Lógica de proposiciones
|
|
|
- Óscar Calderón Torres
- hace 9 años
- Vistas:
Transcripción
1 1 Introducción Lenguaje lógico simbólico más sencillo. Permite representar sentencias simples del lenguaje natural mediante formulas atómicas, cuya composición representa sentencias más complejas: p temperatura alta q nivel bajo r cerrar by-pass salida ((p q) r) Si la temperatura está alta y el nivel es bajo, cerrar el by-pass de salida Aporta: Lenguaje de representación simbólico Calculo de valores de verdad: la valor de verdad de una sentencia compuesta se obtiene a partir del valor de verdad de las sentencias que la constituyen Deducción: métodos para inferir nuevas fórmulas 2 Lenguaje de la lógica proposicional 2.1 Sintaxis Alfabeto proposicional: AP = SP CL SA Símbolos Proposicionales, SP: p, q, r,..., t (pueden variar; típicamente, alfabeto contable) Conectores Lógicos, CL: negación lógica no conjunción lógica y disyunción lógica o condición lógica implica bi-condición lógica si y solo si Símbolos Auxiliares, SA: ( ) SP, CL y SA han de ser disjuntos dos a dos. Def Fórmula Atómica o Átomo. Se denomina Fórmula Atómica a cualquier símbolo proposicional. Def Fórmula Bien Formada (FBF). Las FBF s se definen inductivamente por: 1. Una formula Atómica es una FBF. 2. Si α es una FBF, ( α) es una FBF. 3. Si α y β son FBF s (α β), (α β), (α β), (α β) son FBF s. 4. El conjunto de FBF s es el cierre transitivo del conjunto de fórmulas atómicas con las leyes 1), 2) y 3). Conjunto de FBF s: Lenguaje proposicional sobre AP: L AP (L si AP fijo). FBF s: (p (q r)) ((p q) r) no FBF s: (p ) (p r) 1
2 El uso de paréntesis se puede reducir con los convenios: asociatividad: de izquierda a derecha prioridad (creciente):,,,, 2.2 Semántica Def Interpretación. Se denomina interpretación (sobre SP), I, a una función que asigna a cada fórmula atómica un valor de verdad. I: SP ---> {T, F} Def Evaluación de FBF s A partir de I, se define de forma única una función de evaluación de FBF s, V: L AP ---> {T, F}, de la siguiente forma: 1. Si p es un átomo, V(p)=I(p) 2. Si α es una FBF, V( α): T si V(α)= F; F si V(α)= T 3. Si α y β son FBF s, V(α β)= T si V(α)=V(β)=T; F en otro caso V(α β)= F si V(α)=V(β)=F; T en otro caso V(α β)= F si V(α)=T y V(β)=F; T en otro caso V(α β)= T si V(α)=V(β); T en otro caso Se dice que α es cierta bajo I, o que I satisface α sii V(α)= T, donde V se define a partir de I según def En caso contrario, se dice que α es falsa bajo I 3 Modelo, Consistencia, Validez y Satisfacibilidad. 3.1 Modelo, Consistencia y Validez Def Modelo. Una interpretación, I, es un modelo de una FBF, α, sii V(α)=T Una interpretación, I, es un modelo de un conjunto finito de FBF s, Ω={α 1, α 2,... modelo de todo α i Ω., α n } sii I es un α (p q) cualquier I con I(p)=I(q)=T es un modelo de α. Ω={p, q} cualquier I con I(p)=I(q)=T es un modelo de Ω. Def Consistencia. Una FBF, α, es consistente o satisfacible sii tiene un modelo. Un conjunto finito de FBF s, Ω, es consistente o satisfacible sii tiene un modelo. α ((p q) r) es consistente, pues cualquier I con I(p)=I(q)=I(r)= F es un modelo para α 2
3 Def 3.3 Inconsistencia. Una FBF, α, es inconsistente o insatisfacible sii no es consistente. Un conjunto finito de FBF s, Ω, es consistente o satisfacible sii no es consistente. β (p p) es inconsistente γ ((p q) (p q)) es inconsistente Def Validez. Una FBF, α, es valida o tautológica sii α es cierta bajo todas las interpretaciones de SP. α (p p) β (p (p q)) γ (p (p q)) es una fórmula válida es una fórmula válida no es válida Inconsistentes Siempre F Consistentes T o F Validas Siempre T Relación entre Fórmulas consistentes, inconsistentes y validas. 3.2 Satisfacibilidad Def Problema de la satisfacibilidad. Se denomina problema de la satisfacibilidad a demostrar la consistencia (o inconsistencia) de un conjunto finito de fórmulas. Métodos semánticos para probar en lógica porposicional: consistencia: obtener interpretación inconsistencia y validez: tablas de verdad, refutación. Para probar por refutación la inconsistencia de γ ((p q) (p q)), suponer que existe una I tal que V(γ)=T. Ello lleva a que V(p q)=v(p q)=t y la demostración ya es inmediata. Para probar por el método de las tablas de verdad la inconsistencia de γ ((p q) (p q)), hay que considerar 2 3 interpretaciones, y una tabla con 7 entradas. El método siempre es aplicable, pero puede ser muy costoso: si tenemos n símbolos proposicionales, hay 2 n interpretaciones distintas. Def Lógica decidible. Una lógica es decidible si el problema de la satisfacibilidad es computable en dicha lógica. Es decir, si podemos dar un procedimiento de computo que para cualquier conjunto finito de FBF s como entrada, termine indicando su consistencia o inconsistencia. La lógica proposicional es decidible, pues siempre se puede recurrir al método de las tablas de verdad. Pero el problema tiene una complejidad no-polinomial (NP), con un comportamiento asintótico O(2 n ) en el tiempo. 3
4 4 Equivalencia Def. 4.1 Equivalencia. Dos FBF s α y β son equivalentes, y se denota por α = β, sii α y β tienen los mismos valores de verdad bajo cualquier interpretación I. 4.1 Leyes de equivalencia Denotamos por α,β y γ FBF s; por una FBF inconsistente; por una FBF válida. 1 (α β) = (α β) (β α) Eliminación del bí-condicional 2 (α β) = ( α β) Eliminación del condicional 3 (α β) = (β α) Conmutativa (α β) = (β α) 4 ((α β) γ) = (α ( β γ)) Asociativa 5 (α ( β γ) ) = ( (α β) (α β) ) Distributiva respecto (α ( β γ) ) = ( (α β) (α β) ) 6 (α ) = α Absorción (α ) = α 7 (α α) = Contradicción (α ) = 8 (α α) = Exclusión de los medios (α ) = 9 (α α) = α (α α) = α Idempotencia 10 ( α) = α Doble negación 11 (α β) = α β De Morgan (α β) = α β Las leyes se demuestran utilizando las tablas de verdad o bien examinando las valores de la función de evaluación, V, sobre las formulas que relaciona cada ley. 5 Consecuencia lógica Def. 5.1 Consecuencia Lógica. Sean α, α 1, α 2,..., α n FBF s. Se dice que α es una consecuencia lógica de las premisas α 1, α 2,..., α n y se denota por α 1, α 2,..., α n = α sii todo modelo de {α 1, α 2,..., α n } es un modelo de α. Sea Ω un conjunto finito de FBF s. Se dice que α es una consecuencia lógica de Ω, y se denota Ω = α, sii α es una consecuencia lógica de una secuencia de formulas de Ω. α 1 p q α 2 p α q α 1, α 2 = α V(p) V(p q) V(q) T T T T F F F T T F T F 4
5 Teorema de Refutación Sean α, α 1, α 2,..., α n FBF s. Las siguientes expresiones son equivalentes 1. α 1, α 2,..., α n = α 2. ((α 1 α 2... α n ) α) es una tautología 3. (α 1 α 2... α n α) es inconsistente La demostración es sencilla procediendo, por ejemplo, 3) 2) 1) 3). Interés del teorema: 3) nos proporciona un método para comprobar si una fórmula es consecuencia lógica de unas premisas (métodos de demostración por refutación). 5
Lógica de Primer Orden
Lógica de Primer Orden 1 Introducción El hecho de que las fórmulas atómicas representen proposiciones simples y no se pueda acceder a los elementos de la proposición, restringe la capacidad expresiva de
2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es
Tema 2. Introducción a la lógica 1. Introducción 2. Lógica de proposiciones 1. Definiciones 2. Sintaxis 3. Semántica Bibliografía Matemática discreta y lógica. Grassman y Tremblay. 1997. Prentice Hall.
Lógica Clásica Proposicional
Lógica Clásica Proposicional Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis Alfabeto Fórmulas bien formadas Funciones recursivas
Matemáticas Dicretas LÓGICA MATEMÁTICA
Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.
Lógica de proposiciones (5)
Lógica de proposiciones (5) Fundamentos de Informática I I..I. Sistemas (2005-06) César Llamas Bello Universidad de Valladolid 1 Lógica Índice Lógica proposicional ecuacional Lógica: semántica Semántica
Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid
LÓGICA FORMAL Lógica Proposicional: Teorema de Efectividad Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional 1 La lógica proposicional
Lógica y Programación
Lógica y Programación Sintaxis y semántica de la lógica proposicional Antonia M. Chávez, Carmen Graciani, Agustín Riscos Dpto. Ciencias de la Computacion e Inteligencia Artificial Universidad de Sevilla
Lógica Proposicional: Semántica
LÓGICA - 1º Grado en Ingeniería Informática Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional: Semántica Andrei Paun [email protected] http://web3.fi.upm.es/aulavirtual/ Despacho
Tema 2: Teoría de la Demostración
Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración
Sistemas Deductivos. Sistemas Deductivos
Sistemas Deductivos Naturaleza sintáctica, combinatoria En general axiomas + reglas de inferencia teorema Demostración o prueba: secuencia finita de pasos, de aplicaciones de reglas de inferencia. Conexión
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Axiomas y reglas de inferencia Reglas de la impliación, conjunción y disyunción 3 Reglas derivadas
Lógica Proposicional Lenguaje Proposicional Implicación semántica
Capítulo 1 Lógica Proposicional 1.1. Lenguaje Proposicional Un lenguaje proposicional consta de los siguientes símbolos: las proposicones atómicas, también llamados enunciados atómicos o simplemente variables
Proposicionales. Curso Mari Carmen Suárez de Figueroa Baonza
Estandarización de Fórmulas Proposicionales Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción a la demostración automática Estandarización de fórmulas Formas
Tema 1: Lógica y Computación Lógica Clásica Proposicional. Definición de Lógica
Tema 1: Lógica y Computación Lógica Clásica Proposicional Lógica y Métodos Avanzados de Razonamiento Docente: David Pearce Transparencias: David Pearce y Agustín Valverde 15 de octubre de 2008 Definición
Lógica proposicional 7. Árboles lógicos
Lógica proposicional 7. Árboles lógicos Juan Carlos León Universidad de Murcia Esquema del tema 7.1. Tablas semánticas y árboles lógicos 7.2. Reglas de inferencia 7.3. El método de árboles 7.4. Aplicación
Formas clausulares Teoría de Herbrand Algoritmo de Herbrand Semidecidibilidad. Teoría de Herbrand. Lógica Computacional
Teoría de Herbrand Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga Curso 2005/2006 Contenido 1 Formas clausulares Refutación y formas clausulares 2 Teoría de Herbrand Universo
Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza
Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad
Tema 2: Métodos de Deducción para la Lógica Proposicional
Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2006 07 LC, 2006 07 Métodos de Deducción
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Tema 1: Sintaxis y Semántica de la Lógica Proposicional
Tema 1: Sintaxis y Semántica de la Lógica Proposicional Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Lógica Proposicional
Lógica Proposicional. Significado de una Fórmula Proposicional
Proposicional Semántica Semántica Proposicional - Significado de una Fórmula Proposicional El significado de una proposición está dado por su valor de verdad (o sea, si es Verdadera o Falsa) que se obtiene
LOGICA Y ALGEBRA DISCRETA
LOGICA Y ALGEBRA DISCRETA Franco D. Menendez LABIA FACET - UNT Contenido de la Materia UNIDAD TEMÁTICA 2: DECISION EN EL LENGUAJE FORMAL Sistemas Axiomáticos. Noción General. Decisión Por Formas Normales.
Lógica Proposicional (LP)
Lógica Proposicional (LP) Proposición Enunciado del que puede afirmarse si es verdadero o falso Oración declarativa Cuáles de las siguientes son proposiciones? ) Pedro es alto. 2) Juan es estudiante. 3)
Lógica Proposicional
Proposicional Semántica Semántica Proposicional - Significado de una Fórmula Proposicional El significado de una proposición está dado por su valor de verdad (o sea, si es Verdadera o Falsa) que se obtiene
Tema 2: Métodos de Deducción para la Lógica Proposicional
Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Métodos de Deducción
Introducción a la Lógica Proposicional Seminario de Matemáticas
Introducción a la Lógica Proposicional Seminario de Matemáticas Julio Ariel Hurtado Alegría [email protected] 8 de mayo de 2015 Julio A. Hurtado A. Departamento de Sistemas 1 / 34 Agenda Motivación
Análisis lógico Cálculo de proposiciones
Sintaxis Semántica Sistemas de demostración Análisis lógico Cálculo de proposiciones Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected] Página Web: www.matematicas.unam.mx/fhq
Clase 5 1. Lógica proposicional. Razonamientos
Clase 5 1 Lógica proposicional Razonamientos Clase 5 2 LOGICA - INTRODUCCION!OBJETIVO Uno de los fundamentales objetivos ha sido el estudio de las DEDUCCIONES, RAZONAMIENTOS O ARGUMENTOS LOGICA DEDUCTIVA
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica
TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q
TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la
EJERCICIOS RESUELTOS 6
LÓGICA I EJERCICIOS RESUELTOS 6 TEMA 6 SEMÁNTICA: TABLAS DE ERDAD Y RESOLUCIÓN ERITATIO-UNCIONAL EJERCICIO 6.01 Comprobar por tablas de verdad si la siguiente fbf es o no satisfacible: ( p q) p q ( p q)
UNIDAD I: LÓGICA MATEMÁTICA
UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica
Lógica Proposicional (LP)
Lógica Proosicional (LP) Proosición Enunciado del ue uede afirmarse si es verdadero o falso Oración declarativa Cuáles de las siguientes son roosiciones? ) Pedro es alto. 2) Juan es estudiante. 3) Vayan
Lógica Clásica de Predicados
Lógica Clásica de Predicados Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis 2 Variables y Sustituciones 3 Significado y verdad 4
Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013
Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Lógica de Proposiciones y de Predicado
Lógica de Proposiciones y de Predicado Franco D. Menendez LABIA FACET - UNT Contenido de la Materia UNIDAD TEMÁTICA 2: DECISION EN EL LENGUAJE FORMAL»Sistemas Axiomáticos. Noción General. Decisión Por
Lógica informática ( )
1 / 34 Lógica informática (2013 14) Tema 1: Sintaxis y semántica de la lógica proposicional José A. Alonso Jiménez Andrés Cordón Franco María J. Hidalgo Doblado Grupo de Lógica Computacional Departamento
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:
LógicaS Modales. Ricardo Oscar Rodríguez Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Segunda Clase. 1er. Cuatrimestre, 2016 Outline 1 Repaso clase anterior Sintáxis Lógicas Modales Autocongruentes
Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica
Proposiciones atómicas y compuestas Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@cienciasunammx Página
Tema 2: Lógica proposicional: Sintaxis y semántica
Razonamiento Automático Curso 200 2002 Tema 2: Lógica proposicional: Sintaxis y semántica José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial
2. Los símbolos de la lógica proposicional.
Bloque I: El Saber Filosófico. Tema 4: La Lógica Formal. 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera
Tema 2: Lógica Computacional para la IA: Lógica Proposicional
Tema 2: Lógica Computacional para la IA: Lógica Proposicional Félix Lara Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Seminario de Inteligencia Artificial, Curso 2005
Lógica proposicional. 1. Lógica proposicional. 4. Conectivos lógicos. 2. Proposición lógica. 3. Negación de una proposición
Lógica proposicional 1. Lógica proposicional Es una parte de la lógica que estudia las proposiciones y la relación existente entre ellas, así como la función que tienen los conectivos lógicos. 2. Proposición
Introdución a la Lógica Proposicional
Introdución a la Lógica Proposicional Pablo Barceló P. Barceló Lógica Proposicional - CC52A 1 / 24 Lógica proposicional: Sintaxis Tenemos los siguientes elementos: - Variables proposicionales (P): p, q,
LOGICA Y ALGORITMOS. Profesores: Raúl Kantor Ana Casali. Año LyA-Proposiciones 1
LOGICA Y ALGORITMOS Profesores: Raúl Kantor Ana Casali Año 2003 1 LOGICA Y ALGORITMOS Módulos Cardinalidad y conjuntos inductivos!lógica: proposicional y de er orden ormalismos de cálculo: R y L Lenguajes
Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden
Contenido Lógica Matemática M.C. Mireya Tovar Vidal Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Definición Traducir enunciados
Enunciados Abiertos y Enunciados Cerrados
I n g. L u z A d r i a n a M o n r o y M a r t í n e z L ó g i c a 1 Unidad II lógica proposicional Es probable que en el siglo IV antes de la Era Común, se iniciara con Aristóteles el estudio de la Lógica;
Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra:
Algebras booleanas AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente), y una operación
Lógica Proposicional. Cátedra de Matemática
Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un
Lógica proposicional 6. La semántica veritativo-funcional
Lógica proposicional 6. La semántica veritativo-funcional (Parte 1) Juan Carlos León Universidad de Murcia Esquema del tema 6.1. Noción de interpretación y reglas de valoración. Tablas de verdad 6.2. Consecuencia
Tema 6: Teoría Semántica
Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Sumario Prólogo Unidad didáctica 1. Historia de la lógica Objetivos de la unidad... 10
ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Historia de la lógica... 9 Objetivos de la unidad... 10 1. Introducción... 11 2. Efemérides... 13 3. La Lógica de Aristóteles...
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4
Lógica de Predicados
Lógica de redicados Lógica de predicados Lógica de predicados Cálculo de predicados Reglas de inferencia Deducción proposicional Demostración condicional Demostración indirecta Valores de certeza y Tautología
Tema 2: Equivalencias y formas normales
Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
La Lógica Proposicional
La Lógica Proposicional 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera o falsa. Las proposiciones
Lógica I modelo de examen (curso ) Ejemplo de respuestas
Lógica I modelo de examen (curso 2007-08) Ejemplo de respuestas 1. Definiciones: - Grado de una fórmula es el número total de conectivas (iguales o distintas) que contiene. - Función de verdad es una función
Paradigma lógico Lógica proposicional Resolución. Programación Lógica. Eduardo Bonelli. Departamento de Computación FCEyN UBA. 10 de octubre, 2006
Departamento de Computación FCEyN UBA 10 de octubre, 2006 Prolog Se basa en el uso de la lógica como un lenguaje de programación Se especifican ciertos hechos y reglas de inferencia un objetivo ( goal
Tema 10: Conceptos Metalógicos
Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 10: Conceptos Metalógicos Profesor: Javier Bajo [email protected] Madrid, España 12/11/2012 Introducción
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Tema 3 Equivalencia. Formas normales.
Tema 3 Equivalencia. Formas normales. Lógica Proposicional Antonio de J. Pérez Jiménez Departamento Ccia. Lógica Informática Antonio de J. Pérez Jiménez (Departamento Ccia.) Tema 3 Equivalencia. Formas
TEMA II. 1.1 Negación La negación es la inversa de los valores de verdad de una declaración como se muestra en la figura: Negación
TEMA II 1. APLICACIONES PRACTICAS DE LOGICA SIMBOLICA Y ÁLGEBRA DE PROPOSICIONES La proposición lógica hace más fácil y efectiva la manipulación de valores de verdad entre proposiciones. Las tablas de
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica
Lógica de Proposiciones y de Predicado
Lógica de Proposiciones y de Predicado Franco D. Menendez LABIA FACET - UNT Contenido de la Materia UNIDAD TEMÁTICA 1: SINTAXIS Y SEMANTICA DEL LENGUAJE FORMAL»SEMÁNTICA: Noción General. Definición Algebraica.
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 1 Lógica de Proposiciones y de Predicados de Primer Orden Lógica de Proposiciones Sintaxis Infinitas letras
Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes
FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática
LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:
LOGICA MATEMATICA Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: 1 ) q p q p ( q ) p ( Definición ) q p ( Doble Negación ) p q ( Conmutatividad ) (
Proposiciones. Estructuras Discretas. Lógica de proposiciones y de predicados. Tablas de Verdad. Operadores Lógicos.
Estructuras Discretas Proposiciones Lógica de proposiciones y de predicados Claudio Lobos [email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: proposición
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43 En esta lectura
Lógica. Matemática discreta. Matemática discreta. Lógica
Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo
Lógica proposicional: Lectura única
Lógica proposicional: Lectura única Una fórmula ϕ es atómica si ϕ = p, donde p P. Una fórmula ϕ es compuesta si no es atómica. - Si ϕ = ( α), entonces es un conectivo primario de ϕ y α es una subfórmula
Curso LÓGICA Examen de recuperación de lógica proposicional
Curso 2013-2014 LÓGICA Examen de recuperación de lógica proposicional 13-01-2014 1.1. Formalizar en el lenguaje de la lógica proposicional el siguiente razonamiento: (2,5 puntos) Es necesario que estudie
Demostraciones por resolución
Demostraciones por resolución A lo largo del curso, hemos prometido insistentemente que hay métodos para mecanizar demostraciones En particular, queremos un método, dado una base de conocimiento Σ y una
Tema de la clase: Lógica Matemática. Introducción
Tema de la clase: Lógica Matemática Instructor: Marcos Villagra Clase # 01 Escriba: Sergio Mercado Fecha 30/10/2017 Introducción Una de las características principales que distinguen a las matemáticas
Matemáticas Discretas Lógica
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados
Agentes Lógicos Univer Univ sidad Po sidad P litécnica de Pueb o la litécnica de Pueb D r. J Jesús A A ntonio G G á onz l ál ez B Ber l na
Agentes Lógicos Universidad Politécnica de Puebla Dr. Jesús Antonio González Bernal Elementos de un Agente Basado en Conocimiento Estado actual del mundo Cómo inferir propiedades del mundo no-vistas a
Lógica Proposicional
Proposicional Disciplina matemática Disciplina formal Se razona sobre la estructura de las cosas Se quiere estudiar el razonamiento, y no las verdades contingentes Se quiere estudiar la noción de consecuencia
Capítulo 2 El Método de Resolución
Capítulo 2 El Método de Resolución En este capítulo se realiza una descripción general del método de resolución, dado que el programa de razonamiento automático OTTER lo utiliza y prueba a través de refutación.
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 5 Nombre: Tablas de verdad Objetivo Al término de la sesión el participante aplicará los conceptos de lógica a través
Ejercicios de lógica
1. Sistemas formales. Ejercicios de lógica 1. Considere el siguiente sistema formal: Símbolos: M, I, U. Expresiones: cualquier cadena en los símbolos. Axioma: UMUIUU Regla de inferencia: xmyiz xumyuizuu
