ingeniería Electrónica urso: EL-3307 Diseño Lógico I Semestre 2007 Pro. Ing. José lberto Díaz García 24 de Febrero 2007 EJERIIOS I PRTE Simpliicación de unciones
Circuitos combinacionales. Funciones integradas
Circuitos combinacionales. Funciones integradas Salvador Marcos González [email protected] Funciones integradas Introducción La introducción en el diseño de sistemas digitales de circuitos MSI (media
D.I.I.C.C Arquitectura de Sistemas Computacionales
CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra
Algebra de Boole y puertas lógicas
Algebra de Boole y puertas lógicas Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Postulados y propiedades fundamentales del Álgebra de Boole Funciones
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO fdsfdsdfsdfsdf EN INGENIERÍA INFORMÁTICA OBJETIVOS Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo de la instrumentación
Tema 2. Funciones Lógicas. Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL.
Tema 2. Funciones Lógicas Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL. Minimización de Funciones Lógicas Minimización en dos niveles. Mapas de Karnaugh de 3 y 4 variables.
Tema 5: Álgebra de Boole Funciones LógicasL
Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole
Definición SISTEMAS LÓGICOS UNIDAD 2: Álgebra De Boole Comenzaremos definiendo el Álgebra de Boole como el conjunto de elementos B que puede asumir dos valores posibles (0 y 1) y que están relacionados
UNIDAD 4. Algebra de Boole
UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados
Operación de circuitos lógicos combinatorios.
Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes
TEMA 4. Diseño de Sistemas Combinacionales SSI.
Fundamentos de los Computadores. Sistemas Combinacionales T4-1 TEMA 4. Diseño de Sistemas Combinacionales SSI. INDICE: SISTEMAS COMBINACIONALES METODOLOGÍA DE DISEÑO MÉTODOS DE SIMPLIFICACIÓN o MAPAS DE
ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON
ÁLGEBRA DE BOOLE El Algebra de Boole es importante pues permite representar matemáticamente el funcionamiento de los circuitos digitales. Los circuitos digitales son capaces de permanecer en 2 estados,
decir de las funciones f g. Posteriormente se obtienen los términos independientes
4.8. EJERCICIOS DEL CAPÍTULO 157 decir de las funciones f g. Posteriormente se obtienen los términos independientes para cada función. fg2, 3 =dcb f4, 5, 6, 7 =dc f0, 2, 4, 6 =da g0, 2, 8, 10 =ca g2, 6,
Tema 5: Álgebra de Boole Funciones LógicasL
Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las
ALGEBRA BOOLEANA (ALGEBRA LOGICA)
ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un
Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas
Electrónica Digital Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández 2001 Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas UNIVERSIDAD DE LA LAGUNA ii ÍNDICE Lección 0. Introducción...1
Diseño combinacional (Parte #2) Mapas de Karnaugh
Departamento de Electrónica Electrónica Digital Diseño combinacional (Parte #2) Mapas de Karnaugh Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos Procedimiento de diseño de un circuito
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
Álgebra de BOOLE. Tema 4
Álgebra de BOOLE Tema 4 1. Definición formal del álgebra de Boole. 2. Leyes y reglas del álgebra de Boole. 3. Operaciones y expresiones booleanas. 4. Formas canónicas de las expresiones booleanas. 5. Expresiones
circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007
Oliverio J. Santana Jaria Sistemas Digitales 8. Análisis lógico l de los circuitos digitales Ingeniería Técnica en Informática de Sistemas Los Curso 26 27 El conjunto circuitos de puertas digitales lógicas
ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ
ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ Sistemas Numéricos 1.-Sistema Numérico. a) Definición: Llamaremos sistema numéricos base M el conjunto de M símbolos que nos sirven
Álgebra de Boole A p u n te N 3
Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL
IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL
Funciones Lógicas Y Métodos De Minimización
Circuitos Digitales I Tema III Funciones Lógicas Y Métodos De Minimización Luis Tarazona, UNEXPO Barquisimeto EL-3213 Circuitos Digitales I - 2004 75 Funciones lógicas Circuito combinacional: Un circuito
Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes:
Función booleana Se denomina función lógica o booleana a aquella función matemática cuyas variables son binarias y están unidas mediante los operadores del álgebra de Boole suma lógica (+), producto lógico
INSTRUCTOR: ANTONIO JOSÉ AVILÉS CLARAMOUNT
DEPTO. DE ELECTRÓNICA E INFORMÁTICA MATERIA: ELECTRONICA DIGITAL PROFESOR: ING. DAVID CÓRDOVA CICLO 02/20 11 PRÁCTICA No. 2 ÁLGEBRA DE BOOLE. POSTULADOS Y TEOREMAS OBJETIVOS: Conocer y aprender a utilizar
Control y programación de sistemas automáticos: Algebra de Boole
Control y programación de sistemas automáticos: Algebra de Boole Se denomina así en honor a George Boole, matemático inglés 1815-1864, que fue el primero en definirla como parte de un sistema lógico, a
3. Prácticas: Simplificación de funciones
3. Prácticas: Simplificación de funciones I. Ejercicios teóricos 1. Representar en un mapa de Karnaugh la siguiente función 2. Representar en un mapa de Karnaugh la siguiente función 3. Representar en
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B
Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
DISEÑO DE CIRCUITOS SECUENCIALES
DISEÑO DE CIRCUITOS SECUENCILES Circuitos Digitales EC1723 Diseño de circuitos secuenciales (1) partir del enunciado del problema, construir el diagrama de estados y/o la tabla de estados y salidas. Determinar
TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.
TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Codificación de la información. Codificación consiste en representar los elementos de un conjunto mediante los elementos de otro conjunto.
Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides
Álgebra Booleana y Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación
Tema 3 : Algebra de Boole
Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales
plicación de los circuitos SUMADOR DIBITAL S C
plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. Programa Analítico de la Asignatura: SISTEMAS LÓGICOS Código: E-3.23.2 Plan de Estudio: 1996 Carrera: INGENIERÍA ELECTRICISTA Departamento:
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN
I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO
1. FUNCIÓN LÓGICA O BOOLEANA TABLA DE LA VERDAD DE UNA FUNCIÓN LÓGICA FUNCIONES LÓGICAS BASICAS FUNCIÓN IGUALDAD...
ÁLGEBR DE BOOLE INDICE. 1. FUNCIÓN LÓGIC O BOOLEN.... 1 2. TBL DE L VERDD DE UN FUNCIÓN LÓGIC... 3 3. FUNCIONES LÓGICS BSICS.... 5 3.1.FUNCIÓN IGULDD.... 5 3.2.FUNCIÓN NEGCIÓN.... 6 3.3.FUNCIÓN UNIÓN....
SISTEMAS DE NUMERACION
SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9
BOLETIN 3: Análisis y diseño de circuitos combinacionales
BOLETIN 3: Análisis diseño de circuitos combinacionales Problemas básicos P. Analice los siguientes circuitos combinacionales. Para ello, se deberá encontrar la unción algebraica que representan, su tabla
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
CIRCUITOS DIGITALES -
CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:
I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).
I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009
ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.
INDICE. XVII 0 Introducción 0.1. Historia de la computación
INDICE Prefacio XVII 0 Introducción 0.1. Historia de la computación 1 0.1.1. Los inicios: computadoras mecánicas 0.1.2. Primeras computadoras electrónicas 0.1.3. Las primeras cuatro generaciones de computadoras
Algebra de Boole Introducción a los Sistemas Lógicos y Digitales 2008 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales
lgebra de Boole Introducción n a los Sistemas Lógicos y Digitales 28 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 28 lgebra de Boole Los sistemas digitales emplean generalmente señales
Unidad Didáctica Electrónica Digital 4º ESO
Unidad Didáctica Electrónica Digital 4º ESO ÍNDICE 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN 3. PUERTAS LÓGICAS 4. FUNCIONES LÓGICAS 1.- Introducción Señal analógica. Señal digital Una señal analógica
Tema 9. SISTEMAS COMBINACIONALES PROGRAMABLES SISTEMAS COMBINACIONALES PROGRAMABLES NO UNIVERSALES
Fundamentos de Computadores. Sistemas Combinacionales Programables. T9-1 Tema 9. SISTEMAS COMBINACIONALES PROGRAMABLES INDICE: INTRODUCCIÓN CLASIFICACION DE LOS SCP SISTEMAS COMBINACIONALES PROGRAMABLES
HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS
f Universidad Rey Juan Carlos Grado en Ingeniería Informática Fundamentos de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar
DOCENTE: JESÚS E. BARRIOS P.
DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos
Electrónica II. Carrera. Electromecánica EMM UBICACIÓN DE LA ASIGNATURA a) Relación con otras asignaturas del plan de estudios.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la asignatura Horas teoría-horas práctica-créditos Electrónica II Electromecánica EMM-0516 3-2-8 2. HISTORIA DEL PROGRAMA Lugar y fecha
Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Álgebra Booleana Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Krscia Daviana Ramíre Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.
Tema 3: Representación y minimización de
Tema 3: Representación y minimización de funciones lógicas 3.. Teoremas y postulados del álgebra de Boole Definiciones El álgebra de Boole se utiliza para la resolución de problemas de tipo lógico-resolutivo,
28 = 16 + 8 + 4 + 0 + 0 = 11100 1
ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos
Matemáticas Discretas TC1003
Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo
DIAGRAMAS DE FLUJOS DE SEÑALES
CAPÍTULO VII INGENIERÍA DE SISTEMAS I DIAGRAMAS DE FLUJOS DE SEÑALES La metodología del enfoque de sistemas establece una secuencia lógica para la solución de la problemática de sistemas complejos por
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios
CLASE GRAFOS Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios libros por lo que está prohibida su impresión
