El problema de satisfacción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El problema de satisfacción"

Transcripción

1 El problema de satisfacción Definición Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que σ(σ) = 1. En caso contrario, Σ es inconsistente. IIC2213 Lógica Proposicional 33 / 42

2 El problema de satisfacción Definición Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que σ(σ) = 1. En caso contrario, Σ es inconsistente. Existe una estrecha relación entre las nociones de consecuencia lógica y satisfacibilidad. Teorema Σ = ϕ si y sólo si Σ { ϕ} es inconsistente. IIC2213 Lógica Proposicional 33 / 42

3 El problema de satisfacción Definición Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que σ(σ) = 1. En caso contrario, Σ es inconsistente. Existe una estrecha relación entre las nociones de consecuencia lógica y satisfacibilidad. Teorema Σ = ϕ si y sólo si Σ { ϕ} es inconsistente. Ejercicio Demuestre el teorema. IIC2213 Lógica Proposicional 33 / 42

4 El problema de satisfacción El teorema anterior nos permite reducir el problema de verificar si Σ = ϕ al problema de verificar si Σ { ϕ} es inconsistente. Ejercicio Demuestre que la reducción inversa también es posible. Vale decir, encuentre una fórmula ψ tal que Σ es satisfacible si y sólo si Σ = ψ. Entonces, si tenemos un algoritmo para uno de los problemas, lo tenemos para el otro. Cómo verificamos si una fórmula es satisfacible? IIC2213 Lógica Proposicional 34 / 42

5 Otra noción útil Definición Una fórmula ϕ es una tautología si para cada valuación σ se tiene que σ(ϕ) =1. Ejemplo p p IIC2213 Lógica Proposicional 35 / 42

6 Otra noción útil Definición Una fórmula ϕ es una tautología si para cada valuación σ se tiene que σ(ϕ) =1. Ejemplo p p Ejercicio Sea Σ un conjunto finito de fórmulas. Demuestre que el problema de verificar si Σ = ϕ puede reducirse al problema de verificar si una fórmula es una tautología. IIC2213 Lógica Proposicional 35 / 42

7 Otra noción útil Definición Una fórmula ϕ es una tautología si para cada valuación σ se tiene que σ(ϕ) =1. Ejemplo p p Ejercicio Sea Σ un conjunto finito de fórmulas. Demuestre que el problema de verificar si Σ = ϕ puede reducirse al problema de verificar si una fórmula es una tautología. Puede ser Σ infinito? Qué sucede en este caso? IIC2213 Lógica Proposicional 35 / 42

8 Teorema de compacidad Definición Un conjunto de fórmulas Σ es finitamente satisfacible si cada subconjunto finito de Σ es satisfacible. Ejemplo El conjunto Σ = {p 0 } {p i p i+1 i N} es finitamente satisfacible. Es Σ satisfacible? IIC2213 Lógica Proposicional 36 / 42

9 Teorema de compacidad Definición Un conjunto de fórmulas Σ es finitamente satisfacible si cada subconjunto finito de Σ es satisfacible. Ejemplo El conjunto Σ = {p 0 } {p i p i+1 i N} es finitamente satisfacible. Es Σ satisfacible? Teorema (Compacidad) Un conjunto de fórmulas es satisfacible si y sólo si es finitamente satisfacible. IIC2213 Lógica Proposicional 36 / 42

10 Teorema de compacidad: Demostración Necesitamos el siguiente lema: Lema Sea Σ L(P) finitamente satisfacible y p P. Entonces Σ {p} es finitamente satisfacible o Σ { p} es finitamente satisfacible. Pueden ser ambos finitamente satisfacibles? IIC2213 Lógica Proposicional 37 / 42

11 Teorema de compacidad: Demostración Necesitamos el siguiente lema: Lema Sea Σ L(P) finitamente satisfacible y p P. Entonces Σ {p} es finitamente satisfacible o Σ { p} es finitamente satisfacible. Pueden ser ambos finitamente satisfacibles? Ejercicio Demuestre el lema. IIC2213 Lógica Proposicional 37 / 42

12 Teorema de compacidad: Demostración Ahora vamos a demostrar la dirección del teorema. La otra dirección es trivial. ( ) SupongaqueP = {p i i 1} ydefinaunasucesión{ i } i N de conjuntos de literales: Caso base: 0 =. Para i N: { i {p i+1 } i+1 = i { p i+1 } Σ i {p i+1 } es finitamente satisfacible en caso contrario Finalmente: = i N i IIC2213 Lógica Proposicional 38 / 42

13 Teorema de compacidad: Demostración Para cada p i P: p i i o p i i, pero no ambas. Por lo tanto: Existe una única valuación σ que satisface a. Vamos a demostrar que esta valuación satisface a Σ. Por contradicción: Suponga que σ(σ) = 0. Entonces existe ϕ Σ tal que σ(ϕ) =0. Suponga que ϕ contiene n variables proposicionales y que p k es la de mayor índice. IIC2213 Lógica Proposicional 39 / 42

14 Teorema de compacidad: Demostración Tenemos que considerar dos casos. σ(p k )=1:entonces {ϕ} k 1 {p k } es inconsistente. Entonces: Σ k 1 {p k } no es finitamente satisfacible y p k k. Contradicción: k yσ(p k )=1. σ(p k )=0:entonces {ϕ} k 1 { p k } es inconsistente. Entonces: Σ k 1 {p k } es finitamente satisfacible (por lema) y p k k. Contradicción: k yσ(p k )=0. IIC2213 Lógica Proposicional 40 / 42

15 Teorema de compacidad y consecuencia lógica Corolario Σ = ϕ si y sólo si existe un subconjunto finito Σ de Σ tal que Σ = ϕ. IIC2213 Lógica Proposicional 41 / 42

16 Teorema de compacidad y consecuencia lógica Corolario Σ = ϕ si y sólo si existe un subconjunto finito Σ de Σ tal que Σ = ϕ. Ejercicio Demuestre el corolario. IIC2213 Lógica Proposicional 41 / 42

17 Una aplicación del teorema de compacidad Ejercicio Sea G =(N, A) un grafo no dirigido tal que para todo subgrafo finito G de G, setienequeg es 3-coloreable. Utilice el teorema de compacidad para demostrar que G es 3-coloreable. IIC2213 Lógica Proposicional 42 / 42

Resolución Proposicional

Resolución Proposicional Resolución Proposicional IIC2213 IIC2213 Resolución Proposicional 1 / 19 Resolución proposicional Sabemos que Σ = ϕ si y sólo si Σ { ϕ} es inconsistente. Cómo verificamos si Σ { ϕ} es inconsistente? El

Más detalles

El sistema deductivo de Hilbert

El sistema deductivo de Hilbert El sistema deductivo de Hilbert IIC2213 IIC2213 El sistema deductivo de Hilbert 1 / 17 Completidad de resolución proposicional Qué tenemos que agregar a nuestro sistema de deducción para que sea completo?

Más detalles

Teorema de incompletitud de Gödel

Teorema de incompletitud de Gödel Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. IIC2213 Teorías 79 / 109 Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. Corolario

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

Lógica Proposicional IIC2212. IIC2212 Lógica Proposicional 1 / 56

Lógica Proposicional IIC2212. IIC2212 Lógica Proposicional 1 / 56 Lógica Proposicional IIC2212 IIC2212 Lógica Proposicional 1 / 56 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos

Más detalles

Lógica de primer orden: Repaso y notación

Lógica de primer orden: Repaso y notación Lógica de primer orden: Repaso y notación IIC3263 IIC3263 Lógica de primer orden: Repaso y notación 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre

Más detalles

Teoría de Modelos Finitos: Motivación

Teoría de Modelos Finitos: Motivación Teoría de Modelos Finitos: Motivación IIC3260 IIC3260 Teoría de Modelos Finitos: Motivación 1 / 29 Poder expresivo de una lógica: Caso finito Desde ahora en adelante nos vamos a concentrar en las estructuras

Más detalles

Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64

Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64 Lógica Proposicional IIC1253 IIC1253 Lógica Proposicional 1/64 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

El sistema de Hilbert: Lógica de Primer Orden

El sistema de Hilbert: Lógica de Primer Orden El sistema de Hilbert: Lógica de Primer Orden El sistema de deducción de Hilbert para la lógica de primer orden consta de los siguientes elementos: IIC2213 Lógica de Primer Orden 55 / 65 El sistema de

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Lógica Proposicional. Significado de una Fórmula Proposicional

Lógica Proposicional. Significado de una Fórmula Proposicional Proposicional Semántica Semántica Proposicional - Significado de una Fórmula Proposicional El significado de una proposición está dado por su valor de verdad (o sea, si es Verdadera o Falsa) que se obtiene

Más detalles

Lógica de proposiciones

Lógica de proposiciones 1 Introducción Lenguaje lógico simbólico más sencillo. Permite representar sentencias simples del lenguaje natural mediante formulas atómicas, cuya composición representa sentencias más complejas: p temperatura

Más detalles

Introducción a la Complejidad Computacional

Introducción a la Complejidad Computacional Introducción a la Complejidad Computacional IIC2213 IIC2213 Introducción a la Complejidad Computacional 1 / 111 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Eliminación de cuantificadores

Eliminación de cuantificadores Eliminación de cuantificadores Teorema Si una teoría admite eliminación de cuantificadores, y existe un algoritmo que construye ϕ sc a partir de ϕ, entonces es decidible. Cómo se demuestra este teorema?

Más detalles

Lógica Proposicional (LP)

Lógica Proposicional (LP) Lógica Proposicional (LP) Proposición Enunciado del que puede afirmarse si es verdadero o falso Oración declarativa Cuáles de las siguientes son proposiciones? ) Pedro es alto. 2) Juan es estudiante. 3)

Más detalles

Clases de complejidad computacional: P y NP

Clases de complejidad computacional: P y NP 1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).

Más detalles

Lógica Proposicional Lenguaje Proposicional Implicación semántica

Lógica Proposicional Lenguaje Proposicional Implicación semántica Capítulo 1 Lógica Proposicional 1.1. Lenguaje Proposicional Un lenguaje proposicional consta de los siguientes símbolos: las proposicones atómicas, también llamados enunciados atómicos o simplemente variables

Más detalles

Extensión de medidas

Extensión de medidas Extensión de medidas Problemas para examen Semianillos de conjuntos 1. Escriba la definición de semianillo de conjuntos. 2. Convenio: el conjunto vacío pertenece a cualquier semianillo. En los siguientes

Más detalles

Teoría de la Computación puesta en Práctica

Teoría de la Computación puesta en Práctica Teoría de la Computación puesta en Práctica Marcelo Arenas M. Arenas Teoría de la Computación puesta en Práctica 1 / 24 Problema a resolver WiMAX (Worldwide Interoperability for Microwave Access): estándar

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Tema 6: Teoría Semántica

Tema 6: Teoría Semántica Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad

Más detalles

Cardinalidad IIC1253. IIC1253 Cardinalidad 1 / 23

Cardinalidad IIC1253. IIC1253 Cardinalidad 1 / 23 Cardinalidad IIC1253 IIC1253 Cardinalidad 1 / 23 Conjuntos con la misma cardinalidad Definición Decimos que dos conjuntos A y B son equinumerosos, denotado como A B, si existe una biyección f : A B. IIC1253

Más detalles

Juegos de Ehrenfeucht-Fraïssé

Juegos de Ehrenfeucht-Fraïssé Juegos de Ehrenfeucht-Fraïssé IIC3263 IIC3263 Juegos de Ehrenfeucht-Fraïssé 1/65 Terminología Restricción Recuerde que en este curso consideramos vocabularios sin funciones. De hecho, inicialmente nos

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Motivación: la complejidad de algunos problemas

Motivación: la complejidad de algunos problemas Motivación: la complejidad de algunos problemas IIC3810 IIC3810 Motivación: la complejidad de algunos problemas 1 / 16 El problema de factorización de números naturales Factorizar un número natural n consiste

Más detalles

Sistema Axiomático para el Cálculo Proposicional

Sistema Axiomático para el Cálculo Proposicional Sistema Axiomático para el Cálculo Proposicional Lógica Matemática José de Jesús Lavalle Martínez 12 de julio de 2011 Resumen Este documento es una traducción de partes de la sección 1.4 AN AXIOM SYSTEM

Más detalles

Tema 6. Métodos de decisión

Tema 6. Métodos de decisión Lógica I (curso 2007-08) Prof. Paloma Pérez-Ilzarbe Tema 6. Métodos de decisión Objetivos: - Comprender las nociones de "decidibilidad" y "método de decisión", y comprender el interés de que la lógica

Más detalles

Lógica Clásica Proposicional

Lógica Clásica Proposicional Lógica Clásica Proposicional Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis Alfabeto Fórmulas bien formadas Funciones recursivas

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Repaso de Lógica de Primer Orden

Repaso de Lógica de Primer Orden Repaso de Lógica de Primer Orden IIC3260 IIC3260 Repaso de Lógica de Primer Orden 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre algunas constantes

Más detalles

Lógica modal. Ramon Jansana. Universitat de Barcelona

Lógica modal. Ramon Jansana. Universitat de Barcelona Lógica modal Ramon Jansana Universitat de Barcelona Índice general Capítulo 1. Introducción 5 Capítulo 2. El lenguaje de la lógica modal 9 1. Vocabulario 9 2. Definición de fórmula 9 3. Instancias de

Más detalles

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD 2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer

Más detalles

Ejercicios de lógica

Ejercicios de lógica 1. Sistemas formales. Ejercicios de lógica 1. Considere el siguiente sistema formal: Símbolos: M, I, U. Expresiones: cualquier cadena en los símbolos. Axioma: UMUIUU Regla de inferencia: xmyiz xumyuizuu

Más detalles

Teoremas que se derivan de las ecuaciones de Poisson y Laplace.

Teoremas que se derivan de las ecuaciones de Poisson y Laplace. c Rafael R. Boix y Francisco Medina Teoremas que se derivan de las ecuaciones de Poisson y Laplace. Identidades de Green Consideremos dos campos escalares u = u(r) y v = v(r).teniendo en cuenta que se

Más detalles

Multiplicación de matrices simétricas

Multiplicación de matrices simétricas Multiplicación de matrices simétricas La traspuesta de una matriz A n n es definida como una matriz A T n n tal que A T [i, j] =A[j, i] paracadai, j 2{1,...,n} Además, una matriz A es simétrica si A =

Más detalles

Cuadrados mágicos y matrices de permutación

Cuadrados mágicos y matrices de permutación Cuadrados mágicos y matrices de permutación Alexey Beshenov ([email protected]) 13 de agosto de 016 Estos son mis apuntes para una pequeña presentación para los alumnos del Programa Jóvenes Talento de la

Más detalles

Teoría de grafos. Coloración de vértices

Teoría de grafos. Coloración de vértices Teoría de grafos Coloración de vértices Problema: cuántas jaulas son necesarias para transportar a estos cinco animales de forma que lleguen sanos y salvos a un mismo destino? León Hámster Si dos animales

Más detalles

Tema 3 Equivalencia. Formas normales.

Tema 3 Equivalencia. Formas normales. Tema 3 Equivalencia. Formas normales. Lógica Proposicional Antonio de J. Pérez Jiménez Departamento Ccia. Lógica Informática Antonio de J. Pérez Jiménez (Departamento Ccia.) Tema 3 Equivalencia. Formas

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

Escenas de episodios anteriores

Escenas de episodios anteriores Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Métodos de Demostración Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Métodos de Demostración Matemáticas Discretas - p. 1/13 Introducción En esta sección

Más detalles

Bases Formales de la Computación

Bases Formales de la Computación Modal Bases Formales de la Computación Pontificia Universidad Javeriana 3 de abril de 2009 Modal LÓGICAS MODALES Contenido Modal 1 Modal 2 3 Qué es la lógica Modal? Modal Variedad de diferentes sistemas

Más detalles

Lógica I modelo de examen (curso ) Ejemplo de respuestas

Lógica I modelo de examen (curso ) Ejemplo de respuestas Lógica I modelo de examen (curso 2007-08) Ejemplo de respuestas 1. Definiciones: - Grado de una fórmula es el número total de conectivas (iguales o distintas) que contiene. - Función de verdad es una función

Más detalles

Tema 1: Sintaxis y Semántica de la Lógica Proposicional

Tema 1: Sintaxis y Semántica de la Lógica Proposicional Tema 1: Sintaxis y Semántica de la Lógica Proposicional Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Lógica Proposicional

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

Tema 2: Equivalencias y formas normales

Tema 2: Equivalencias y formas normales Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Matemáticas Dicretas LÓGICA MATEMÁTICA

Matemáticas Dicretas LÓGICA MATEMÁTICA Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD 2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer

Más detalles

Métodos de Inteligencia Artificial

Métodos de Inteligencia Artificial Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica

Más detalles

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N:

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N: R no es enumerable Por contradicción, supongamos que existe una biyección f : N! R. I Vamos a obtener una contradicción usando el método de diagonalización de Cantor. Para cada i 2 N: f (i) = n i.d i,0

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Diagnóstico de fallas en circuitos digitales

Diagnóstico de fallas en circuitos digitales Diagnóstico de fallas en circuitos digitales Circuito digital: Construido usando las siguientes compuertas. NOT: OR: AND: 1 Ejemplo: Sumador binario Un sumador binario recibe como entrada dos bits a y

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

Pablo Cobreros [email protected]. Tema 7. Cuatro teoremas de la lógica de primer orden

Pablo Cobreros pcobreros@unav.es. Tema 7. Cuatro teoremas de la lógica de primer orden Lógica II Pablo Cobreros [email protected] Tema 7. Cuatro teoremas de la lógica de primer orden Introducción Introducción La existencia de modelos Introducción La existencia de modelos: preliminares La

Más detalles

Matrices de Proyección

Matrices de Proyección Matrices de Proyección Departamento de Matemáticas, CSI/ITESM 4 de abril de 8 Índice.. Proyección ortogonal............................................ Proyección de un vector en R m....................................

Más detalles

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 35 Por qué estudiamos

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Tema 2: Métodos de Deducción para la Lógica Proposicional

Tema 2: Métodos de Deducción para la Lógica Proposicional Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Métodos de Deducción

Más detalles

Geometría convexa y politopos, día 2

Geometría convexa y politopos, día 2 Geometría convexa y politopos, día 2 Alexey Beshenov ([email protected]) 9 de agosto de 2016 2. La envolvente convexa 2.1. Definición. Si X R n es cualquier conjunto, entonces la envolvente convexa de X

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

RSA: Implementación. Ya resolvimos (3), ahora vamos a resolver (2). IIC3242 Complejidad Probabiĺıstica 28 / 77

RSA: Implementación. Ya resolvimos (3), ahora vamos a resolver (2). IIC3242 Complejidad Probabiĺıstica 28 / 77 RSA: Implementación Para poder implementar RSA necesitamos algoritmos eficientes para los siguientes problemas: (1) Generar primos P y Q (2) Generar números e y d tales que e d modφ(n) = 1 (3) Calcular

Más detalles

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares Lenguaje Regular Capítulo 8: Propiedades de los Lenguajes Regulares José Miguel Buenaposada [email protected] Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si

Más detalles

Nudos y funciones de Morse II. December 8, 2014

Nudos y funciones de Morse II. December 8, 2014 Nudos y funciones de Morse II December 8, 2014 Variedades diferenciables Una C q -variedad, para q [0, ], es una variedad topológica M con un atlas que satisface la condición de ser C q, lo que significa

Más detalles

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal Solución Asignación 9. Universidad de Puerto Rico Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan Puerto Rico MATE 4032: Álgebra Abstracta 1. Suponga que I J son ideales

Más detalles

LOGICA Y ALGORITMOS. Profesores: Raúl Kantor Ana Casali. Año LyA-Proposiciones 1

LOGICA Y ALGORITMOS. Profesores: Raúl Kantor Ana Casali. Año LyA-Proposiciones 1 LOGICA Y ALGORITMOS Profesores: Raúl Kantor Ana Casali Año 2003 1 LOGICA Y ALGORITMOS Módulos Cardinalidad y conjuntos inductivos!lógica: proposicional y de er orden ormalismos de cálculo: R y L Lenguajes

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos...

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos... Contenido Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix Parte I Fundamentos... 1 Capítulo I Lógica, conjuntos e inducción... 2 1.1 Introducción... 4 1.2

Más detalles

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación.

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación. Estructuras Discretas Teoremas Técnicas de demostración Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 15 Definición: teorema

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Ejercicios de Lógica Proposicional *

Ejercicios de Lógica Proposicional * Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos

Más detalles

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales.

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Anuladores Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Requisitos. Espacio dual, espacio bidual, base dual.. Definición (anulador de un subconjunto de un espacio

Más detalles

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular: Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio,

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1],

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1], Capítulo 4 Convexidad 1. Conjuntos convexos En este capítulo estudiaremos el concepto de convexidad, el cual es sumamente importante en el análisis. Estudiaremos conjuntos convexos y funcionesconvexas

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles