Modelos para variables categóricas
|
|
|
- Salvador Ortiz Soto
- hace 9 años
- Vistas:
Transcripción
1 Gabriel V. Montes-Rojas
2 Modelo logit multinomial Supongamos que la variable dependiente toma muchos valores, ej. y = 0, 1, 2..., J, aunque los valores de y no representan ningún orden en particular. Éste es el modelo multinomial. Ejemplo: Modelos de elección dicreta (discrete choice models). y podría ser la marca de un producto que el consumidor compra: y = 0 A y = 1 B y = 2 C y = 3 D y = 4 E Ejemplo: Participación en la fuerza laboral. y podría ser el status laboral de la persona: y = 0 empleado y = 1 desempleado y = 2 fuera de la fuerza laboral
3 Modelo logit multinomial Seleccionemos sin pérdida de generalidad un grupo base. Por convención corresponde a j = 0. Cada valor de y contiene los parámetros β j, j = 1, 2,..., J, vectores K j 1. (Si J = 1 tenemos el modelo logit.) En un modelo logit multinomial para modelar cada probabilidad tenemos exp(x β j ) P[y = j x] = 1 + J h=1 exp(x β, j = 1, 2,..., J h) Notemos que la suma debe ser 1 (o sea J h=0 P[y = h x] = 1), entonces 1 P[y = 0 x] = 1 + J h=1 exp(x β, j = 1, 2,..., J h) Construir el logaritmo de la función de verosimilitud: l i (β) = J j=0 1[y i = j]log(p[y = j x]). McFadden (1984) muestra que esta función es cóncava global, entonces tiene un máximo.
4 Modelo logit multinomial Los efectos parciales son P(y = j x) x k = P(y = j x) { β jk [ J β hk exp(x β h ) h=1 ] /g(x, β) donde β hk es el elemento k de β h y g(x, β) = 1 + J h=1 exp(x β h). Notemos que un cambio en x k afecta todas las probabilidades simúltaneamente. Una interpretación de β j está dada por p j (x, β)/p 0 (x, β) = exp(x β j ), j = 1, 2,..., J. Entonces, el cambio en p j (x, β)/p 0 (x, β) ante un cambio en x k (asumiendo es contínua) es β jk exp(x β j ) x k. O lo que es lo mismo, el log odds-ratio es linear en x: log(p j (x, β)/p 0 (x, β)) = x β j. Este resultado se extiende a comparaciones entre j y h: log(p j (x, β)/p h (x, β)) = x(β j β h ) Cómo se interpretaría el caso de x k dummy? Hacer. },
5 Modelo logit multinomial Una vez estimado podemos construir las probabilidades estimadas, p j (x, β), j = 0, 1,..., J. Para cada i podemos predecir el resultado usando la mayor probabilidad. O sea, ŷ i = max{j = 0, 1,..., J : p j (x i, ˆβ)}. Podríamos construir una medida de bondad del ajuste: peudo R 2 = N i=1 1[ŷ i =y i ] N. McFadden (1974) propone usar el likelihood ratio index: LRI = 1 L( ˆ β) L(β = 0)
6 Modelo logit multinomial Una de las características de este modelo es que las mismas variables x se usan para todas las alternativas j. En este caso los controles afectan al individuo, pero no son específicas de las caratcerśticas j = 0, 1, 2,..., J.
7 Modelo logit multinomial: STATA mlogit y x1 x2 x3 mfx, predict(p outcome(1)) (efectos marginales para y = 1) mfx, predict(p outcome(2)) (efectos marginales para y = 2)
8 Modelo de elección probabiĺıstica: logit condicional (McFadden, 1974, Wooldridge, 2012, cap.16) Supongamos que hay j = 0, 1,..., J variables latentes que representan la utilidad del individuo i yij = x ij β j + a ij, donde a ij son variables no observadas que afectan los gustos de las personas. x ij es un vector de 1 K que puede diferir entre alternativas e individuos (notar que depende de j, no sólo de i). Ejemplo: alternativas de transporte, x ij puede contener el tiempo de viaje, o el costo del viaje. Ejemplo: alternativas de prepagas, x ij puede contener el costo o las características del plan. Definamos y i = max{yi0, y i1,..., y ij }. Si a ij, j = 0, 1,..., J son variables aleatorias independientes con distribución F (a) = exp[ exp( a)] (distribución de valores extremos de tipo I), entonces exp(x ij β j ) P(y i = j x i ) = J h=0 exp(x, j = 0, 1,..., J. ihβ h )
9 Modelo de elección probabiĺıstica: logit condicional (McFadden, 1974, Wooldridge, 2012, cap.16) Los efectos marginales son p j (x)/ x jk = p j (x)[1 p j (x)]β jk, j = 0, 1,..., J, k = 1,..., K p j (x)/ x hk = p j (x)p h (x)β hk, j = 0, 1,..., J, k = 1,..., K Ver en STATA:
10 Independencia de alternativas irrelavantes Un gran problema de estos modelos (mlogit o clogit) es que la elección entre dos alternativas dadas no depende de una tercera. log(p j (x, β)/p h (x, β)) = x(β j β h ) Este supuesto viene del supuesto de independencia de los errores y homocedásticos. Se puede proponer un contraste de Hausman para ver la validez del modelo (Hausman y McFadden, 1984). Supongamos que la alternativa j = h es irrelevante, entonces exlcuirla no afecta los resultados entre las restantes. Si es relevante, excluirla debería generar inconsistencias. Sin embargo el modelo con j = 0, 1,..., h 1, h + 1,.., J es más eficiente que el modelo con j = 0, 1,.., J (?Por qué?) Así, ( ˆβ all ˆβ h ) [ ˆV h ˆV all )] 1 ( ˆβ all ˆβ h ) d χ 2 K bajo la nula de alternativas irrelevantes.
11 Independencia de alternativas irrelavantes Existen otras alternativas que no tienen este supuesto. En este modelo a i sigue una distribución multivariada normal con correlaciones arbitrarias entre a ij y a ih, para todo j = h. Sin embargo el modelo es mucho más complejo para estimar (problemas de convergencia). Ver en STATA:
12 Modelo probit de orden (ordered probit model) Supongamos que la variable dependiente toma muchos valores, ej. y = 0, 1, 2..., J, y los valores de y representan un orden en particular. Éste es el modelo de orden. Ejemplo: y podría ser salario mensual y = 0 sin ingreso y = 1 $ 1 a $ 500 y = 2 $ 501 a $ 1000 y = 3 $ 1001 a $ 2000 y = 4 $ 2001 a $ 5000 y = 5 mayor que $ 5000 Tiene sentido usar una regresión MCO?
13 Modelo probit de orden (ordered probit model) Asumamos una variable latente y dada por y = x β + e, e x N(0, 1) Consideremos un modelo con J + 1 categorías indexadas por j = 0, 1, 2..., Jy supongamos J umbrales o puntos de corte desconocidos α 1 < α 2 <... < α J que satisfacen y = 0 si y α 1 y = 1 si α 1 < y α 2. y = J si y α J Entonces la distribución condicional es P(y = 0 x) = P(y α 1 x) = P(x β + e α 1 x) = Φ(α 1 x β) P(y = 1 x) = P(α 1 < y α 2 x) = Φ(α 2 x β) Φ(α 1 x β). P(y = J 1 x) = P(α J 1 < y α J x) = Φ(α J x β) Φ(α J 1 x β) P(y = J x) = P(y > α J x) = 1 Φ(α J x β)
14 Modelo probit de orden (ordered probit model) El modelo se puede estimar por MLE: l i (β) = 1[y i = 0]log[Φ(α 1 x β)] + 1[y i = 1]log[Φ(α 2 x β) Φ(α 1 x β)] [y i = J]log[1 Φ(α J x β)]. Los efectos marginales se pueden calcular como: p 0 (x)/ x k = β k φ(α 1 x β), p J (x)/ x k = β k φ(α J x β), p j (x)/ x k = β k [φ(α j 1 x β) φ(α j x β), 0 < j < J
15 Modelo probit de orden (ordered probit model) Un supuesto que sale del modelo es el supuesto de regresiones paralelas. Podríamos armar el modelo de orden usando una serie de modelos probit. Por ejemplo, construir w ij = 1 si y ij j, w ij = 0 si y ij > j para j = 0, 1,..., J 1. Entonces tenemos, P(y j x) = P(y α j x) = G (α j x β) El modelo de orden asume que los parámetros β son los mismos en todos los probit bivariados, excepto por la constante (α). Un subproducto de este análisis es obtener P(y j x) x h = β h g(α j x β)
16 Modelo probit de orden (ordered probit model): STATA oprobit y x1 x2 x3 mfx, predict(p outcome(1)) (efectos marginales para y = 1) mfx, predict(p outcome(2)) (efectos marginales para y = 2)
Modelos elección discreta y variable dependiente limitada
Modelos elección discreta y variable dependiente limitada Profesor: Graciela Sanroman Facultad de Ciencias Económicas y Administración Año 2010 Modelos multinomiales Los modelos multinomiales son aquellos
Modelos con variable dependiente limitada
Modelos con variable dependiente limitada Universidad Iberoamericana Diciembre 2014 Y es variable aleatoria, toma solo dos valores, uno o cero, asociada a la ocurrencia de un evento (1 ocurre, 0 si no).
T4. Modelos con variables cualitativas
T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad
TEMA 4 Regresión logística
TEMA 4 Regresión logística José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Variable respuesta dicotómica. Ejemplo. El
Estimación del Probit Ordinal y del Logit Multinomial
Estimación del Probit Ordinal y del Logit Multinomial Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Introducción 1 Introducción 2 3 Introducción El
Guillermo Ayala Gallego Universidad de Valencia
GoBack Regresión logística Guillermo Ayala Gallego Universidad de Valencia 4 de febrero de 2009 1 / 22 Puede que sea el procedimiento estadístico más utilizado. Con aplicaciones frecuentes en Medicina
Econometría Avanzada FLACSO 2014
Econometría Avanzada FLACSO 2014 Hemos cubierto: Mapa Planteamiento de una pregunta económica de interés Diferencias entre econometría y estadística Métodos: Lineales (MCO) revisión, variables instrumentales
Regresión de Poisson. Microeconomía Cuantitativa. R. Mora. Departmento de Economía Universidad Carlos III de Madrid
en gretl Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Introducción en gretl 1 Introducción 2 3 4 en gretl en gretl Introducción en gretl Ejemplo 1
Economía Aplicada. Modelos con variables dependiente binarias. Departamento de Economía Universidad Carlos III de Madrid
Economía Aplicada Modelos con variables dependiente binarias Departamento de Economía Universidad Carlos III de Madrid Ver Stock y Watson (capítulo 11) 1 / 28 Modelos con variables dependiente binarias:
El problema de la endogeneidad Variables proxy Variables instrumentales STATA. Endogeneidad. Gabriel Montes-Rojas
Gabriel V. Montes-Rojas El problema de la endogeneidad Una variable es endógena si Cov(x j, error) = 0. Una variable es exógena si Cov(x j, error) = 0. Consideremos el modelo log(wage) = β 0 + β 1 educ
ESCUELA SUPERIOR POLITECNICA DEL LITORAL
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PRIMER TÉRMINO 2017 ECONOMETRÍA II EXAMEN FINAL Profesor: Gonzalo E. Sánchez Yo,, al firmar este compromiso, reconozco que el presente examen está diseñado para
Soluciones Examen Final de Econometría Universidad Carlos III de Madrid 26 de Mayo de 2015
Soluciones Examen Final de Econometría Universidad Carlos III de Madrid 26 de Mayo de 2015 Conteste todas las preguntas en dos horas y media. Pregunta 1 (33 puntos: Un investigador está considerando las
TEMA 5. Modelos para Datos de Conteo
TEMA 5. Modelos para Datos de Conteo Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos de Conteo 2 Regresión de Poisson 3 Extensiones Datos de Conteo Variable de
Estadística II Tema 4. Regresión lineal simple. Curso 2009/10
Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores
Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13
Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud
TEMA 3. Modelos de Elección Discreta
TEMA 3. Modelos de Elección Discreta Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Introducción 2 Modelos para respuesta binaria Modelo Lineal de Probabilidad Modelos
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Modelos Probit y Tobit aplicados al estudio de la oferta laboral de los trabajadores secundarios en el Perú
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. ESTADÍSTICA Modelos Probit y Tobit aplicados al estudio de la oferta laboral de los trabajadores secundarios en el Perú
Tema 13: Regresión Logística p. 1/20 Tema 13: Regresión Logística Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del
Econometría Aplicada
Econometría Aplicada y función de Verosimilitud Víctor Medina Los objetivos de esta parte del curso principalmente son: 1. Dar algunos ejemplos de decisiones económicas donde la variable dependiente es
Estimación Probit. Microeconomía Cuantitativa. R. Mora. Departmento de Economía Universidad Carlos III de Madrid
Probit Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid R. Mora Probit Esquema El Modelo de Utilidad Aleatoria 1 El Modelo de Utilidad Aleatoria 2 3 R. Mora Probit
Sesión 5 - Modelos de elección discreta multinomiales I
Sesión 5 - Modelos de elección discreta multinomiales I Manuel Barrón 30 de Junio de 2010 En la clase anterior vimos en detalle cómo estimar models de elección discreta binarios. En la primera clase dijimos
Taller I Econometría I
Taller I Econometría I 1. Considere el modelo Y i β 1 + ɛ i, i 1,..., n donde ɛ i i.i.d. N (0, σ 2 ). a) Halle el estimador de β 1 por el método de mínimos cuadrados ordinarios. Para realizar el procedimiento
Microeconomía Cuantitativa. R. Mora
Microeconomía Cuantitativa R. Mora Department of Economics Universidad Carlos III de Madrid Esquema 1 Motivación: el modelo de participación laboral 2 3 La decisión Consumo-Ahorro Función de utilidad U
Tema 4. Regresión lineal simple
Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias
Regresión Lineal Múltiple
Unidad 4 Regresión Lineal Múltiple Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 35 Introducción La idea de la regresión lineal múltiple es modelar el valor esperado de la variable respuesta
Análisis de datos Categóricos
Regresión logística Universidad Nacional Agraria La Molina 2014-2 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Introducción Para una variable aleatoria respuesta
Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado.
Pérdida Esperada Uno de los objetivos de este estudio es construir una función de pérdidas para el portafolio de la cartera de préstamos que ofrece la entidad G&T Continental, basados en el comportamiento
Análisis de datos Categóricos
Introducción Universidad Nacional Agraria La Molina 2017-1 Variable cualitativa Variable respuesta cualitativa Variable respuesta y explicativa Variable de conteo y proporción Escalas de medición Una variable
Introducción a la regresión ordinal
Introducción a la regresión ordinal Jose Barrera [email protected] 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1
Variables Dependientes Limitadas
Variables Dependientes Limitadas Muestras Truncadas y Censuradas: revisión En algunos casos las variables dependientes pueden estar limitadas en su rango. Ejemplos típicos son las limitaciones por la forma
Universidad de la República, Facultad de Ciencias Económicas y Administración.
Universidad de la República, Facultad de Ciencias Económicas y Administración. ECONOMETRIA II- CURSO 2010 Practica 5 MODELOS DE VARIABLE DEPENDIENTE TRUNCADA CENSURADA, MODELOS DE SELECTIVIDAD, MODELOS
Prácticas Tema 4: Modelo con variables cualitativas
Prácticas Tema 4: Modelo con variables cualitativas Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 4.1- Se dispone de información sobre 16 familias sobre
Métodos Estadísticos Multivariados
Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre
Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos
Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.
Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores
Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1
Modelo de Regresión Lineal Simple
1. El Modelo Modelo de Regresión Lineal Simple El modelo de regresión lineal simple es un caso especial del múltple, donde se tiene una sola variable explicativa. y = β 0 + β 1 x + u (1.1) Donde u representa
Econometría 1. Karoll GOMEZ Segundo semestre 2017
Econometría 1 Karoll GOMEZ [email protected] http://karollgomez.wordpress.com Segundo semestre 2017 II. El modelo de regresión lineal Esperanza condicional I Ejemplo: La distribución de los salarios
Estimación del modelo lineal con dos variables
Estimación del modelo lineal con dos variables el método de mínimos cuadrados ordinarios (MCO) Mariana Marchionni [email protected] Mariana Marchionni Estimación del modelo lineal por MCO 1
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores
ECONOMETRÍA I. Tema 4: El Modelo de Regresión Lineal Múltiple: inferencia y validación
ECONOMETRÍA I Tema 4: El Modelo de Regresión Lineal Múltiple: inferencia y validación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA
TEMA 3: Contrastes de Hipótesis en el MRL
TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12
Introduccion a los Modelos de Regresion
([email protected]) Universidad de San Andres Referencias Hayashi (2000) Capitulo 1, pp. 3-46. Cualquier texto basico de econometria (con matrices!!!) Introduccion Modelo lineal: y i = β 1 + β 2 x 2i
Modelo de Regresión Lineal
Modelo de Regresión Lineal Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Introducción Un ingeniero, empleado por un embotellador de gaseosas,
Econometría 1. Karoll GOMEZ Segundo semestre 2017
Econometría 1 Karoll GOMEZ [email protected] http://karollgomez.wordpress.com Segundo semestre 2017 II. El modelo de regresión lineal Esperanza condicional I Ejemplo: La distribución de los salarios
EXAMEN DE ECONOMETRÍA
EXAMEN DE ECONOMETRÍA UNIVERSIDAD CARLOS III DE MADRID CURSO 2015-1 Responda todas las preguntas en 2 horas y media. Valores críticos al final del examen. 1 A partir de una muestra aleatoria de compra-venta
Distribuciones de parámetros conocidos
10.3. CONTRASTE DE BONDAD DE AJUSTE PARA DISTRIBUCIONES265 350 300 observaciones esperado(x) 250 Frecuencias esperadas 200 150 100 Frecuencias observadas 50 0 55 60 65 70 75 80 85 90 Figura 10.2: En los
Test χ 2 de Bondad de Ajuste y Test de Independencia
Universidad de Chile Rodrigo Assar FCFM MA34B Andrés Iturriaga DIM Víctor Riquelme Test χ 2 de Bondad de Ajuste y Test de Independencia Resumen Esta auxiliar está dedicada al test de ajuste de distribuciones,
ESCUELA SUPERIOR POLITECNICA DEL LITORAL
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PRIMER TÉRMINO 2017 ECONOMETRÍA II EXAMEN DE MEJORAMIENTO Profesor: Gonzalo E. Sánchez Yo,, al firmar este compromiso, reconozco que el presente examen está diseñado
Tema1. Modelo Lineal General.
Tema1. Modelo Lineal General. 1. Si X = (X 1, X 2, X 3, X 4 ) t tiene distribución normal con vector de medias µ = (2, 1, 1, 3) t y matriz de covarianzas 1 0 1 1 V = 0 2 1 1 1 1 3 0 1 1 0 2 Halla: a) La
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica
ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación
Modelo lineal general (K variables)
Modelo lineal general (K variables) Interpretación y usos Mariana Marchionni [email protected] Mariana Marchionni Modelo lineal general 1 / 45 Temario de la clase 1 El modelo lineal general
Modelos de Variable Dependiente Limitada. Econometría Aplicada UCEMA Daniel Lema
Modelos de Variable Dependiente Limitada Econometría Aplicada UCEMA Daniel Lema Modelos de Variable Dependiente Limitada Censura y muestras seleccionadas Modelos de regresión censurados Modelos para muestras
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
Análisis estadístico de los factores de riesgo que influyen en la enfermedad Angina de Pecho. Flores Manrique, Luz CAPÍTULO IV ANALISIS DE LOS DATOS
CAPÍTULO IV ANALISIS DE LOS DATOS 4.1 DESCRIPCIÓN DE LOS DATOS Como ya se mencionó anteriormente, el tamaño de la población con la que se está trabajando es de 149 observaciones, 69 de ellas presentan
Regresión lineal simple
Regresión lineal simple Unidad 1 Javier Santibáñez IIMAS, UNAM [email protected] Semestre 2018-2 Javier Santibáñez (IIMAS, UNAM) Regresión simple Semestre 2018-2 1 / 62 Contenido 1 Planteamiento
Modelos de elección discreta Aplicaciones en ordenador
Modelos de elección discreta Aplicaciones en ordenador Román Salmerón Gómez Para ilustrar cómo abordar el análisis de Modelos de elección discreta con el software econométrico Gretl resolveremos el siguiente
Modelos lineales generalizados
GoBack Modelos lineales Guillermo Ayala Gallego Universidad de Valencia 20 de enero de 2009 1 / 57 Verosimilitud de Ajuste de un GLM mediante Fisher Scoring Method s de un modelo lineal generalizado Identifica
Econometría III Examen. 29 de Marzo de 2012
Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
1. Modelos Loglineales tablas de 2 entradas
1. Modelos Loglineales tablas de 2 entradas Los modelos loglineales para tablas de 2 2 describen las asociaciones entre dos variables discretas digamos X y Y. El modelo loglineal nos dice cuan grande es
TEMA 5: Especificación y Predicción en el MRL
EMA 5: Especificación y Predicción en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) ema 5: Especificación y Predicción Curso
Econometría Aplicada
Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que
Mínimos cuadrados generalizados y máxima verosimilitud
CAPíTULO 9 Mínimos cuadrados generalizados y máxima verosimilitud 9.1. Introducción En el marco del modelo clásico, los supuestos de homocedasticidad, E(u 2 i ) = σ2 u (i = 1, 2,... n), y ausencia de autocorrelación,
T3. El modelo lineal básico
T3. El modelo lineal básico Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 41 Índice 1 Regresión lineal múltiple Planteamiento Hipótesis
Distribuciones multivariadas
Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =
TEMA 3: PROPIEDADES DEL ESTIMADOR MCO
TEMA 3: PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
1. Conceptos de Regresión y Correlación. 2. Variables aleatorias bidimensionales. 3. Ajuste de una recta a una nube de puntos
TEMA 10 (curso anterior): REGRESIÓN Y CORRELACIÓN 1 Conceptos de Regresión y Correlación 2 Variables aleatorias bidimensionales 3 Ajuste de una recta a una nube de puntos 4 El modelo de la correlación
Hoja de Ejercicios 4 Análisis de regresión con información cualitativa
Hoja de Ejercicios 4 Análisis de regresión con información cualitativa Nota: En aquellos ejercicios en los que se incluyen estimaciones y referencia al archivo de datos utilizado, el estudiante debería
Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011
Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños
Unidad Temática 3: Estadística Analítica. Unidad 9 Regresión Lineal Simple Tema 15
Unidad Temática 3: Estadística Analítica Unidad 9 Regresión Lineal Simple Tema 15 Estadística Analítica CORRELACIÓN LINEAL SIMPLE Indica la fuerza y la dirección de una relación lineal proporcional entre
Overfit, cross validation y bootstrap
Universisad de San Andrés y CONICET Cueestiones preliminares Sea z n una sucesion de variables aleatorias escalares. Consideremos la siguiente sucesion z n = n i=1 z i n Ley de grandes numeros (Kolmogorov):
Introducción al modelo de regresión logística
Introducción al modelo de regresión logística JOSÉ R BERRENDERO DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE MADRID INTRODUCCIÓN Y MOTIVACIÓN El modelo de regresión logística se utiliza para investigar
Modelos para Variables Censuradas y Truncadas
Modelos para Variables Censuradas y Truncadas Javier Alejo Maestría en Economía UNLP Agosto 2017 Javier Alejo Econometría Avanzada 1 Temario de la clase 1 2 3 4 5..... Javier Alejo Econometría Avanzada
Los estimadores mínimo cuadráticos bajo los supuestos clásicos
Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia Mariana Marchionni [email protected] Mariana Marchionni MCO bajo los supuestos clásicos 1
5. Descripción teórica de los modelos econométricos. La naturaleza del estudio que esta tesis pretende realizar nos lleva a enfrentarnos
5. Descripción teórica de los modelos econométricos El problema de la auto-selección La naturaleza del estudio que esta tesis pretende realizar nos lleva a enfrentarnos inevitablemente a un problema de
ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía
ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión
Andrea Bayancela Espinel Coordinación y edición: Eugenio Paladines y David Villamar
Determinación de los niveles óptimos del Seguro de Depósitos del Ecuador a partir de su función de distribución de pérdidas esperadas y de la estimación de las probabilidades de riesgo alto de las entidades
GUIÓN TEMA 3. CONTRASTE DE HIPÓTESIS EN EL MRL Contrastes de hipótesis en el MRL
ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA 3. CONTRASTE DE HIPÓTESIS EN EL MRL Los procedimientos clásicos de contrastes de hipótesis
TEMA 10 Correlación y regresión. El modelo de regresión simple
TEMA 10 Correlación y regresión. El modelo de regresión simple Karl Pearson (1857-1936) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones no lineales
Curs de Modelització Estadística Bàsica amb Deducer. Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero
Curs de Modelització Estadística Bàsica amb Deducer Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero 1. Model de Regressió Lineal 2. Model ANOVA 3. Model Lineal General 4. Model de
Jesús García Herrero TÉCNICAS CLÁSICAS DE ANÁLISIS DE DATOS
Jesús García Herrero TÉCNICAS CLÁSICAS DE ANÁLISIS DE DATOS En esta clase se presentan los primeros algoritmos Análisis de Datos para abordar tareas de aprendizaje de modelos descriptivos y predictivos.
Análisis de datos Categóricos
Inferencia para tablas de contingencia Universidad Nacional Agraria La Molina 2013-1 Odds ratio Diferencia de proporciones Riesgo relativo Ejemplo Odds ratio El odds ratio muestral es: El estimador modicado
Introducción a los modelos de elección discreta
Introducción a los modelos de elección discreta Santiago A. Gallón Departamento de Matemáticas y Estadística Departamento de Economía Grupo de Econometría Aplicada Universidad de Antioquia, Medellín II
