Matrices de Proyección
|
|
|
- Cristián Peralta Saavedra
- hace 8 años
- Vistas:
Transcripción
1 Matrices de Proyección Departamento de Matemáticas, CSI/ITESM 4 de abril de 8 Índice.. Proyección ortogonal Proyección de un vector en R m Matriz de Proyección Proyección ortogonal Teorema. Sea Y una matriz m n y un espacio lineal V de dimensión r, ambos dentro de un espacio lineal U. Entonces, existe una única matriz Z en V tal que (Y Z) V. Si r = entonces Z =, y si r > entonces Z se puede expresar como Z = c X c r X r, donde {X,...,X r } forman una base ortonormal de V y c i = Y X i para i =,...,r. Además, Z = Y si y sólo si Y V. La matriz Z se llamará la proyección ortogonal de Y sobre V. Si r = entonces dim(v ) =, y por tanto V = {}. Para Z = se tiene (Y Z) V. Y es claramente la única matriz en V que cumple esto. Si r > sea {X,...,X r } una base ortonormal de V y definamos c i = Y X i para i =,...,r y Z = r i= c ix i. Claramente, Z V y ( ) r Y c i X i X j = Y X j c j = para cada j =,...,r. Y por tanto (Y Z) V. Si X V y (Y X) V : i= (X Z) (X Z) = (X Y + Y Z) (X Z) = (Y X) (X Z) + (Y Z) (X Z) = + = Como X Z V, (Y Z) (X Z) =. Por tanto, X Z = y de allí que X = Z, haciendo que Z sea el único vector en V que cumple (Y Z) V Ejercicio
2 Considere el espacio lineal formado por todas las soluciones al sistema homogéneo: y el vector d =<, 3,, >. x + y + z w = x y z + w = Usando el orden primero x, luego y, luego z, y por último w, encuentre una base para el espacio solución. Ortogonolice la base encontrada. Usando la base encontrada, determine la proyección ortogonal de d sobre tal espacio. Usando el orden primero y, luego w, luego y, y por último z, encuentre una base para el espacio solución. Ortogonolice la base nueva base. Usando la nueva base encontrada, determine la proyección ortogonal de d sobre tal espacio. Lema. Sean A una matriz m n. Si X es invertible n n entonces C(AX) = C(A) y en particular, rank (A X) = rank(a). Claramente C(A X) C(A). Como A = A (XX ) = (AX)X entonces, C(A) C(AX). De estas dos contenciones tenemos la igualdad de los conjuntos Lema.3 Para cualquier matriz A: rank(a A) = rank(a ) = rank(a) Sea A una matriz m n con rango r. Sea A = QR la factorización QR de A. Por tanto, Q Q = I n y R es una matriz cuadrada triangular superior con rango r. Así A A = (QR) (QR) = R Q QR = R R Si r = n, entonces R es invertible y R también y por consiguiente también R R, indicando que A A = R R tiene rango n el mismo rango que A y que A. Si r < n, entonces [ ] Z B R =
3 con Z matriz r r invertible. Así R R = [ Z Z Z B B Z B B Haciendo operaciones elementales sobre esta matriz se puede reducir a: [ I Z ] B Indicando que A A = R R tiene rango r Ejercicio A = [ ] A = A 3 = repita los cálculos presentes en la demostración del lema.3. ] Lema.4 Para cualquier matriz A m n y cualquier vector b en R m el sistema de ecuaciones: A Ax = A b es consistente. Del lema anterior se deduce que C(A A) = C(A). Como el vector A b está en C(A ), entonces también está en C(A A). Por consiguiente, el sistema formulado es consistente Ejercicio 3 A = A = y vectores b =<,, > y b =<,, >, vea que los sistemas Ax = b con inconsistentes pero los sistemas A Ax = A b son consistentes. 3
4 .. Proyección de un vector en R m Teorema.5 Sea z la proyección de b sobre C(A), A m n. Entonces, z = Ax para cuaquier solución x al sistema A Ax = A b Suponga que x es la solución al sistema A Ax = A b. Por el lema anterior, estos sistemas siempre son consistentes. Por tanto, A (Ax b) =, es decir que b Ax es ortogonal C(A). Como Ax está en C(A), por el resultado anterior Ax es la proyeccción ortogonal de b sobre C(A) Ejercicio 4 A = A = y los vectores b =<,, > y b =<,, >, determine las proyecciones de cada b a los espacios columnas de cada A y compruebe que da lo mismo que se obtiene resolviendo los sistemas A Ax = A b. Si uno dispone de una inversa generalizada de A A entonces es simple el cálculo del vector proyección sobre un espacio. El siguiente resultado indica cómo y es una consecuencia inmediante del anterior y de las propiedades de la inversa generalizada: Corolario.6 Sea z la proyección del b sobre C(A), entonces z = A(A A) A b Ejercicio 5 A = A = 4
5 y los vectores b =<,, > y b =<,, >, en cada caso determine una inversa generalizada para A A y compruebe que la proyección de b sobre C(A) coinde con el resultado que da la fórmula del colorario.6. Ejercicio 6 Encuentre la proyección del vector <,, > sobre el plano x + 3y z =. Sugerencia De acuerdo al resultado anterior se debe encontrar una matriz A tal que C(A) sea el plano. Para ello hay que encontrar los vectores que general tal plano: Resolviendo la ecuación del plano: x y z = 3 y + z y z = y Así el plano es el espacio generado por los vectores: 3, Tome A = z Ahora aplique la fórmula del vector de proyección: A (A A) A b..3. Matriz de Proyección El corolario anterior motiva la siguiente definición: Definición Sea A una matriz cualquiera, la matriz P A se definirá como: P A = A ( A T A ) A T () se conoce como la matriz de proyección ortogonal sobre A. Nuestra meta ahora es probar que esta matriz no depende de la elección de la inversa generalizada de ( A T A ). Teorema.7 Sean matrices X m n, Y q n, y X m q. Si R(Y) R(X) y C(Z) C(X), entonces la matriz YX Z es independiente de la elección de X. Suponga que R(Y) R(X) y C(Z) C(X) entonces existen matrices L y R tales que Y = LX y Z = XR. Así: YX Z = (RX)X (XR) = R(XX X)R = LXR el segundo miembro no depende de X Teorema.8 5
6 Sea A una matriz cualquiera, entonces la matriz proyección de A es independiente de la matriz (A A). Por lema previo, rank ( A A ) = rank(a ) = rank(a) En particular, C(A ) C(A A) y R(A) R(A A). Por tanto, se cumplen las condiciones del teorema anterior para X = A A, Y = A y Z = A : Por tanto, Y X Z = A ( A A ) A es independiente de (A A) Ejercicio 7 A = A = 3 3 determine dos matrices determine dos matrices inversas generalizadas de A A y vea que las matrices de proyección arrojan el mismo resultado. En la determinación de las inversas generalizadas, utilice la inversa de Moore-Penrose y otra obtenida del algoritmo visto en clase. 6
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para
Inversas Generalizadas
Inversas Generalizadas Departamento de Matemáticas, CSI/IESM 5 de abril de 2 Índice.. Inversas generalizadas..........................................2. Uso de la inversa generalizada.....................................
Factorización de matrices
CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos
Matriz inversa generalizada y descomposición del valor singular
Matriz inversa generalizada y descomposición del valor singular Divulgación Fernando Velasco Luna y Jesús Hernández Suárez Laboratorio de Investigación y Asesoría Estadística, Facultad de Estadística e
Producto Interno y Ortogonalidad
Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................
Descomposición en valores singulares de una matriz
Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran
!MATRICES INVERTIBLES
Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Construcción de bases en el núcleo e imagen de una transformación lineal
Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.
Traza de una Matriz Cuadrada
Traza de una Matriz Cuadrada Departamento de Matemáticas, CSI/ITESM 10 de septiembre de 2008 Índice 7.1. Definiciones y propiedades básicas.................................. 1 7.2. La traza de un producto........................................
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012
Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema
1. Cambios de base en R n.
er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..
Matrices y sistemas de ecuaciones lineales
Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso
Álgebra Lineal, Ejercicios
Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula
Algebra Lineal XXVI: La Regla de Cramer.
Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011
Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012
Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes
MENORES, COFACTORES Y DETERMINANTES
MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una
Tema 5: Sistemas de ecuaciones lineales.
TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula
Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. [email protected].
Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen
TEMA 6. EIGENVALORES Y EIGENVECTORES
TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)
Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.
Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:
Resumen 3: Matrices, determinantes y sistemas de ecuaciones
Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).
1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden
Aplicaciones de la Forma Normal de Smith de una Matriz Entera
Aplicaciones de la Forma Normal de Smith de una Matriz Entera Rafael Heraclio Villarreal Rodríguez Departmento de Matemáticas CINVESTAV-IPN, México D.F. XLV Congreso Nacional Sociedad Matemática Mexicana
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
Matrices 1 (Problemas). c
º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =
3. Determinantes. Propiedades. Depto. de Álgebra, curso
Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
EJERCICIOS DE DETERMINANTES
EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla
Matrices triangulares y matrices ortogonales
Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.
Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones.
Tema 4 Producto escalar En bachiller habéis visto los conceptos de producto escalar, longitud, distancia y perpendicularidad en R y R 3 En este tema del curso se generalizan estos conceptos a R n, junto
1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS
1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una
Valores y Vectores Propios
Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................
Matemáticas aplicadas a las CC.SS. II 2º Bachillerato. La igualdad de matrices 3x3 equivale a 9 ecuaciones escalares: { a 3=5.
Ejercicios resueltos 1. MATRICES 1.1. Introducción 1. Halla el valor de a, b y c para que las matrices A= 2 a 3 7 b 1 0 6 4 5 y B= 2 5 7 5 1 0 c 1 4 5 sean iguales. La igualdad de matrices 3x3 equivale
Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso
Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes
Espacios vectoriales con producto interno
Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.
21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES
Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere
Aplicaciones Lineales
Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales
Sistemas de Ecuaciones y Matrices
Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar
Matemáticas Aplicadas a los Negocios
LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:
ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.
ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos
1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.
Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
Elementos de Cálculo en Varias Variables
Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada
Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa
Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES
CAPÍTULO 4 EJERCICIOS RESUELTOS: MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES Ejercicios resueltos 1 1. Determine el número de operaciones aritméticas necesarias para calcular
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Sistemas de Ecuaciones Lineales y Matrices
Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre
Vectores y Valores Propios
Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
PROGRAMA DE CURSO. Resultados de Aprendizaje
PROGRAMA DE CURSO Código Nombre MA1102 Algebra Lineal Nombre en Inglés Linear Algebra SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0 5,0 Requisitos MA1101
Matrices y sistemas lineales
15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números
ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta
ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.
Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.
Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
cuadrada de 3 filas y tres columnas cuyo determinante vale 2.
PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos
http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia...
Page 1 of 7 Departamento: Dpto Matematica Nombre del curso: ALGEBRA LINEAL Clave: 003866 Academia a la que pertenece: Algebra Lineal Requisitos: Requisito de Algebra Lineal: Calculo I, Fundamentos de Matem
Matrices invertibles. La inversa de una matriz
Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
ESPACIOS VECTORIALES
ESPACIOS VECTORIALES Sergio Stive Solano 1 Mayo de 2015 1 Visita http://sergiosolanosabie.wikispaces.com ESPACIOS VECTORIALES Sergio Stive Solano 1 Mayo de 2015 1 Visita http://sergiosolanosabie.wikispaces.com
Matrices, determinantes y sistemas lineales
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule
Segundo de Bachillerato Geometría en el espacio
Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
Sistemas lineales con parámetros
4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes
Espacios vectoriales Espacios y subespacios vectoriales
Capítulo 3 Espacios vectoriales 3.. Espacios y subespacios vectoriales Definición 3.. Un espacio vectorial ( o lineal ) es un conjunto no vacío V, cuyos elementos se denominan vectores, en el que hay definidas
Aplicaciones de Sistemas de Ecuaciones Lineales
Aplicaciones de Sistemas de Ecuaciones Lineales Departamento de Matemáticas, CCIR/ITESM 10 de enero de 2011 Índice 3.1. Introducción............................................... 1 3.2. Objetivo.................................................
Algebra lineal de dimensión finita
Algebra lineal de dimensión finita Métodos para calcular autovalores Pseudoinversa Algebra lineal númerica 1 Teorema:[Teorema 1.6] Sea A es una matriz real simétrica. Si Q(x) =< Ax, x > entonces: λ 1 =
Optimización Sin Restricciones
Optimización Sin Restricciones Departamento de Matemáticas, CSI/ITESM 1 de mayo de 2009 Índice 14.1. Introducción............................................... 1 14.2. Óptimos de una Función........................................
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre
CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
Construcción de bases en la suma y la intersección de subespacios (ejemplo)
Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........
PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante
Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro
TEMA 4: CALCULO NUMERICO DE AUTOVALORES
Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 4: CALCULO NUMERICO DE AUTOVALORES 1 INTRODUCCION La determinación de autovalores y autovectores de una matriz cuadrada A de orden n es un problema
DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES
ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina
