Lógica informática ( )
|
|
|
- Joaquín Carrasco Silva
- hace 8 años
- Vistas:
Transcripción
1 1 / 34 Lógica informática ( ) Tema 1: Sintaxis y semántica de la lógica proposicional José A. Alonso Jiménez Andrés Cordón Franco María J. Hidalgo Doblado Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla
2 2 / 34 Tema 1: Sintaxis y semántica de la lógica proposicional 1. Introducción 2. Sintaxis de la lógica proposicional 3.
3 3 / 34 Introducción Tema 1: Sintaxis y semántica de la lógica proposicional 1. Introducción Panorama de la lógica Ejemplos de argumentos y formalizaciones 2. Sintaxis de la lógica proposicional 3.
4 Introducción Panorama de la lógica Lógica Objetivos de la lógica: La formalización del lenguaje natural. Los métodos de razonamiento. Sistemas lógicos: Lógica proposicional. Lógica de primer orden. Lógicas de orden superior. Lógicas modales. Lógicas descriptivas. Aplicaciones de la lógica en computación: Programación lógica. Verificación y síntesis automática de programas. Representación del conocimiento y razonamiento. Modelización y razonamiento sobre sistemas. Lógica informática = Representación del conocimiento + Razonamiento 4 / 34
5 Introducción Ejemplos de argumentos y formalizaciones Argumentos y formalización Ejemplos de argumentos: Ejemplo 1: Si el tren llega a las 7 y no hay taxis en la estación, entonces Juan llegará tarde a la reunión. Juan no ha llegado tarde a la reunión. El tren llegó a las 7. Por tanto, habían taxis en la estación. Ejemplo 2: Si hay corriente y la lámpara no está fundida, entonces está encendida. La lámpara no está encendida. Hay corriente. Por tanto, la lámpara está fundida. Formalización: Simbolización: Simb. Ejemplo 1 Ejemplo 2 p el tren llega a las 7 hay corriente. q hay taxis en la estación la lámpara está fundida r Juan llega tarde a la reunión la lámpara está encendida Si p y no q, entonces r. No r. p. Por tanto, q. p q r, r, p = q. 5 / 34
6 6 / 34 Sintaxis de la lógica proposicional Tema 1: Sintaxis y semántica de la lógica proposicional 1. Introducción 2. Sintaxis de la lógica proposicional El lenguaje de la lógica proposicional Recursión e inducción sobre fórmulas Árboles de análisis (o de formación) Eliminación de paréntesis Subfórmulas 3.
7 7 / 34 Sintaxis de la lógica proposicional El lenguaje de la lógica proposicional El lenguaje de la lógica proposicional Alfabeto proposicional: variables proposicionales: p 0, p 1,... ; p, q, r. conectivas lógicas: monaria: (negación), binarias: (conjunción), (disyunción), (condicional), (bicondicional). símbolos auxiliares: ( y ). Fórmulas proposicionales: Definición: Las variables proposicionales son fórmulas (fórmulas atómicas). Si F y G son fórmulas, entonces también lo son F, (F G), (F G), (F G) y (F G) Ejemplos: Fórmulas: p, (p q), (p p), ((p q) (q p)) No fórmulas: (p), p q, (p q)
8 8 / 34 Sintaxis de la lógica proposicional El lenguaje de la lógica proposicional Fórmulas proposicionales (BNF) Notaciones: p, q, r,... representarán variables proposicionales. F, G, H,... representarán fórmulas. VP representa el conjunto de los variables proposicionales. Prop representa el conjunto de las fórmulas. representa una conectiva binaria. Forma de Backus Naur (BNF) de las fórmula proposicionales: F ::= p G (F G) (F G) (F G) (F G).
9 9 / 34 Sintaxis de la lógica proposicional Recursión e inducción sobre fórmulas Definiciones por recursión sobre fórmulas Número de paréntesis de una fórmula: Def: El número de paréntesis de una fórmula F se define recursivamente por: 0, si F es atómica; np(f ) = np(g), si F es G; 2 + np(g) + np(h), si F es (G H) Ejemplos: np(p) = 0 np(q) = 0 np( q) = 0 np(( q p)) = 2 np((p ( q p))) = 4
10 10 / 34 Sintaxis de la lógica proposicional Recursión e inducción sobre fórmulas Demostración por inducción sobre fórmulas Principio de inducción sobre fórmulas: Sea P una propiedad sobre las fórmulas que verifica las siguientes condiciones: Todas las fórmulas atómicas tienen la propiedad P. Si F y G tienen la propiedad P, entonces F, (F G), (F G), (F G) y (F G), tienen la propiedad P. Entonces todas las fórmulas proposicionales tienen la propiedad P. Propiedad: Todas las fórmulas proposicionales tienen un número par de paréntesis. Demostración por inducción sobre las fórmulas. Base: F atómica = np(f ) = 0 es par. Paso: Supongamos que np(f ) y np(g) es par (hipótesis de inducción). Entonces, np( F ) = np(f ) es par y np((f G)) = 2 + np(f ) + np(g) es par, para cualquier conectiva binaria.
11 11 / 34 Sintaxis de la lógica proposicional Árboles de análisis (o de formación) Árboles de análisis (o de formación) (p ( q p)) p ( q p) p q p p q q
12 12 / 34 Sintaxis de la lógica proposicional Eliminación de paréntesis Criterios de reducción de paréntesis Pueden eliminarse los paréntesis externos. F G es una abreviatura de (F G). Precedencia de asociación de conectivas:,,,,. F G F G es una abreviatura de ((F G) ( F G)). Cuando una conectiva se usa repetidamente, se asocia por la derecha. F G H abrevia (F (G H)) F G H F G abrevia ((F (G H)) ( F G))
13 13 / 34 Sintaxis de la lógica proposicional Subfórmulas Subfórmulas Def: El conjunto Subf(F ) de las subfórmulas de una fórmula F se define recursivamente por: {F }, si F es atómica; Subf(F ) = {F } Subf(G), si F es G; {F } Subf(G) Subf(H), si F es G H Ejemplos: Subf(p) = {p} Subf(q) = {q} Subf( q) = { q, q} Subf( q p) = { q p, q, q, p} Subf(p q p) = {p q p, p, q p, q, q}
14 3. Valores y funciones de verdad Interpretaciones Modelos, satisfacibilidad y validez Algoritmos para satisfacibilidad y validez Selección de tautologías Equivalencia lógica Modelos de conjuntos de fórmulas Consistencia y consecuencia lógica Argumentaciones y problemas lógicos 14 / 34 Tema 1: Sintaxis y semántica de la lógica proposicional 1. Introducción 2. Sintaxis de la lógica proposicional
15 15 / 34 Valores y funciones de verdad Valores y funciones de verdad Valores de verdad (B): 1: verdadero y 0: falso. Funciones de verdad: { 1, si i = 0; H : {0, 1} {0, 1} t.q. H (i) = 0, si i = 1. { H : {0, 1} 2 1, si i = j = 1; {0, 1} t.q. H (i, j) = 0, en otro caso. { H : {0, 1} 2 0, si i = j = 0; {0, 1} t.q. H (i, j) = 1, en otro caso. { H : {0, 1} 2 0, si i = 1, j = 0; {0, 1} t.q. H (i, j) = 1, en otro caso. { H : {0, 1} 2 1, si i = j; {0, 1} t.q. H (i, j) = 0, en otro caso.
16 16 / 34 Interpretaciones Interpretaciones de fórmulas Funciones de verdad mediante tablas de verdad: i i Interpretación: i j i j i j i j i j Def.: Una interpretación es una aplicación I : VP B. Prop: Para cada interpretación I existe una única aplicación I : Prop B tal que: I(F ), si F es atómica; I (F ) = H (I (G)), si F = G; H (I (G), I (H)), si F = G H Se dice que I (F ) es el valor de verdad de F respecto de I.
17 Interpretaciones Interpretaciones de fórmulas Ejemplo: Sea F = (p q) ( q r) valor de F en una interpretación I1 tal que I 1 (p) = I 1 (r) = 1, I 1 (q) = 0 (p q) ( q r) (1 0) ( 0 1) 1 (1 1) valor de F en una interpretación I 2 tal que I 2 (r) = 1, I 2 (p) = I 2 (q) = 0 (p q) ( q r) Prop.: Sea F una fórmula y I 1, I 2 dos interpretaciones. Si I 1 (p) = I 2 (p) para todos las variables proposicionales de F, entonces I 1 (F ) = I 2 (F ). Notación: Se escribe I(F ) en lugar de I (F ). 17 / 34
18 18 / 34 Modelos, satisfacibilidad y validez Modelos y satisfacibilidad Modelo de una fórmula Def.: I es modelo de F si I(F ) = 1. Notación: I = F. Ejemplo (continuación del anterior): si I 1 (p) = I 1 (r) = 1, I 1 (q) = 0, entonces I 1 = (p q) ( q r) si I 2 (r) = 1, I 2 (p) = I 2 (q) = 0, entonces I 2 = (p q) ( q r). Fórmulas satisfacibles e insatisfacibles Def.: F es satisfacible si F tiene algún modelo. Ejemplo: (p q) (q r) es satisfacible I(p) = I(q) = I(r) = 0. Def.: F es insatisfacible si F no tiene ningún modelo. Ejemplo: p p es insatisfacible p p p p
19 19 / 34 Modelos, satisfacibilidad y validez Tautologías y contradicciones Def.: F es una tautología (o válida) si toda interpretación es modelo de F. Se representa por = F. Def.: F es una contradicción si ninguna interpretación es modelo de F. Def.: F es contingente si no es tautología ni contradicción. Ejemplos: 1. (p q) (q p) es una tautología. 2. (p q) (p q) es una contradicción. 3. p q es contingente. p q p q q p (p q) (q p) (p q) (p q) (p q)
20 20 / 34 Modelos, satisfacibilidad y validez Clasificaciones de fórmulas Todas las fórmulas Tautologías Contigentes Contradicciones Verdadera en todas las interpretaciones Verdadera en algunas interpretaciones y falsa en otras Falsa en todas las interpretaciones (ej. p p) (ej. p q) (ej. p p) Safisfacibles Insatisfacibles Todas las fórmulas
21 21 / 34 Modelos, satisfacibilidad y validez Satisfacibilidad y validez Los problemas SAT y TAUT: Problema SAT: Dada F determinar si es satisfacible. Problema TAUT: Dada F determinar si es una tautología. Relaciones entre satisfacibilidad y tautologicidad: F es tautología F es insatisfacible. F es tautología = F es satisfacible. F es satisfacible /= F es insatisfacible. p q es satisfacible. I(p) = I(q) = 1 (p q) es satisfacible. I(p) = 1, I(q) = 0.
22 22 / 34 Algoritmos para satisfacibilidad y validez Algoritmos para SAT y TAUT Tabla de verdad para = (p q) (q p): p q (p q) (q p) (p q) (q p) Tabla de verdad simplificada para = (p q) (q p): p q (p q) (q p)
23 23 / 34 Algoritmos para satisfacibilidad y validez Algoritmos para SAT y TAUT Método de Quine para = (p q) (q p) (p q) (q p) Método de Quine para = (p q) (q p) (p q) (q p)
24 24 / 34 Algoritmos para satisfacibilidad y validez Algoritmos para SAT y TAUT Tablas de verdad para = (p q) (q p) p q (p q) (q p) (p q) (q p) Método de Quine para = (p q) (q p) (p q) (q p)
25 25 / 34 Selección de tautologías Selección de tautologías 1. F F (ley de identidad). 2. F F (ley del tercio excluido). 3. (F F ) (principio de no contradicción). 4. ( F F ) F (ley de Clavius). 5. F (F G) (ley de Duns Scoto). 6. ((F G) F ) F (ley de Peirce). 7. (F G) F G (modus ponens). 8. (F G) G F (modus tollens).
26 Equivalencia lógica Fórmulas equivalentes Def.: F y G son equivalentes si I(F ) = I(G) para toda interpretación I. Representación: F G. Ejemplos de equivalencias notables: 1. Idempotencia: F F F ; F F F. 2. Conmutatividad: F G G F ; F G G F. 3. Asociatividad: F (G H) (F G) H ; F (G H) (F G) H 4. Absorción: F (F G) F ; F (F G) F. 5. Distributividad: F (G H) (F G) (F H) ; F (G H) (F G) (F H). 6. Doble negación: F F. 7. Leyes de De Morgan: (F G) F G ; (F G) F G 8. Leyes de tautologías: Si F es una tautología, F G G ; F G F. 9. Leyes de contradicciones: Si F es una contradicción F G F ; F G G. 26 / 34
27 27 / 34 Equivalencia lógica Propiedades de la equivalencia lógica Relación entre equivalencia y bicondicional: F G syss = F G. Propiedades básicas de la equivalencia lógica: Reflexiva: F F. Simétrica: Si F G, entonces G F. Transitiva: Si F G y G H, entonces F H. Principio de sustitución de fórmulas equivalentes: Prop.: Si en la fórmula F se sustituye una de sus subfórmulas G por una fórmula G lógicamente equivalente a G, entonces la fórmula obtenida, F, es lógicamente equivalente a F. Ejemplo: F = (p q) (p r) G = (p q) G = p q F = ( p q) (p r)
28 28 / 34 Modelos de conjuntos de fórmulas Modelo de conjuntos de fórmulas Notación: S, S 1, S 2,... representarán conjuntos de fórmulas. Modelo de un conjunto de fórmulas: Def.: I es modelo de S si para toda F S se tiene que I = F. Representación: I = S. Ejemplo: Sea S = {(p q) ( q r), q r} La interpretación I 1 tal que I 1 (p) = 1, I 1 (q) = 0, I 1 (r) = 1 es modelo de S (I 1 = S). {(p q) ( q r), q r} La interpretación I 2 tal que I 2 (p) = 0, I 2 (q) = 1, I 2 (r) = 0 no es modelo de S (I 2 = S). {(p q) ( q r), q r}
29 29 / 34 Consistencia y consecuencia lógica Conjunto consistente de fórmulas Def.: S es consistente si S tiene algún modelo. Def.: S es inconsistente si S no tiene ningún modelo. Ejemplos: {(p q) ( q r), p r} es consistente (con modelos I4, I 6, I 8 ) {(p q) ( q r), p r, r} es inconsistente p q r (p q) ( q r) (p q) ( q r) p r r I I I I I I I I
30 30 / 34 Consistencia y consecuencia lógica Consecuencia lógica Def.: F es consecuencia de S si todos los modelos de S son modelos de F. Representación: S = F. Ejemplos: {p q, q r} = p r y {p} = p q p q r p q q r p r I I I I I I I I p q p q
31 31 / 34 Consistencia y consecuencia lógica Propiedades de la consecuencia Propiedades básicas de la relación de consecuencia: Reflexividad: S = S. Monotonía: Si S 1 = F y S 1 S 2, entonces S 2 = F. Transitividad: Si S = F y {F } = G, entonces S = G. Relación entre consecuencia, validez, satisfacibilidad y consistencia: Las siguientes condiciones son equivalentes: 1. {F 1,..., F n} = G 2. = F 1 F n G 3. (F 1 F n G) es insatisfacible 4. {F 1,..., F n, G} es inconsistente
32 32 / 34 Argumentaciones y problemas lógicos Ejemplo de argumentación Problema de los animales: Se sabe que 1. Los animales con pelo o que dan leche son mamíferos. 2. Los mamíferos que tienen pezuñas o que rumian son ungulados. 3. Los ungulados de cuello largo son jirafas. 4. Los ungulados con rayas negras son cebras. Se observa un animal que tiene pelos, pezuñas y rayas negras. Por consiguiente, se concluye que el animal es una cebra. Formalización: { tiene_pelos da_leche es_mamífero, es_mamífero (tiene_pezuñas rumia) es_ungulado, es_ungulado tiene_cuello_largo es_jirafa, es_ungulado tiene_rayas_negras es_cebra, tiene_pelos tiene_pezuñas tiene_rayas_negras} = es_cebra
33 33 / 34 Argumentaciones y problemas lógicos Problemas lógicos: veraces y mentirosos Enunciado: En una isla hay dos tribus, la de los veraces (que siempre dicen la verdad) y la de los mentirosos (que siempre mienten). Un viajero se encuentra con tres isleños A, B y C y cada uno le dice una frase 1. A dice B y C son veraces syss C es veraz 2. B dice Si A y C son veraces, entonces B y C son veraces y A es mentiroso 3. C dice B es mentiroso syss A o B es veraz Determinar a qué tribu pertenecen A, B y C. Simbolización: a: A es veraz, b: B es veraz, c: C es veraz. Formalización: F 1 = a (b c c), F 2 = b (a c b c a) y F 3 = c ( b a b). Modelos de {F 1, F 2, F 3 }: Si I es modelo de {F 1, F 2, F 3 }, entonces I(a) = 1, I(b) = 1, I(c) = 0. Conclusión: A y B son veraces y C es mentiroso.
34 34 / 34 Bibliografía Bibliografía 1. C. Badesa, I. Jané y R. Jansana Elementos de lógica formal. (Ariel, 2000) Cap. 0 (Introducción), 6 (Sintaxis de la lógica proposicional), 7 (Semántica de la lógica proposicional), 9 (Consecuencia lógica) y 11 (Lógica proposicional y lenguaje natural). 2. M. Ben Ari, Mathematical logic for computer science (2nd ed.). (Springer, 2001) Cap. 1 (Introduction) y 2 (Propositional calculus: formulas, models, tableaux). 3. J.A. Díez Iniciación a la Lógica, (Ariel, 2002) Cap. 2 (El lenguaje de la lógica proposicional) y 3 (Semántica formal. Consecuencia lógica). 4. M. Huth y M. Ryan Logic in computer science: modelling and reasoning about systems. (Cambridge University Press, 2000) Cap. 1 (Propositional logic).
Tema 2: Equivalencias y formas normales
Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
Lógica informática ( )
1 / 49 Lógica informática (2012 13) Tema 6: Algoritmos para SAT. José A. Alonso Jiménez Andrés Cordón Franco María J. Hidalgo Doblado Grupo de Lógica Computacional Departamento de Ciencias de la Computación
Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza
Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Tema DA 3: Lógica proposicional:
Razonamiento Automático Curso 200 2002 Tema DA 3: Lógica proposicional: Cálculos lógicos José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial
REGLAS Y LEYES LOGICAS
LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Cálculo Proposicional
Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)
APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN
LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente
Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román.
Inteligencia en Redes de Comunicaciones Razonamiento lógico Julio Villena Román [email protected] Índice La programación lógica Lógica de predicados de primer orden Sistemas inferenciales IRC 2009 -
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
Ejercicios de Lógica Proposicional *
Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos
PROYECTO DOCENTE ASIGNATURA: "Lógica Informática"
PROYECTO DOCENTE ASIGNATURA: "Lógica Informática" Grupo: Clases Teóricas de Lógica Informática (DOCENCIA EN INGLÉS)(948465) Titulacion: Grado en Ingeniería Informática-Ingeniería del Software Curso: 2015-2016
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43 En esta lectura
Tema 6: Teoría Semántica
Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad
Capítulo 1 Lógica Proposicional
Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases
EJERCICIOS RESUELTOS 6
LÓGICA I EJERCICIOS RESUELTOS 6 TEMA 6 SEMÁNTICA: TABLAS DE ERDAD Y RESOLUCIÓN ERITATIO-UNCIONAL EJERCICIO 6.01 Comprobar por tablas de verdad si la siguiente fbf es o no satisfacible: ( p q) p q ( p q)
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4
MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 5 Nombre: Tablas de verdad Objetivo Al término de la sesión el participante aplicará los conceptos de lógica a través
SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.
SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. [email protected] Carrera 9 No 51-11 Bogotá Colombia
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES.
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. Ing. HUGO HUMBERTO MORALES PEÑA MAESTRÍA EN ENSEÑANZA DE LAS MATEMÁTICAS Línea de Matemáticas Computacionales UNIVERSIDAD TECNOLÓGICA
LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /
Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica
RAZONAMIENTO MATEMÁTICO
RAZONAMIENTO MATEMÁTICO I. LÓGICA PROPOSICIONAL A. Proposiciones B. Conectivos proposicionales B.. Negación B.2. Conjunción B.3. Disyunción B.4. Condicional B.5. Bicondicional B.6. Otros conectivos C.
Bases Formales de la Computación
Modal Bases Formales de la Computación Pontificia Universidad Javeriana 3 de abril de 2009 Modal LÓGICAS MODALES Contenido Modal 1 Modal 2 3 Qué es la lógica Modal? Modal Variedad de diferentes sistemas
Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional
Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA SEMESTRE: Segundo a cuarto CLAVE: 0271 HORAS A LA SEMANA/SEMESTRE TEÓRICAS PRÁCTICAS CRÉDITOS 5/80
Matemáticas Discretas. Oscar Bedoya
Matemáticas Discretas Oscar Bedoya [email protected] http://eisc.univalle.edu.co/~oscarbed/md/ * Lógica proposicional * Concepto de proposición * Valores de verdad * Operadores lógicos
Lógica. Matemática discreta. Matemática discreta. Lógica
Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo
Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar
ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades
Índice general. I Introducción a la Lógica 3
Índice general I Introducción a la Lógica 3 1 Demostraciones 5 1.1. Argumentos rodeados de agua....................... 5 1.1.1. Argumentando........................... 6 1.1.2. Formalizando el argumento....................
2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]
Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la
Lógica de Predicados de Primer Orden
Lógica de Predicados: Motivación Todo natural es entero y 2 es un natural. Luego 2 es entero. p q r p, q r es claramente un razonamiento válido pero no es posible demostrarlo desde la Lógica Proposicional
Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid
Taller Matemático Lógica Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Lógica 14 amigos aportan la misma cantidad de dinero, sobre un fondo
RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:
La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos
CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES
LAS PROPOSICIONES Objetivo Brindar al estudiante un concepto claro en la formulación, interpretación y aplicabilidad de las proposiciones. La interpretación de las proposiciones compuestas permite al estudiante
Conjuntos. () April 4, / 32
Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En
Tema 7. El problema de los condicionales
Tema 7. El problema de los condicionales (Capítulo 3 de S. Read, Thinking about Logic, pp. 64-95) Cuál es el problema que plantean a la lógica los enunciados condicionales? El de formular sus condiciones
1.1.1 Conectivos lógicos, formas proposicionales y tablas de verdad.
Tema 1 Lógica. 1.1 Cálculo proposicional. Definición 1.1 Una proposición es una frase o sentencia declarativa que es verdadera o falsa pero no ambas cosas a la vez. Los dos posibles valores de verdad que
UNIDAD 4: INTRODUCCIÓN A LA LÓGICA
UNIDAD 4: INTRODUCCIÓN A LA LÓGICA Bien! hemos pasado a la segunda parte de los contenidos, espero que esos ánimos sigan predispuestos a continuar con el estudio de estos nuevos contenidos. Lo invitamos
Notas de Álgebra y Matemática Discreta
Libros de Cátedra Notas de Álgebra y Matemática Discreta Liliana Alcón FACULTAD DE CIENCIAS EXACTAS NOTAS DE ÁLGEBRA Y MATEMÁTICA DISCRETA Liliana Alcón 2014 Alcón, Liliana Notas de algebra y matemática
Más sobre Leyes de implicación
Más sobre Leyes de implicación Dilema constructivo. Se abrevia d.c. Se considera que si hay una disyunción que contiene los antecedentes de dos condicionales, la conclusión será la disyunción de los consecuentes.
GUIA DE TRABAJOS TEORICO PRACTICO N 1: LÓGICA DE LAS PROPOSICIONES
CENTRO EDUCATIVO DE NIVEL TERCIARIO N 2 INTRODUCCIÓN A LA LOGICA SIMBOLICA PRIMER AÑO AÑO: 2005 GUIA DE TRABAJOS TEORICO PRACTICO N 1: LÓGICA DE LAS PROPOSICIONES La lógica es una ciencia formal, o sea,
Forma lógica de enunciados
Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido
Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos
Introducción César Ignacio García Osorio Lógica y sistemas axiomáticos 1 La lógica ha sido históricamente uno de los primeros lenguajes utilizados para representar el conocimiento. Además es frecuente
ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO
Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones
UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO
UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS L Ó G I C A Carrera: Programador Universitario en Informática Equipo Docente: Miriam Alagastino Ximena Villarreal
Historia y Filosofía de la Lógica
Historia y Filosofía de la Lógica Pablo Cobreros [email protected] Tema 1: El objeto de la lógica La lógica proposicional clásica El objeto de la lógica Consecuencia lógica La lógica proposicional El lenguaje
Inteligencia Artificial II La Lógica Proposicional como un lenguaje formal
Inteligencia Artificial II La Lógica Proposicional como un lenguaje formal Dr. Alejandro Guerra-Hernández Universidad Veracruzana Centro de Investigación en Inteligencia Artificial mailto:[email protected]
encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.
Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas
Escenas de episodios anteriores
Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje
Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad
Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean
No ~ Si entonces Sí y sólo si
Principios de lógica. Principios de la lógica y o Objetivo general Establecer el valor de verdad de muchos de los enunciados lógicos, utilizando las leyes de la lógica y las de las inferencias, ya sea
Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores
Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMA 70 LÓGICA PROPOSICIONAL. EJEMPLOS Y APLICACIONES AL RAZONAMIENTO MATEMÁTICO. 1. Introducción. 2. El Lenguaje para la Lógica de Proposiciones. 2.1.
Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:
Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma
Lógica Proposicional Razonando en la vida diaria
Capítulo 2 Lógica Proposicional Resumen Las inferencias lógicas más básicas involucran frases creadas con expresiones comunes tales como no, y, o, si... entonces. Estas expresiones nos permiten describir
Lógica Proposicional 1
Lógica Proposicional 1 rafael ramirez [email protected] Ocata 320 Lógica proposicional Un conjunto de variables p, q, r, que representan afirmaciones tales como Esta caja es roja La luna es de queso La
Lógica Matemática, Sistemas Formales, Cláusulas de Horn
Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
EJERCICIOS SOBRE PROPOSICIÓN. DEFINICIÓN Y CLASES
INSTRUCCIÓN. Resuelve los problemas propuestos del modo siguiente: primero en forma individual, luego en forma grupal y por último preséntalo en forma grupal en un máximo de cinco (05) integrantes. EJERCICIOS
Lógica Proposicional
Existen en la realidad un número considerable de problemas con los que una persona se enfrenta y de los cuales se deben deducir ciertos datos para poder resolverlos. Generalmente la forma en que las personas
Los fundamentos de la matemática y los teoremas de Gödel
Los fundamentos de la matemática y los teoremas de Gödel Mario A. Natiello Centre for Mathematical Sciences Lund University Sweden Los fundamentos de la matemática y los teoremas de Gödel p.1/23 Contenido
PRINCIPIOS DE LÓGICA. 1.1 CONCEPTO Y PROPÓSITO DE LA DE LÓGICA. UNIDAD 1. FUNDAMENTOS DE LÓGICA. Competencias:
UNIDAD 1. FUNDAMENTOS DE LÓGICA. MAPA CONCEPTUAL LÓGICA MATEMÁTICA Como Es Ciencia de la razón Aporta Desarrolla Acción Pedagógica Genera Nuevos Saberse Que desarrollan Habilidades de Pensamiento Aprendizaje
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.
Apuntes de Lógica Proposicional
Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias
Resumen de deducción natural
Resumen de deducción natural F. Javier Gil Chica 2010 1. Orientación de estas notas El cálculo de argumentos mediante tablas de verdad es un método rápido y seguro. También mecánico, puesto que se puede
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
PROGRAMA DE MATEMATICAS DISCRETAS
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS PROGRAMA DE MATEMATICAS DISCRETAS 1. DATOS INFORMATIVOS 1.1 Escuela : Ingeniería 1.2 Carrera : Ingeniería
Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos
Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos
personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12
Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo
INDICE. XVII Prólogo a la edición en español. XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas
INDICE Prologo XVII Prólogo a la edición en español XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas 1 1.1.1. Introducción 1.1.2. Algunos argumentos lógicos importantes 2 1.1.3. Proposiciones
Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional
Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c)
SESIÓN 04 LÓGICA PROPOSICIONAL
SESIÓN 04 LÓGICA PROPOSICIONAL La Lógica Proposicional, sentencial o lógica de enunciados, es la parte de la Lógica simbólica que trata de las proposiciones sin analizarlas y de sus combinaciones. 1. PROPOSICIONES
TEMA 4. RAZONAMIENTO DEDUCTIVO (III). RAZONAMIENTO PROPOSICIONAL Introducción a los aspectos formales del razonamiento proposicional.
TEMA 4. RAZONAMIENTO DEDUCTIVO (III). RAZONAMIENTO PROPOSICIONAL 4.1. Introducción a los aspectos formales del razonamiento proposicional. 4.2. El razonamiento disyuntivo. 4.3. El razonamiento condicional.
Examen final de Lógica y argumentación (Fecha: xxxxxxxx)
1 Examen final de Lógica y argumentación (Fecha: xxxxxxxx) Nombre: Código: Profesor y grupo: 1. 1 (6%) Construya un silogismo de forma: oao-3, con estas especificaciones: Término mayor: Rascacielos Término
RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA
ESCUELA DEL MINISTERIO PÚBLICO Dr. Gonzalo Ortiz de Zevallos Roedel RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA Dr. Luis Alberto Pacheco Mandujano Gerente Central de la Escuela del Ministerio Público
Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción
Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad
ELEMENTOS DE LA MATEMATICA
ELEMENTOS DE LA MATEMATICA SEMESTRE: Primero CODIGO ANTERIOR: 22G7 CODIGO: 8101 REQUISITOS: No tiene CREDITOS: 6 HORAS DE TEORIA: 4 HORAS DE PRACTICA : 4 TEMA 1: Lógica simbólica. Las conectivas lógicas.
LÓGICA PROPOSICIONAL
MATEMÁTICA I AÑO LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Nadie aprende si no se ha equivocado al intentarlo... - DE QUÉ TRATA LA LÓGICA? La lógica investiga la relación de consecuencia que se da entre
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA
INSTITUCION EDUCATIA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS. NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO ECHA N DURACION 1
Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).
Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos
Guía para el estudiante
Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.
Procesadores de Lenguaje
Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales
3. OBJETIVOS ESPECÍFICOS (De formación académica): Como resultado de cada capítulo el estudiante estará en capacidad de:
MATERIA Lógica y Argumentación. CÓDIGO 08273 PRERREQUISITOS: Ninguno. PROGRAMAS: Todos los programas de pregrado. PERÍODO ACADÉMICO: 162-2 (Segundo semestre de 2016) INTENSIDAD HORARIA: 4 horas semanales
LOGICA DE ENUNCIADOS
Lógica - FCE LOGICA DE ENUNCIADOS 1. El lenguaje de enunciados Si se restringe el lenguaje de primer orden (o lenguaje de predicados) eliminando los cuantificadores y se toma como ultima unidad de análisis
Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS
Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Contenidos del Curso Introducción a la I.A. Cómo razonamos?. Algunas experiencias con el razonamiento automático El problema de representación
