Análisis de datos Categóricos
|
|
|
- Sofia Soto Marín
- hace 7 años
- Vistas:
Transcripción
1 Regresión logística Universidad Nacional Agraria La Molina
2 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Introducción Para una variable aleatoria respuesta Y y una variable explicativa X, sea: π (x) = Pr (Y = 1 X = x) = 1 Pr (Y = 0 X = x) El modelo de regresión logística es: que es equivalente a: π (x) = log exp {α + βx} 1 + exp {α + βx} π (x) 1 π (x) = α + βx
3 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Interpretación de parámetros El signo del coeciente β determina si π (x) aumenta o disminuye conforme x aumenta. Si β = 0 entonces Y es independiente de X. El odds se incrementa de forma proporcional a e β por cada unidad adicional en x. El parámetro α no suele ser de mayor interés. Si π (x) = 1/2 entonces x = α/β. El valor anterior es llamado LD50 y corresponde a la dosis con un 50 % de posibilidades de tener resultados letales.
4 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Gracando las proporciones Antes de estimar el modelo hay que observar la data para vericar si el modelo de regresión logístico es apropiado. Resulta útil gracar las proporciones muestrales p i = y i /n i versus x. El logit muestral i es: log Una alternativa es usar: p i 1 p i = log log y i n i y i y i + 1/2 n i y i + 1/2
5 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Ejemplo: Cangrejo de herradura Se considera nuevamente la data correspondiente al número de satélites del cangrejo hembra de herradura. La variable respuesta binaria es Y = 1 si el cangrejo hembra tiene al menos un satélite y Y = 0 si no tiene satélites. La variable explicativa X es el ancho del caparazón del cangrejo hembra. El modelo logístico estimado es: ˆπ (x) = exp { 12, ,497x} 1 + exp { 12, ,497x}
6 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Ejemplo: Cangrejo de herradura Figura 1: Proporciones estimadas y observadas
7 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Inferencia Para el modelo con un solo predictor: log π (x) 1 π (x) = α + βx las pruebas de signicancia se enfocan en H 0 : β = 0, la hipótesis de independencia. Se pueden utilizar la prueba de Wald, scores y razón de verosimilitud. Para muestras grandes las tres pruebas anteriores dan resultados similares.
8 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Inferencia Los intervalos de conanza suelen ser más ecientes. El intervalo de Wald es: ˆβ ± z 1 α/2 EE( ˆβ) Un intervalo de conanza para logitπ(x 0 ) es: ˆα + ˆβx 0 ± z 1 α/2 EE(ˆα + ˆβx 0 ) donde EE es la raíz cuadrada de: Var(ˆα + ˆβx 0 ) = Var(ˆα) + Var( ˆβx 0 ) + 2x 0 Cov(ˆα, ˆβ)
9 Regresión logística simple Interpretación de parámetros Gracando las proporciones Inferencia Ejemplo: Cangrejo de herradura Modelo 1 > Cangrejo <- read.table(le="g://cangrejo.txt", header=t) > attach(cangrejo) > Sat <- ifelse(sat>0, 1, 0) > modelo1 <- glm(sat ~ Ancho, family=binomial(link=logit)) Matriz de varianza-covarianza > vcov(modelo1)
10 El modelo general de regresión logística es: ( ) πi log = x T i β 1 π i La devianza es: D = 2 N i=1 [ y i log ( yi ŷ i ) ( ni y i + (n i y i ) log n i ŷ i )] y tiene la forma: D = 2 o i log o i e i i
11 Las frecuencias observadas o i son y i y n i y i, mientras que las frecuencias esperadas e i son: ŷ i = nˆπ i y n i ŷ i obtenidas usando el modelo estimado. La prueba de bondad de ajuste del modelo puede ser llevada a cabo usando la aproximación: D χ 2 N p donde N es el número de datos y p el número de parámetros a estimar en el modelo.
12 Ejemplo: Diabetes Se tiene información proveniente de un estudio con 768 pacientes mujeres del Instituto Nacional de enfermedades Digestivas, Diabetes y de Riñón. Las variables independientes involucradas son: número de embarazos, concentración de glucosa en plasma en una prueba de tolerancia oral (mmol/l), presión arterial diastólica (mmhg), grosor del pliegue del tríceps (mm), suero de insulina en dos horas (muu/ml), índice de masa corporal, función pedigrí de diabetes, edad (años). La variable respuesta diabetes cuyo valor 1 es interpretado como prueba de diabetes positiva.
13 Ejemplo: Diabetes Modelo 1 > modelo1 <- glm(diabetes ~., family=binomial(link=logit), data=diabetes) Modelo 2 > modelo2 <- glm(diabetes ~ Embarazos + Plasma + Presion + Indice + Pedigri, family=binomial(link=logit), data=diabetes) Modelo 1 versus Modelo 2 > anova(modelo2, modelo1, test="chisq")
14 El estadístico chi-cuadrado de Pearson es: X 2 = N i=1 (y i n i ˆπ i ) 2 n i ˆπ i (1 ˆπ i ) χ2 N p Si y es 0 o 1 entonces X 2 y D no proporcionan una medida de bondad de ajuste que sea apropiada. Lo anterior también podria ocurrir si las variables explicativas son continuas. En cualquiera de estas situaciones es preferible usar el estadístico de Hosmer y Lemeshow (1980).
15 La idea es agrupar las observaciones en categorías de acuerdo a las probabilidades estimadas usando g grupos cada uno con aproximadamente la misma cantidad de observaciones. Con 10 grupos, el primer grupo de conteos observados y sus correspondientes conteos estimados esta formado con las n/10 observaciones con las probabilidades más altas y así sucesivamente. El valor estimado es la suma de las probabilidades estimadas en cada grupo. Sea y ij la observación j en el grupo denido por la partición i, i = 1, 2,, g y j = 1, 2,, n i.
16 Sea ˆπ ij las probabilidades estimadas con la data no agrupada. El estadístico de Hosmer y Lemeshow es: X 2 HL = g i=1 ( j y ij j ˆπ ij) 2 ( ( ( ) ) j ij) ˆπ 1 j ˆπ ij /n i cuya distribución es aproximadamente chi-cuadrado con g 2 grados de libertad. Si el valor es grande puede ser evidencia de una falta de ajuste en el modelo.
17 Es posible comparar el logaritmo de la verosimilitud del modelo estimado y el modelo minimal que es aquel donde todas las probabilidades son iguales. Sea ˆπ i las probabilidades estimadas para y i bajo el modelo de interés. La estadística chi-cuadrado de razón de verosimilitud es: Otra estadística usada es: C = 2 (l(ˆπ, y) l( π, y)) χ 2 p pseudo R 2 = l( π, y) l(ˆπ, y) l( π, y)
18 de Pearson El residual de Pearson es: p k = y k n k ˆπ k nk ˆπ k (1 ˆπ k ) k = 1, 2,, m tal que X 2 = p 2 k. El residual estandarizado de Pearson es: r pk = p k (1 hk ) donde h k es el leverage obtenido de la matriz hat.
19 de Devianza Los residuales de Devianza son: { [ ( ) yk d k = signo(y k n k ˆπ k ) 2 y k log n k ˆπ k ( )]} nk y k +(n k y k ) log n k n k ˆπ k donde D = d 2 k. Los residuales estandarizados de Devianza son: r dk = d k (1 hk )
20 Residual de Pearson > res.pearson <- resid(modelo2, type="pearson") Residual estandarizado de Pearson > res.est.p <- res.pearson/sqrt(1-lm.inuence(modelo2)$hat) Residual de Devianza > res.devianza <- resid(modelo2, type="deviance") Residual estandarizado de Devianza > res.est.d <- res.devianza/sqrt(1-lm.inuence(modelo2)$hat)
Guillermo Ayala Gallego Universidad de Valencia
GoBack Regresión logística Guillermo Ayala Gallego Universidad de Valencia 4 de febrero de 2009 1 / 22 Puede que sea el procedimiento estadístico más utilizado. Con aplicaciones frecuentes en Medicina
Análisis de datos Categóricos
Introducción Universidad Nacional Agraria La Molina 2017-1 Variable cualitativa Variable respuesta cualitativa Variable respuesta y explicativa Variable de conteo y proporción Escalas de medición Una variable
Análisis de datos Categóricos
Inferencia para tablas de contingencia Universidad Nacional Agraria La Molina 2013-1 Odds ratio Diferencia de proporciones Riesgo relativo Ejemplo Odds ratio El odds ratio muestral es: El estimador modicado
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores
Regresión Logística usando R
Universidad Nacional Agraria La Molina Departamento de Estadística e Informática Ciclo 2012 1 Grupo E Data Cangrejo Regresión Logística usando R > Cangrejo
Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos
Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.
Cálculos de Regresión Logística en R, Caso de una covariable.
Cálculos de Regresión Logística en R, Caso de una covariable. Carga de datos (Tabla 1.1, Hosmer-Lemeshow): CH=read.table( CHDAGE.txt,header = T) attach(ch) Gráfico de Dispersión: plot(age,chd,xlab= Edad,
Análisis de datos Categóricos
Pruebas Chi-cuadrado para tablas de dos vías Universidad Nacional Agraria La Molina 2017-1 Independencia y Homogeneidad Independencia y Homogeneidad Prueba de Pearson y G 2 Una prueba de independencia
Regresión Lineal Simple y Múltiple Regresión Logística
Regresión Lineal Simple y Múltiple Regresión Logística Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura MUI en Ciencias de la Salud MUI en Ciencias de la Salud (UEx) Regresión
Los estimadores mínimo cuadráticos bajo los supuestos clásicos
Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia Mariana Marchionni [email protected] Mariana Marchionni MCO bajo los supuestos clásicos 1
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
Estadística Bayesiana
Universidad Nacional Agraria La Molina 2017-1 Teoría de la decisión Riesgo de Bayes La teoría de decisión es un área de suma importancia en estadística ya que muchos problemas del mundo real pueden tomar
Estimación de Parámetros.
Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un
Análisis de Datos Categóricos. Leticia Gracia Medrano
Análisis de Datos Categóricos Leticia Gracia Medrano ii Contents 1 Modelo Logístico 1 1.1 Estimación de parámetros.................... 1 1.2 Interpretación de los parámetros................. 2 1.3 Ejemplo..............................
1. Modelos para conteos
1. Modelos para conteos En esta sección se modelarán conteos, que resultan de diversas situaciones, por ejemplo: el número de accidentes en una carretera, el número de caries que tiene una persona, el
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
Tema 13: Regresión Logística p. 1/20 Tema 13: Regresión Logística Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del
TEMA 5. Modelos para Datos de Conteo
TEMA 5. Modelos para Datos de Conteo Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos de Conteo 2 Regresión de Poisson 3 Extensiones Datos de Conteo Variable de
Modelos lineales generalizados
GoBack Modelos lineales Guillermo Ayala Gallego Universidad de Valencia 20 de enero de 2009 1 / 57 Verosimilitud de Ajuste de un GLM mediante Fisher Scoring Method s de un modelo lineal generalizado Identifica
TEMA 4 Regresión logística
TEMA 4 Regresión logística José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Variable respuesta dicotómica. Ejemplo. El
Tema 4. Regresión lineal simple
Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias
Anomalías en regresión y medidas remediales
Universidad Nacional Agraria La Molina 2011-2 C:/Users/moranjara/Desktop/trabajo_inf Introducción Introducción En este capítulo se estudiarán algunas medidas de diagnóstico que permitirán vericar si los
Estadística Bayesiana
Introducción Universidad Nacional Agraria La Molina 2017-1 Introducción Introducción La estadística Bayesiana le debe su nombre al trabajo pionero del reverendo Thomas Bayes titulado: An Essay towards
Modelo de Regresión Lineal Simple
1. El Modelo Modelo de Regresión Lineal Simple El modelo de regresión lineal simple es un caso especial del múltple, donde se tiene una sola variable explicativa. y = β 0 + β 1 x + u (1.1) Donde u representa
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
Tema 8: Regresión y Correlación
Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice
Estadística aplicada al medio ambiente
Estadística aplicada al medio ambiente III. Regresión lineal 3 o de CC. AA. Departamento de Matemáticas Universidad Autónoma de Madrid 2011/12 Planteamiento Modelo Estimación de parámetros Intervalos de
TEMA 4 Modelo de regresión múltiple
TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.
Regresión múltiple. Demostraciones. Elisa Mª Molanes López
Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +
REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE
UNIDAD 3 REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE Relación entre variables de interés 1 Relación entre variables de interés Muchas decisiones gerenciales se basan en la relación entre 2 o
TEMA 10 Correlación y regresión. El modelo de regresión simple
TEMA 10 Correlación y regresión. El modelo de regresión simple Karl Pearson (1857-1936) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones no lineales
Estadística Computacional. M. González
Estadística Computacional M. González Facultad de Medicina. Universidad de Extremadura M. González (UEx) Estadística Computacional 1 / 23 Índice Modelos Lineales Generalizados Bioensayos: Modelos Dosis-Respuesta
Estimación del modelo lineal con dos variables
Estimación del modelo lineal con dos variables el método de mínimos cuadrados ordinarios (MCO) Mariana Marchionni [email protected] Mariana Marchionni Estimación del modelo lineal por MCO 1
Contrastes basados en el estadístico Ji Cuadrado
Capítulo 10 Contrastes basados en el estadístico Ji Cuadrado 10.1. Introducción Existen multitud de situaciones en el ámbito de la salud en el que las variables de interés, las cuales no pueden cuantificarse
Muestreo e intervalos de confianza
Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física
Regresión Lineal Múltiple
Unidad 4 Regresión Lineal Múltiple Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 35 Introducción La idea de la regresión lineal múltiple es modelar el valor esperado de la variable respuesta
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
Modelos para variables categóricas
Gabriel V. Montes-Rojas Modelo logit multinomial Supongamos que la variable dependiente toma muchos valores, ej. y = 0, 1, 2..., J, aunque los valores de y no representan ningún orden en particular. Éste
Prácticas Tema 4: Modelo con variables cualitativas
Prácticas Tema 4: Modelo con variables cualitativas Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 4.1- Se dispone de información sobre 16 familias sobre
Estadística Descriptiva II: Relación entre variables
Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de
Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011
Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños
Regresión logística bivariable para tablas de contingencia usando metodología GSK.
Regresión logística bivariable para tablas de contingencia usando metodología GSK KELLY JOHANA HENAO ZULUAGA Director: PhD Juan Carlos Correa Morales Profesor Asociado Escuela de Estadística Universidad
Curso de nivelación Estadística y Matemática
Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo
Curso online de Supervivencia y Regresión Lineal, Logística y de Cox 2018
MANUAL DE IDENTIDAD VSUAL CORPORATIVA PROGRAMA: Curso online de Supervivencia y Regresión Lineal, Logística y de Cox 2018 Departamento de Formación Médica Continuada (ICOMEM) SUPERVIVENCIA Y REGRESIÓN
TEMA 2: Propiedades de los estimadores MCO
TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso
Análisis de datos Categóricos
Tablas de contingencia de dos vías Universidad Nacional Agraria La Molina 2017-1 Notación y estructura de probabilidad Independencia de variables categóricas Distribuciones de muestreo Tipos de estudios
Estadística II Tema 4. Regresión lineal simple. Curso 2009/10
Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores
MODELOS LINEALES GENERALIZADOS
MODELOS LINEALES GENERALIZADOS Conceptos básicos Ignacio Méndez Gómez-Humarán [email protected] Los Modelos Lineales Generalizados (GLM por sus siglas en inglés) son una familia de modelos estadísticos
Modelos Lineales Generalizados
Modelos Lineales Generalizados 1 DefinicióndeunMLG Y1,Y2,...,Yn,conmediasµ1,µ2,...,µn,Yi, i=1,...,n,tienefdpmiembrodela familia exponencial a un parámetro, con las siguientes propiedades: 1.LadistribucióndecadaunodelosYi,paratodoi,estáenlaformacanónica,i.e.:
2. ESTADÍSTICA DESCRIPTIVA 15 Estadística descriptiva.. Variables aleatorias Descripción de variables cuantitativas
" INDICE PRÓLOGO... XXIII PREFACIO GUÍA DE LECTURA XXV XXIX 1. INTRODUCCIÓN A LA ESTADÍSTICA 1 1.1. Estadística 1 1.2. Historia 3 1.3. Población y muestra 4 1.4. Estadística aplicada 7 1.5. Aplicaciones
Análisis estadístico de los factores de riesgo que influyen en la enfermedad Angina de Pecho. Flores Manrique, Luz CAPÍTULO IV ANALISIS DE LOS DATOS
CAPÍTULO IV ANALISIS DE LOS DATOS 4.1 DESCRIPCIÓN DE LOS DATOS Como ya se mencionó anteriormente, el tamaño de la población con la que se está trabajando es de 149 observaciones, 69 de ellas presentan
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Tema1. Modelo Lineal General.
Tema1. Modelo Lineal General. 1. Si X = (X 1, X 2, X 3, X 4 ) t tiene distribución normal con vector de medias µ = (2, 1, 1, 3) t y matriz de covarianzas 1 0 1 1 V = 0 2 1 1 1 1 3 0 1 1 0 2 Halla: a) La
ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica
ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación
Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.
NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido
Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4
g(e (y)) = α + β 1 x β k x k
Modelos lineales generalizados Especifica la función para E (y) = μ g(.) = Función liga o conectora Conecta los componentes aleatorio y sistemático g(e (y)) = α + β 1 x 1 + + β k x k Componente Aleatorio
TEMA 2 Diseño de experimentos: modelos con varios factores
TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial
Regresión ponderada y falta de ajuste
Capítulo 4 Regresión ponderada y falta de ajuste 4.1. Introducción En este capítulo se presentan la regresión ponderada y la prueba de falta de ajuste como un conjunto adicional de herramientas usadas
Curs de Modelització Estadística Bàsica amb Deducer. Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero
Curs de Modelització Estadística Bàsica amb Deducer Anabel Blasco Ana Vázquez Anna Espinal Llorenç Badiella Oliver Valero 1. Model de Regressió Lineal 2. Model ANOVA 3. Model Lineal General 4. Model de
Estadística Bayesiana
Modelos uniparamétricos Universidad Nacional Agraria La Molina 2017-1 Modelos uniparamétricos Se tiene una secuencia de ensayos independientes de Bernoulli y 1,, y n. Sea y el número total de éxitos en
Economía Aplicada. Modelos con variables dependiente binarias. Departamento de Economía Universidad Carlos III de Madrid
Economía Aplicada Modelos con variables dependiente binarias Departamento de Economía Universidad Carlos III de Madrid Ver Stock y Watson (capítulo 11) 1 / 28 Modelos con variables dependiente binarias:
Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis
Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis VDC Prof. Mª JOSÉ PRIETO CASTELLÓ MÉTODOS ESTADÍSTICOS. TÉCNICAS ESTADÍSTICA DESCRIPTIVA TEORÍA DE LA PROBABILIDAD
Estadística II Examen Final 19/06/2015 Soluciones. Responda a las preguntas siguientes en los cuadernillos de la Universidad
Estadística II Examen Final 19/06/2015 Soluciones Responda a las preguntas siguientes en los cuadernillos de la Universidad Utilice diferentes cuadernillos para responder a cada uno de los ejercicios Indique
Modelo de Regresión Lineal
Modelo de Regresión Lineal Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Introducción Un ingeniero, empleado por un embotellador de gaseosas,
5.5 Modelo de regresión. se especificó en los términos siguientes: (6.3.1) 1,2,3,..N. Donde:
5.5 Modelo de regresión El modelo de regresión lineal que se aplicó para explicar la relación entre producción antigüedad, edad, capital humano, apiarios y camioneta de los apicultores nayaritas se especificó
Modelo de Análisis de la Covarianza. Introducción al modelo de Medidas Repetidas
Modelo de Análisis de la Covariza. Introducción al modelo de Medidas Repetidas Modelo de Análisis de la Covariza Introducción El diseño por bloques se considera para eliminar el efecto de los factores
MODELO DE REGRESIÓN LOGÍSTICA
Instituto Valenciano de Investigaciones Agrarias Seminario MÉTODOS ESTADÍSTICOS PARA LA INVESTIGACIÓN AGRONÓMICA Tema 10 MODELO DE REGRESIÓN LOGÍSTICA Tema 10 MODELO DE REGRESIÓN LOGÍSTICA 1. Modelos de
T3. El modelo lineal básico
T3. El modelo lineal básico Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 41 Índice 1 Regresión lineal múltiple Planteamiento Hipótesis
El modelo de regresión múltiple
El de regresión múltiple Simple El de regresión múltiple es la extensión a k variables explicativas del de regresión simple. La estructura del de regresión múltiple es la siguiente: y = f (x 1,..., x k
ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN
CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)
Econometría Aplicada
Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que
Modelos con variable dependiente limitada
Modelos con variable dependiente limitada Universidad Iberoamericana Diciembre 2014 Y es variable aleatoria, toma solo dos valores, uno o cero, asociada a la ocurrencia de un evento (1 ocurre, 0 si no).
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas [email protected] 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por
Overfit, cross validation y bootstrap
Universisad de San Andrés y CONICET Cueestiones preliminares Sea z n una sucesion de variables aleatorias escalares. Consideremos la siguiente sucesion z n = n i=1 z i n Ley de grandes numeros (Kolmogorov):
Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias
Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados
Regresión lineal simple
Regresión lineal simple Unidad 1 Javier Santibáñez IIMAS, UNAM [email protected] Semestre 2018-2 Javier Santibáñez (IIMAS, UNAM) Regresión simple Semestre 2018-2 1 / 62 Contenido 1 Planteamiento
Econometría Universidad Carlos III de Madrid Examen Extraordinario 25 de Junio de Pr (N (0, 1) > 1, 282) = 0, 10
Econometría Universidad Carlos III de Madrid Examen Extraordinario 25 de Junio de 2014 Instrucciones para la realización del examen: Dispone de 2 horas y media para responder al examen La evaluación consta
Soluciones Examen Final de Econometría Universidad Carlos III de Madrid 26 de Mayo de 2015
Soluciones Examen Final de Econometría Universidad Carlos III de Madrid 26 de Mayo de 2015 Conteste todas las preguntas en dos horas y media. Pregunta 1 (33 puntos: Un investigador está considerando las
Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste.
Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Tema 1 (III) Estadística 2 Curso 08/09 Tema 1 (III) (Estadística 2) Contrastes de bondad de
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
Capítulo 8. Selección de variables Introducción
Capítulo 8 Selección de variables 8.1. Introducción En muchos problemas de regresión es posible considerar un número importante de variables predictoras. Un empresario podría estudiar los factores que
Introducción a la regresión ordinal
Introducción a la regresión ordinal Jose Barrera [email protected] 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1
Estimación Máxima Verosimilitud
Estimación Máxima Verosimilitud Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Outline Motivación 1 Motivación 2 3 4 5 Estrategias generales de estimación Hay
Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14
Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca
Estadística; 3º CC. AA. Examen final, 23 de enero de 2009
Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados
Regresión Simple. Leticia Gracia Medrano. 2 de agosto del 2012
Regresión Simple Leticia Gracia Medrano. [email protected] 2 de agosto del 2012 La ecuación de la recta Ecuación General de la recta Ax + By + C = 0 Cuando se conoce la ordenada al origen y su pendiente
Métodos Estadísticos Multivariados
Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre
