TIPOS DE ARBOLES. Integrantes: Liliana Xitlali Martinez Lovera Octavio Catarino Aguilar

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TIPOS DE ARBOLES. Integrantes: Liliana Xitlali Martinez Lovera Octavio Catarino Aguilar"

Transcripción

1 TIPOS DE ARBOLES Integrantes: Liliana Xitlali Martinez Lovera Octavio Catarino Aguilar

2 En ciencias de la informática, un árbol es una estructura de datos ampliamente usada que imita la forma de un árbol (un conjunto de nodos conectados).

3 Un nodo es la unidad sobre la que se construye el árbol y puede tener cero o más nodos hijos conectados a él. Se dice que un nodo a es padre de un nodo b si existe un enlace desde a hasta b (en ese caso, también decimos que b es hijo de a).

4 Sólo puede haber un único nodo sin padres, que llamaremos raíz. Un nodo que no tiene hijos se conoce como hoja. Los demás nodos (tienen padre y uno o varios hijos) se les conoce como rama.

5 Ejemplo de un arbol A B C padre hijos Caso base: un árbol con sólo un nodo (es a la vez raíz del árbol y hoja).

6 Un nuevo árbol a partir de un nodo nr y k árboles de raíces con elementos cada uno, puede construirse estableciendo una relación padre-hijo entre nr y cada una de las raíces de los k árboles. El árbol resultante de nodos tiene como raíz el nodo nr, los nodos son los hijos de nr y el conjunto de nodos hoja está formado por la unión de los k conjuntos hojas iniciales. A cada uno de los árboles Ai se les denota ahora subárboles de la raíz.

7 Una sucesión de nodos del árbol, de forma que entre cada dos nodos consecutivos de la sucesión haya una relación de parentesco, decimos que es un recorrido árbol.

8 Recorrido profundidad: En el primer caso, se listan los nodos expandiendo el hijo actual de cada nodo hasta llegar a una hoja, donde se vuelve al nodo anterior probando por el siguiente hijo y así sucesivamente. Recorrido en anchura: En el segundo, por su parte, antes de listar los nodos de nivel n + 1 (a distancia n + 1 aristas de la raíz), se deben haber listado todos los de nivel n.

9 El recorrido en preorden: también llamado orden previo consiste en recorrer en primer lugar la raíz y luego cada uno de los hijos en orden previo. El recorrido en inorden: también llamado orden simétrico (aunque este nombre sólo cobra significado en los árboles binarios) consiste en recorrer en primer lugar A 1, luego la raíz y luego cada uno de los hijos en orden simétrico.

10 El recorrido en postorden: también llamado orden posterior consiste en recorrer en primer lugar cada uno de los hijos en orden posterior y por último la raíz.

11 Las operaciones comunes en árboles son: Enumerar todos los elementos. Buscar un elemento. Dado un nodo, listar los hijos (si los hay). Borrar un elemento. Eliminar un subárbol (algunas veces llamada podar). Añadir un subárbol (algunas veces llamada injertar). Encontrar la raíz de cualquier nodo.

12 Por su parte, la representación puede realizarse de diferentes formas. Las más utilizadas son: Representar cada nodo como una variable en el heap, con punteros a sus hijos y a su padre. Representar el árbol con un array donde cada elemento es un nodo y las relaciones padre-hijo vienen dadas por la posición del nodo en el array.

13 Tipos de arboles

14

15 un árbol binario es una estructura de datos en la cual cada nodo siempre tiene un hijo izquierdo y un hijo derecho. No pueden tener más de dos hijos (de ahí el nombre "binario"). Si algún hijo tiene como referencia a null, es decir que no almacena ningún dato, entonces este es llamado un nodo externo. En el caso contrario el hijo es llamado un nodo interno. Usos comunes de los árboles binarios son los árboles binarios de búsqueda, los montículos binarios y Codificación de Huffman.

16 En teoría de grafos, se usa la siguiente definición: «Un árbol binario es un grafo conexo, acíclico y no dirigido tal que el grado de cada vértice no es mayor a 3». De esta forma sólo existe un camino entre un par de nodos.

17 Un árbol binario con enraizado es como un grafo que tiene uno de sus vértices, llamado raíz, de grado no mayor a 2. Con la raíz escogida, cada vértice tendrá un único padre, y nunca más de dos hijos. Si rehusamos el requerimiento de la conectividad, permitiendo múltiples componentes conectados en el grafo, llamaremos a esta última estructura un bosque.

18 TIPOS DE ÁRBOL BINARIO Un árbol binario es un árbol con raíz en el que cada nodo tiene como máximo dos hijos. Un árbol binario lleno es un árbol en el que cada nodo tiene cero o dos hijos. Un árbol binario perfecto es un árbol binario lleno en el que todas las hojas (vértices con cero hijos) están a la misma profundidad (distancia desde la raíz, también llamada altura). A veces un árbol binario perfecto es denominado árbol binario completo. Otros definen un árbol binario completo como un árbol binario lleno en el que todas las hojas están a profundidad n o n-1, para alguna n.

19

20 ALMACENAMIENTO Los árboles binarios pueden ser construidos a partir de lenguajes de programación de varias formas. En un lenguaje con registros y referencias, los árboles binarios son construidos típicamente con una estructura de nodos y punteros en la cual se almacenan datos, cada uno de estos nodos tiene una referencia o puntero a un nodo izquierdo y a un nodo derecho denominados hijos.

21 En ocasiones, también contiene un puntero a un único nodo. Si un nodo tiene menos de dos hijos, algunos de los punteros de los hijos pueden ser definidos como nulos para indicar que no dispone de dicho nodo. En la figura adjunta se puede observar la estructura de dicha implementación.

22 ÁRBOL AVL Árbol AVL es un tipo especial de árbol binario ideado por los matemáticos rusos Adelson-Velskii y Landis. Fue el primer árbol de búsqueda binario autobalanceable que se ideó

23 El árbol AVL toma su nombre de las iniciales de los apellidos de sus inventores, Adelson- Velskii y Landis. Lo dieron a conocer en la publicación de un artículo en 1962: "An algorithm for the organization of information" ("Un algoritmo para la organización de la información").

24 Los árboles AVL están siempre equilibrados de tal modo que para todos los nodos, la altura de la rama izquierda no difiere en más de una unidad de la altura de la rama derecha. Gracias a esta forma de equilibrio (o balanceo), la complejidad de una búsqueda en uno de estos árboles se mantiene siempre en orden de complejidad O(log n). El factor de equilibrio puede ser almacenado directamente en cada nodo o ser computado a partir de las alturas de los subárboles. Para conseguir esta propiedad de equilibrio, la inserción y el borrado de los nodos se ha de realizar de una forma especial. Si al realizar una operación de inserción o borrado se rompe la condición de equilibrio, hay que realizar una serie de rotaciones de los nodos.

25

26 Definición de la altura de un árbol Sea T un árbol binario de búsqueda y sean T i y T d sus subárboles, su altura H(T), es: 0 si el árbol T contiene solo la raíz 1 + max(h(t i ),H(T d )) si contiene más nodos Definición de árbol AVL Un árbol vacío es un árbol AVL Si T es un árbol no vacío y T i y T d sus subárboles, entonces T es AVL si y solo si: T i es AVL T d es AVL H(T i ) H(T d ) < = 1

27 Factor de equilibrio Cada nodo, además de la información que se pretende almacenar, debe tener los dos punteros a los árboles derecho e izquierdo, igual que los árboles binarios de búsqueda (ABB), y además el dato que controla el factor de equilibrio. El factor de equilibrio es la diferencia entre las alturas del árbol derecho y el izquierdo:

28 FE = altura subárbol derecho - altura subárbol izquierdo; Por definición, para un árbol AVL, este valor debe ser -1, 0 ó 1. Si el factor de equilibrio de un nodo es: 0 -> el nodo está equilibrado y sus subárboles tienen exactamente la misma altura. 1 -> el nodo está equilibrado y su subárbol derecho es un nivel más alto. -1 -> el nodo está equilibrado y su subárbol izquierdo es un nivel más alto. Si el factor de equilibrio Fe 2 o Fe -2 es necesario reequilibrar.

29 Operaciones Las operaciones básicas de un árbol AVL implican generalmente el realizar los mismos algoritmos que serían realizados en un árbol binario de búsqueda desequilibrado, pero precedido o seguido por una o más de las lla El reequilibrado se produce de abajo hacia arriba sobre los nodos en los que se produce el desequilibrio. Pueden darse dos casos: rotación simple o rotación doble; a su vez ambos casos pueden ser hacia la derecha o hacia la izquierda.madas "rotaciones AVL".

30 ROTACIÓN SIMPLE A LA DERECHA. De un árbol de raíz (r) y de hijos izquierdo (i) y derecho (d), lo que haremos será formar un nuevo árbol cuya raíz sea la raíz del hijo izquierdo, como hijo izquierdo colocamos el hijo izquierdo de i (nuestro i ) y como hijo derecho construimos un nuevo árbol que tendrá como raíz, la raíz del árbol (r), el hijo derecho de i (d ) será el hijo izquierdo y el hijo derecho será el hijo derecho del árbol (d).

31

32 ROTACIÓN SIMPLE A LA IZQUIERDA. De un árbol de raíz (r) y de hijos izquierdo (i) y derecho (d), consiste en formar un nuevo árbol cuya raíz sea la raíz del hijo derecho, como hijo derecho colocamos el hijo derecho de d (nuestro d ) y como hijo izquierdo construimos un nuevo árbol que tendrá como raíz la raíz del árbol (r), el hijo izquierdo de d será el hijo derecho (i ) y el hijo izquierdo será el hijo izquierdo del árbol (i). Precondición : Tiene que tener hijo derecho no vacío.

33

34 ROTACIÓN DOBLE A LA DERECHA.

35 ROTACIÓN DOBLE A LA IZQUIERDA.

36 intercesión La inserción en un árbol de AVL puede ser realizada insertando el valor dado en el árbol como si fuera un árbol de búsqueda binario desequilibrado y después retrocediendo hacia la raíz, rotando sobre cualquier nodo que pueda haberse desequilibrado durante la inserción. Proceso de inserción: 1.buscar hasta encontrar la posición de inserción o modificación (proceso idéntico a inserción en árbol binario de búsqueda) 2.insertar el nuevo nodo con factor de equilibrio equilibrado 3.desandar el camino de búsqueda, verificando el equilibrio de los nodos, y re-equilibrando si es necesario

37

38

39 Extracción El procedimiento de borrado es el mismo que en el caso de árbol binario de búsqueda.la diferencia se encuentra en el proceso de reequilibrado posterior. El problema de la extracción puede resolverse en O (log n) pasos. Una extracción trae consigo una disminución de la altura de la rama donde se extrajo y tendrá como efecto un cambio en el factor de equilibrio del nodo padre de la rama en cuestión, pudiendo necesitarse una rotación. Esta disminución de la altura y la corrección de los factores de equilibrio con sus posibles rotaciones asociadas pueden propagarse hasta la raíz.

40

41 ÁRBOL ROJO-NEGRO Un árbol rojo negro es un tipo abstracto de datos, concretamente es un árbol binario de búsqueda equilibrado, una estructura de datos utilizada en informática y ciencias de la computación. La estructura original fue creada por Rudolf Bayer en 1972, que le dio el nombre de árboles-b binarios simétricos, pero tomó su nombre moderno en un trabajo de Leo J. Guibas y Robert Sedgewick realizado en 1978.

42 Es complejo, pero tiene un buen peor caso de tiempo de ejecución para sus operaciones y es eficiente en la práctica. Puede buscar, insertar y borrar en un tiempo O(log n), donde n es el número de elementos del árbol. Un árbol rojo-negro es un tipo especial de árbol binario usado en informática para organizar información compuesta por datos comparables (como por ejemplo números).

43 En los árboles rojo-negro las hojas no son relevantes y no contienen datos. A la hora de implementarlo en un lenguaje de programación, para ahorrar memoria, un único nodo (nodo-centinela) hace de nodo hoja para todas las ramas. Así,todas las referencias de los nodos internos a las hojas van a para En los árboles rojo-negro, como en todos los árboles binarios de búsqueda, es posible moverse ordenadamente a través de los elementos de forma eficiente si hay forma de localizar el padre de cualquier nodo. r al nodo centinela.

44 Un árbol rojo-negro es un árbol binario de búsqueda en el que cada nodo tiene un atributo de color cuyo valor es o bien rojo o bien negro. Además de los requisitos impuestos a los árboles binarios de búsqueda convencionales, se deben satisfacer los siguientes para tener un árbol rojo-negro válido: Todo nodo es o bien rojo o bien negro. La raíz es negra. Todas las hojas son negras (las hojas son los hijos nulos). Los hijos de todo nodo rojo son negros (también llamada "Propiedad del rojo").

45 5. Cada camino simple desde un nodo a una hoja descendiente contiene el mismo número de nodos negros, ya sea contando siempre los nodos negros nulos, o bien no contándolos nunca (el resultado es equivalente). También es llamada "Propiedad del camino", y al número de nodos negros de cada camino, que es constante para todos los caminos, se le denomina "Altura negra del árbol", y por tanto el cámino no puede tener dos rojos seguidos. 6. El camino más largo desde la raíz hasta una hoja no es más largo que 2 veces el camino más corto desde la raíz del árbol a una hoja en dicho árbol. El resultado es que dicho árbol está aproximadamente equilibrado.

46 Los árboles rojo-negro ofrecen un peor caso con tiempo garantizado para la inserción, el borrado y la búsqueda. No es esto únicamente lo que los hace valiosos en aplicaciones sensibles al tiempo como las aplicaciones en tiempo real, sino que además son apreciados para la construcción de bloques en otras estructuras de datos que garantizan un peor caso. Por ejemplo, muchas estructuras de datos usadas en geometría computacional pueden basarse en árboles rojo-negro.

47 Rotación Para conservar las propiedades que debe cumplir todo árbol rojo-negro, en ciertos casos de la inserción y la eliminación será necesario reestructurar el árbol, si bien no debe perderse la ordenación relativa de los nodos. Para ello, se llevan a cabo una o varias rotaciones, que no son más que reestructuraciones en las relaciones padrehijo-tío-nieto.

48

49 Búsqueda La búsqueda consiste acceder a la raíz del árbol, si el elemento a localizar coincide con éste la búsqueda ha concluido con éxito, si el elemento es menor se busca en el subárbol izquierdo y si es mayor en el derecho. Si se alcanza un nodo hoja y el elemento no ha sido encontrado se supone que no existe en el árbol. Cabe destacar que la búsqueda en este tipo de árboles es muy eficiente, representa una función logarítmica. La búsqueda de un elemento en un ABB (Árbol Binario de Búsqueda) en general, y en un árbol rojo negro en particular, se puede realizar de dos formas, iterativa o recursiva.

50 Inserción La inserción comienza añadiendo el nodo como lo haríamos en un árbol binario de búsqueda convencional y pintándolo de rojo. Lo que sucede después depende del color de otros nodos cercanos. El término tío nodo será usado para referenciar al hermano del padre de un nodo, como en los árboles familiares humanos.

51 . Conviene notar que: La propiedad 3 (Todas las hojas, incluyendo las nulas, son negras) siempre se cumple. La propiedad 4 (Ambos hijos de cada nodo rojo son negros) está amenazada solo por añadir un nodo rojo, por repintar un nodo negro de color rojo o por una rotación. La propiedad 5 (Todos los caminos desde un nodo dado hasta sus nodos hojas contiene el mismo número de nodos negros) está amenazada solo por añadir un nodo rojo, por repintar un nodo negro de color rojo o por una rotación.

52 casos Caso 1: El nuevo nodo N es la raíz de del árbol. En este caso, es repintado a color negro para satisfacer la propiedad 2 (la raíz es negra). Como esto añade un nodo negro a cada camino, la propiedad 5 (todos los caminos desde un nodo dado a sus hojas contiene el mismo número de nodos negros) se mantiene.

53 Caso 2: El padre del nuevo nodo (esto es, el nodo P) es negro, así que la propiedad 4 (ambos hijos de cada nodo rojo son negros) se mantiene. En este caso, el árbol es aun válido. La propiedad 5 (todos los caminos desde cualquier nodo dado a sus hojas contiene igual número de nodos negros) se mantiene, porque el nuevo nodo N tiene dos hojas negras como hijos, pero como N es rojo, los caminos a través de cada uno de sus hijos tienen el mismo número de nodos negros que el camino hasta la hoja que reemplazó, que era negra, y así esta propiedad se mantiene satisfecha.

54 Caso 3: Si el padre P y el tío U son rojos, entonces ambos nodos pueden ser repintados de negro y el abuelo G se convierte en rojo para mantener la propiedad 5 (todos los caminos desde cualquier nodo dado hasta sus hojas contiene el mismo número de nodos negros). Ahora, el nuevo nodo rojo N tiene un padre negro. Como cualquier camino a través del padre o el tío debe pasar a través del abuelo, el número de nodos negros en esos caminos no ha cambiado. Sin embargo, el abuelo G podría ahora violar la propiedad 2 (la raíz es negra) o la 4 (ambos hijos de cada nodo rojo son negros), en el caso de la 4 porque G podría tener un padre rojo. Para solucionar este problema, el procedimiento completo se realizará de forma recursiva hacia arriba hasta alcanzar el caso 1

55 Caso 4: El nodo padre P es rojo pero el tío U es negro; también, el nuevo nodo N es el hijo derecho de P, y P es el hijo izquierdo de su padre G. En este caso, una rotación a la izquierda que cambia los roles del nuevo nodo N y su padre P puede ser realizada; entonces, el primer nodo padre P se ve implicado al usar el caso 5 de inserción (reetiquetando N y P ) debido a que la propiedad 4 (ambos hijos de cada nodo rojo son negros) se mantiene aún incumplida. La rotación causa que algunos caminos (en el sub-árbol etiquetado como 1 ) pasen a través del nuevo nodo donde no lo hacían antes, pero ambos nodos son rojos, así que la propiedad 5 (todos los caminos desde cualquier nodo dado a sus hojas contiene el mismo número de nodos negros) no es violada por la rotación.

56 Caso 5: El padre P es rojo pero el tío U es negro, el nuevo nodo N es el hijo izquierdo de P, y P es el hijo izquierdo de su padre G. En este caso, se realiza una rotación a la derecha sobre el padre P; el resultado es un árbol donde el padre P es ahora el padre del nuevo nodo N y del inicial abuelo G. Este nodo G ha de ser negro, así como su hijo P rojo. Se intercambian los colores de ambos y el resultado satisface la propiedad 4 (ambos hijos de un nodo rojo son negros). La propiedad 5 (todos los caminos desde un nodo dado hasta sus hojas contienen el mismo número de nodos negros) también se mantiene satisfecha, ya que todos los caminos que iban a través de esos tres nodos entraban por G antes, y ahora entran por P. En cada caso, este es el único nodo negro de los tres.

57 ELIMINACIÓN En un árbol binario de búsqueda normal, cuando se borra un nodo con dos nodos internos como hijos, tomamos el máximo elemento del subárbol izquierdo o el mínimo del subárbol derecho, y movemos su valor al nodo que es borrado (como se muestra aquí). Borramos entonces el nodo del que copiábamos el valor que debe tener menos de dos nodos no hojas por hijos. Copiar un valor no viola ninguna de las propiedades rojo-negro y reduce el problema de borrar en general al de borrar un nodo con como mucho un hijo no hoja. No importa si este nodo es el nodo que queríamos originalmente borrar o el nodo del que copiamos el valor.

58 Si N y su padre original son negros, entonces borrar este padre original causa caminos que pasan por N y tienen un nodo negro menos que los caminos que no. Como esto viola la propiedad 5 (todos los caminos desde un nodo dado hasta su nodos hojas deben contener el mismo número de nodos negros), el árbol debe ser reequilibrado. Hay varios casos a considerar. Caso 1: N es la nueva raíz. En este caso, hemos acabado. Borramos un nodo negro de cada camino y la nueva raíz es negra, así las propiedades se cumplen.

59 Caso 2: S es rojo. En este caso invertimos los colores de P y S, por lo que rotamos a la izquierda P, pasando S a ser el abuelo de N. Nótese que P tiene que ser negro al tener un hijo rojo. Aunque todos los caminos tienen todavía el mismo número de nodos negros, ahora N tiene un hermano negro y un padre rojo, así que podemos proceder a al paso 4, 5 o 6 (este nuevo hermano es negro porque éste era uno de los hijos de S, que es rojo). En casos posteriores, reetiquetaremos el nuevo hermano de N como S.

60 Caso 3: P, S y los hijos de S son negros. En este caso, simplemente cambiamos S a rojo. El resultado es que todos los caminos a través de S, precisamente aquellos que no pasan por N, tienen un nodo negro menos. El hecho de borrar el padre original de N haciendo que todos los caminos que pasan por N tengan un nodo negro menos nivela el árbol. Sin embargo, todos los caminos a través de P tienen ahora un nodo negro menos que los caminos que no pasan por P, así que la propiedad 5 aún no se cumple (todos los caminos desde cualquier nodo a su nodo hijo contienen el mismo número de nodos negros). Para corregir esto, hacemos el proceso de reequilibrio en P, empezando en el caso 1.

61 Caso 4: S y los hijos de éste son negros, pero P es rojo. En este caso, simplemente intercambiamos los colores de S y P. Esto no afecta al número de nodos negros en los caminos que no van a través de S, pero añade uno al número de nodos negros a los caminos que van a través de N, compensando así el borrado del nodo negro en dichos caminos.

62 Caso 5: S es negro, su hijo izquierdo es rojo, el derecho es negro, y N es el hijo izquierdo de su padre. En este caso rotamos a la derecha S, así su hijo izquierdo se convierte en su padre y en el hermano de N. Entonces intercambiamos los colores de S y su nuevo padre. Todos los caminos tienen aún el mismo número de nodos negros, pero ahora N tiene un hermano negro cuyo hijo derecho es rojo, así que caemos en el caso 6. Ni N ni su padre son afectados por esta transformación (de nuevo, por el caso 6, reetiquetamos el nuevo hermano de N como S).

63 Caso 6: S es negro, su hijo derecho es rojo, y N es el hijo izquierdo de P, su padre. En este caso rotamos a la izquierda P, así que S se convierte en el padre de P y éste en el hijo derecho de S. Entonces intercambiamos los colores de P y S, y ponemos el hijo derecho de S en negro. El subárbol aún tiene el mismo color que su raíz, así que las propiedades 4 (los hijos de todo nodo rojo son negros) y 5 (todos los caminos desde cualquier nodo a sus nodos hoja contienen el mismo número de nodos negros) se verifican. Sin embargo, N tiene ahora un antecesor negro mas: o bien P se ha convertido en negro, o bien era negro y S se ha añadido como un abuelo negro. De este modo, los caminos que pasan por N pasan por un nodo negro mas.

64 Éste pasa a través del nuevo hermano de N. Entonces, éste debe pasar por S y P, al igual que antes, y tienen sólo que intercambiar los colores. Así los caminos contienen el mismo número de nodos negros. Éste pasa por el nuevo tío de N, el hijo derecho de S. Éste anteriormente pasaba por S, su padre y su hijo derecho, pero ahora sólo pasa por S, el cual ha tomado el color de su anterior padre, y por su hijo derecho, el cual ha cambiado de rojo a negro. El efecto final es que este camino va por el mismo número de nodos negros.

65 ARBOL MULTICAMINO Un árbol multicamino posee un grado g mayor a dos, donde cada nodo de información del árbol tiene un máximo de g hijos. Sea un árbol de m-caminos A, es un árbol m-caminos si y solo si: A está vacío Cada nodo de A muestra la siguiente estructura: [nclaves,enlace 0,Clave 1,...,Clave nclaves,enlace nclaves ] nclaves es el número de valores de clave de un nodo, pudiendo ser: 0 <= nclaves <= g-1 Enlace i, son los enlaces a los subárboles de A, pudiendo ser: 0 <= i <= nclaves Clave i, son los valores de clave, pudiendo ser: 1 <= i <= nclaves Clave i < Clave i+1 Cada valor de clave en el subárbol Enlace i es menor que el valor de Clave i+1 Los subárboles Enlace i, donde 0 <= i <= nclaves, son también árboles m- caminos.

66 La principal ventaja de este tipo de árboles consiste en que existen más nodos en un mismo nivel que en los árboles binarios con lo que se consigue que, si el árbol es de búsqueda, los accesos a los nodos sean más rápidos. El inconveniente más importante que tienen es la mayor ocupación de memoria, pudiendo ocurrir que en ocasiones la mayoría de los nodos no tengan descendientes o al menos no todos los que podrían tener desaprovechándose por tanto gran cantidad de memoria. Cuando esto ocurre lo más frecuente es transformar el árbol multicamino en su binario de búsqueda equivalente.

67 ÁRBOL AA Los árboles AA son una variación del árbol rojo-negro, que a su vez es una mejora del árbol binario de búsqueda. A diferencia de los árboles rojo-negro, los nodos rojos en un árbol AA sólo pueden añadirse como un hijo derecho. En otras palabras, ningún nodo rojo puede ser un hijo izquierdo. De esta manera se simula un árbol 2-3 en lugar de un árbol 2-3-4, lo que simplifica las operaciones de mantenimiento. Los algoritmos de mantenimiento para un árbol rojo-negro necesitan considerar siete diferentes formas para balancear adecuadamente el árbol: En un árbol AA, al cumplirse el estricto requisito de que sólo los enlaces derechos pueden ser rojos, sólo es necesario considerar dos formas:

68 Cada nodo tiene un campo nivel y se deben cumplir las siguientes condiciones para que el árbol sea válido: El nivel de un nodo hoja es uno. El nivel de un hijo izquierdo es estrictamente menor que el de su padre. El nivel de un hijo derecho es menor o igual que el de su padre. El nivel de un nieto derecho es estrictamente menor que el de su abuelo. Cada nodo de nivel mayor que uno debe tener dos hijos.

69 Estas operaciones se llaman torsión (skew) y división (split). La torsión es una rotación derecha que se realiza cuando una inserción o un borrado genera un enlace horizontal izquierdo, puede pensarse como un enlace rojo izquierdo en el contexto del árbol rojonegro. La división es una rotación izquierda condicional que tiene lugar cuando una inserción o un borrado crea dos enlaces horizontales derechos, lo que de nuevo se corresponde con dos enlaces rojos consecutivos en el contexto de los árboles rojo-negro.

70 ÁRBOL B+ Un árbol-b+ es una variación de un árbol-b. En un árbol-b+, en contraste respecto un árbol-b, toda la información se guarda en las hojas. Los nodos internos sólo contienen claves y punteros. Todas las hojas se encuentran en el mismo, más bajo nivel. Los nodos hoja se encuentran unidos entre sí como una lista enlazada para permitir búsqueda secuencial. El número máximo de claves en un registro es llamado el orden del árbol- B+. El mínimo número de claves por registro es la mitad del máximo número de claves. Por ejemplo, si el orden de un árbol-b+ es n, cada nodo (exceptuando la raíz) debe tener entre n/2 y n claves. El número de claves que pueden ser indexadas usando un árbol-b+ está en función del orden del árbol y su altura. Para un árbol-b+ de orden n, con una altura h: Número máximo de claves es: n h Número mínimo de claves es: 2(n / 2) h 1

71

72 Árbol-B B-árbol es un árbol de búsqueda que puede estar vacío o aquel cuyos nodos pueden tener varios hijos, existiendo una relación de orden entre ellos, tal como muestra el dibujo. Un árbol-b de orden M (el máximo número de hijos que puede tener cada nodo) es un árbol que satisface las siguientes propiedades: Cada nodo tiene como máximo M hijos. Cada nodo (excepto raíz y hojas) tiene como mínimo M/2 hijos.

73 La raíz tiene al menos 2 hijos si no es un nodo hoja. Todos los nodos hoja aparecen al mismo nivel. Un nodo no hoja con k hijos contiene k-1 elementos almacenados. Los hijos que cuelgan de la raíz (r1,, rm) tienen que cumplir ciertas condiciones: El primero tiene valor menor que r1. El segundo tiene valor mayor que r1 y menor que r2, etc. El último hijo tiene valor mayor que

Estructura de Datos Unidad 6: ARBOLES

Estructura de Datos Unidad 6: ARBOLES Estructura de Datos Unidad 6: ARBOLES A. CONCEPTO DE ARBOL B. TIPOS DE ARBOL C. ARBOL BINARIO D. IMPLEMENTACION DE UN ARBOL BINARIO E. PROYECTO Introducción En ciencias de la informática, un árbol es una

Más detalles

Definición: NODO Un nodo es un punto de intersección o unión de varios elementos que confluyen en el mismo lugar.

Definición: NODO Un nodo es un punto de intersección o unión de varios elementos que confluyen en el mismo lugar. Definición: ÁRBOL El árbol es como un tipo de grafo cíclico, conexo y no dirigido. Las estructuras tipo árbol se usan principalmente para representar datos con una relación jerárquica entre sus elementos.

Más detalles

Un árbol binario T se define como un conjunto finito de elementos, llamados nodos, de forma que:

Un árbol binario T se define como un conjunto finito de elementos, llamados nodos, de forma que: Instituto Universitario de Tecnología Industrial Rodolfo Loero Arismendi I.U.T.I.R.L.A. ÁRBOLES Sección 3DA Asignatura: Estructura de Datos Lenguaje (C). Ciudad Bolívar _ abril_ 2006. Introducción El siguiente

Más detalles

Estructura de Datos. Temario Unidad VI. Árboles Árboles Binarios

Estructura de Datos. Temario Unidad VI. Árboles Árboles Binarios Estructura de Datos Árboles Árboles Binarios Temario Unidad VI 6.1 Definición y operaciones 6.2 Implementación 6.3 Recorrido en Árboles Binarios 6.4 Árboles AVL y su implementación 6.5 Árboles n-arios

Más detalles

Árboles balanceados (AVL) Estructura de datos

Árboles balanceados (AVL) Estructura de datos Árboles balanceados (AVL) Estructura de datos Definición de un árbol balanceado Es un árbol binario de búsqueda en el cual se cumple: Para todo nodo T del árbol, la altura de los subárboles izquierdo y

Más detalles

Algoritmos y Programación II Curso 2006

Algoritmos y Programación II Curso 2006 Arboles: Un árbol es una colección de elementos, llamados nodos, uno de los cuales se distingue con el nombre de raíz. Los nodos mantienen entre ellos una relación que define una estructura jerárquica

Más detalles

Tema 10: Árbol binario de búsqueda

Tema 10: Árbol binario de búsqueda Tema 10: Árbol binario de búsqueda M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Árbol binario de

Más detalles

ARBOLES ARBOLES COMPUTACIONALES MATEMATICAS DISCRETAS II

ARBOLES ARBOLES COMPUTACIONALES MATEMATICAS DISCRETAS II ARBOLES ARBOLES COMPUTACIONALES MATEMATICAS DISCRETAS II Contenido Concepto Características y Propiedades Tipos de Arboles 1. Libres 2. Binarios 3. Expansión Mínima Algoritmo de Kruskal Algoritmo Prim

Más detalles

Árbol ABB equilibrado. Lección: Árboles. Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58

Árbol ABB equilibrado. Lección: Árboles. Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58 Algorítmica II (Tema 4) Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide 1/ 58 Índice 1 Árbol de búsqueda 2 2/ 58 Índice Árbol de búsqueda 1 Árbol de búsqueda 2 3/ 58 Árbol de búsqueda Es

Más detalles

Eduardo Mosqueira Rey Bertha Guijarro Berdiñas Mariano Cabrero Canosa

Eduardo Mosqueira Rey Bertha Guijarro Berdiñas Mariano Cabrero Canosa Estructura de Datos y de la Información Eduardo Mosqueira Rey Bertha Guijarro Berdiñas Mariano Cabrero Canosa Laboratorio de Investigación y Desarrollo en Inteligencia Artificial Departamento de Computación

Más detalles

Capítulo 8. Árboles. Continuar

Capítulo 8. Árboles. Continuar Capítulo 8. Árboles Continuar Introducción Uno de los problemas principales para el tratamiento de los grafos es que no guardan una estructura establecida y que no respetan reglas, ya que la relación entre

Más detalles

Definición recursiva de los árboles

Definición recursiva de los árboles Árboles Un árbol es una estructura de datos jerarquizada ada dato reside en un nodo, y existen relaciones de parentesco entre nodos: padre, hijo, hermano, ascendiente, descendiente, etc. Ejemplo: apítulos

Más detalles

Estructura de Datos Tema 6. Árboles. Contenido 14/06/2018

Estructura de Datos Tema 6. Árboles. Contenido 14/06/2018 Estructura de Datos Tema 6. Árboles Presenta: David Martínez Torres Universidad Tecnológica de la Mixteca Instituto de Computación Oficina No. dtorres@mixteco.utm.mx Contenido 1. Definición y operaciones

Más detalles

4.5 Árboles AVL (Adelson-Velskii y Landis) Inserción y extracción en árboles AVL

4.5 Árboles AVL (Adelson-Velskii y Landis) Inserción y extracción en árboles AVL 4.5 Árboles AVL (Adelson-Velskii y Landis) Árbol binario de búsqueda que verifica que las alturas de los subárboles derecho e izquierdo de cada nodo sólo pueden diferir, a lo sumo, en 1 lo que garantiza

Más detalles

Árboles B y B ) 20. Algoritmos y Estructuras de Datos II I.T. en Informática de Gestión/Sistemas Universidad de Huelva 63

Árboles B y B ) 20. Algoritmos y Estructuras de Datos II I.T. en Informática de Gestión/Sistemas Universidad de Huelva 63 y B + 3.8 y B+! Problema de los ABB cuando se usa almacenamiento secundario:! la búsqueda de un elemento requeriría muchos accesos a disco (un acceso a disco es extremadamente lento si lo comparamos con

Más detalles

Árboles Binarios Ordenados Árboles AVL

Árboles Binarios Ordenados Árboles AVL Árboles Binarios Ordenados Árboles AVL Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Diseño e Implementación TAD Árbol Representación de árboles

Más detalles

A) PREORDEN B) INORDEN C) POSTORDEN D) NIVELES

A) PREORDEN B) INORDEN C) POSTORDEN D) NIVELES Capitulo 5. Arboles 1. Al recorrer el siguiente árbol en se visitan más nodos para llegar al número 38. Justifique su respuesta mostrando cada uno de los recorridos. Tipo de Recorrido Recorrido A) PREORDEN

Más detalles

Estructura de datos y de la información Boletín de problemas - Tema 10

Estructura de datos y de la información Boletín de problemas - Tema 10 Estructura de datos y de la información Boletín de problemas - Tema 10 1. En el caso de que sea posible, dar un ejemplo de los siguientes puntos. Si no, explicar por qué no lo es. Considerar un valor genérico

Más detalles

Árboles AVL. Lección 14

Árboles AVL. Lección 14 Árboles VL Lección 14 Árboles inarios Equilibrados Un árbol binario de búsqueda se dice equilibrado (o balanceado) si y sólo si, para cada uno de sus nodos ocurre que las alturas de sus 2 subárboles difieren

Más detalles

Tema 09: TAD Árbol binario

Tema 09: TAD Árbol binario Tema 09: TAD Árbol binario M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Introducción El árbol binario

Más detalles

Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS

Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS Contenido PARTE II: ESTRUCTURAS DE DATOS AVANZADAS TEMA 4. - La Estructura de datos Árbol 4.1. Árboles, definiciones 4.2 Árboles binarios y su representación 4.3 Operaciones básicas de un árbol binario

Más detalles

CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES

CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES CAPÍTULO 2. ÁRBOLES 2.0. CONCEPTOS GENERALES Los árboles (en general) se utilizan para representar fórmulas algebraicas, para organizar objetos en orden de tal forma que las búsquedas sean muy eficientes

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Introducción Un árbol es una estructura no lineal en la que cada nodo puede apuntar a uno o varios nodos. A B C D E F G H I J K Clasificación con respecto a su relación: Nodo hijo: cualquiera de los nodos

Más detalles

Estructura de Datos. Índice

Estructura de Datos. Índice TEMA 5. ÁRBOLES (I) 1 Índice 1. Concepto de árbol 2. Árboles binarios 1. Especificación informal del TAD árbol binario 2. Implementación del TAD árbol binario 3. Recorrido de un árbol binario 4. Árboles

Más detalles

ESTRUCTURAS DE DATOS Y ALGORITMOS

ESTRUCTURAS DE DATOS Y ALGORITMOS ESTRUCTURAS DE DATOS Y ALGORITMOS CURSO 2009 PRÁCTICO 8 Nota: al igual que en los prácticos 6 y 7, en los problemas que siguen se usarán los tipos lista y árbol binario, como tipos abstractos, cada uno

Más detalles

Eliminación en un ABB

Eliminación en un ABB Eliminación en un El procedimiento para eliminar un nodo z de un árbol de búsqueda binaria tiene tres casos: aso 1: Si z no tiene hijos, se modifica su padre p[z] para reemplazar z con nil como su hijo.

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Árboles n-arios de búsqueda. Lección 16

Árboles n-arios de búsqueda. Lección 16 Árboles n-arios de búsqueda Lección 16 Definiciones Los árboles n-arios de búsqueda (árboles de búsqueda múltiples o multicamino) son árboles de grado n definidos de la forma: si el árbol A es vacío, entonces

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

Árboles. Árboles. Árboles binarios de búsqueda. Árboles. Inserción en un árbol. Árbol binario de búsqueda

Árboles. Árboles. Árboles binarios de búsqueda. Árboles. Inserción en un árbol. Árbol binario de búsqueda Árboles Árboles Mario Medina C. mariomedina@udec.cl Árboles Estructura recursiva Árbol vacío 0 o más árboles hijos Altura ilimitada Árbol binario A lo más dos hijos: izquierdo y derecho Árboles Árboles

Más detalles

Estructuras de Datos. 8.6 Árboles B. Supongamos que los nodos de un árbol deben ser guardados en un medio de almacenamiento secundario (disco).

Estructuras de Datos. 8.6 Árboles B. Supongamos que los nodos de un árbol deben ser guardados en un medio de almacenamiento secundario (disco). 132 El grado de ocupación de una tabla hash se determina mediante el factor de carga, que es la fracción ocupada de la tabla y es un número que está entre 0 y 1 si está vacía o llena respectivamente. Ejercicio:

Más detalles

Estructura de Datos. Árboles Binarios de Búsqueda ABB. Primer Semestre, 2010

Estructura de Datos. Árboles Binarios de Búsqueda ABB. Primer Semestre, 2010 Estructura de Datos Árboles Binarios de Búsqueda ABB Prof.: Mauricio Solar Prof.: Lorna Figueroa Primer Semestre, 20 1 Arboles de Búsqueda Binaria El árbol binario de búsqueda (ABB) toma su nombre del

Más detalles

Definición 1: Un grafo G es una terna ordenada (V(G), E(G), Ψ

Definición 1: Un grafo G es una terna ordenada (V(G), E(G), Ψ Título: Un Arbol Natural Autor: Luis R. Morera onzález Resumen En este artículo se crea un modelo para representar los números naturales mediante un grafo, el cual consiste de de un árbol binario completo

Más detalles

TEMA 3. Árboles. Objetivos. Contenidos. Bibliografía. Básica

TEMA 3. Árboles. Objetivos. Contenidos. Bibliografía. Básica TEMA 3. Árboles Objetivos En este tema se estudia una de las estructuras de datos no lineal más importante en computación, el árbol. Comenzaremos introduciendo la terminología asociada a los árboles y

Más detalles

Tema: ARBOLES. Instructor: MC. Gerardo Gálvez Gámez Junio de 2018 INTRODUCCIÓN:

Tema: ARBOLES. Instructor: MC. Gerardo Gálvez Gámez Junio de 2018 INTRODUCCIÓN: UNIVERSIDAD AUTÓNOMA DE SINALOA Facultad de Informática uliacán Tema: AROLES Instructor: M. Gerardo Gálvez Gámez Junio de 2018 INTRODUIÓN: Hasta el momento solo se han estudiado estructuras lineales y

Más detalles

Estructuras de datos Listas y árboles

Estructuras de datos Listas y árboles Estructuras de datos Listas y árboles Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Listas y árboles p. 1 Listas Listas son estructuras un poco más avanzadas que puros arreglos, como

Más detalles

Francisco J. Hernández López

Francisco J. Hernández López rancisco. Hernández ópez fcoj23@cimat.mx structura de datos no lineal, en la que cada elemento sólo puede estar enlazado con su predecesor (o nodo padre) y sus sucesores (o nodos hijos) xiste un único

Más detalles

Diseño y Análisis de Algoritmos con Java(I Sem. 2004) Prof. Dr.Eric Jeltsch F.

Diseño y Análisis de Algoritmos con Java(I Sem. 2004) Prof. Dr.Eric Jeltsch F. Arboles En esta sección se presentan los árboles que son un tipo de dato abstracto más adecuado para el tratamiento de grandes cantidades de información, las aplicaciones de los mismos son muy diversas,

Más detalles

Francisco J. Hernández López

Francisco J. Hernández López rancisco. Hernández ópez fcoj23@cimat.mx structura de datos no lineal, en la que cada elemento sólo puede estar enlazado con su predecesor (o nodo padre) y sus sucesores (o nodos hijos) xiste un único

Más detalles

Estructura de Datos. Estructuras de Datos no lineales : Árboles

Estructura de Datos. Estructuras de Datos no lineales : Árboles Estructura de Datos Estructuras de Datos no lineales : Árboles Definiciones de Árbol En términos matemáticos, un árbol es cualquier conjunto de puntos, llamados vértices, y cualquier conjunto de pares

Más detalles

Indexación y Asociación

Indexación y Asociación Bases de Datos Indexación y Asociación Contenidos Conceptos básicos Indices Ordenados Árboles B+ ArbolesB Asociación estática Bases de Datos Indexación y Asociación 2 Conceptos básicos Los Indices se utilizan

Más detalles

ASIGNATURA: (TIS-106) Estructuras de Datos II DOCENTE: Ing. Freddy Melgar Algarañaz

ASIGNATURA: (TIS-106) Estructuras de Datos II DOCENTE: Ing. Freddy Melgar Algarañaz TEMA 1. Árboles Generalizados Son estructuras de datos no lineales, o también denominadas estructuras multienlazadas. El árbol es una estructura de datos fundamental en informática, muy utilizada en todos

Más detalles

Estructura de Datos. Temario Unidad VI. Árboles Árboles AVL

Estructura de Datos. Temario Unidad VI. Árboles Árboles AVL Estructura de Datos Árboles Árboles VL Temario Unidad VI 6.1 Definición operaciones 6.2 Implementación 6.3 Recorrido en Árboles inarios 6.4 Árboles VL su implementación 6.5 Árboles n-arios 6.6 Árboles

Más detalles

ESTRUCTURA DE DATOS. ABB Arboles de Búsqueda Binaria

ESTRUCTURA DE DATOS. ABB Arboles de Búsqueda Binaria ESTRUCTURA DE DATOS ABB Arboles de Búsqueda Binaria ÁRBOLES BINARIOS Hasta ahora nos hemos dedicado a estudiar TAD que de una u otra forma eran de naturaleza lineal, o unidimensional. En los tipos abstractos

Más detalles

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,

Más detalles

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 3. Estructuras de Almacenamiento. Básicas. Definición y Manejo.

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 3. Estructuras de Almacenamiento. Básicas. Definición y Manejo. FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA Tema 3. Estructuras de Almacenamiento Básicas. Definición y Manejo. 1.- Búsqueda de Información. Definición de Clave. 2.- Definición y Manejo

Más detalles

Tema 10. Árboles. José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía

Tema 10. Árboles.  José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía Tema 10. Árboles http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Badía {badia, bmartine, morales, sanchiz}@icc.uji.es Estructuras de datos y de la información Universitat

Más detalles

Estructuras de Datos ARBOLES Y GRAFOS

Estructuras de Datos ARBOLES Y GRAFOS Estructuras de Datos ARBOLES Y GRAFOS Rosa Barrera Capot rosa.barrera@usach.cl Grafo? Características Permiten Modelar un problema Aplicaciones: Ingeniería de Sistemas Modelado de Redes Ingeniería Industrial

Más detalles

Árboles RN Montículos

Árboles RN Montículos Árboles RN Montículos Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Árbol AVL Árbol AVL Balanceo cuatro posibilidades que requieren rotación

Más detalles

Estructuras de datos y algoritmos

Estructuras de datos y algoritmos Estructuras de datos y algoritmos 1. Introducción 2. Estructuras de datos lineales 3. Estructuras de datos jerárquicas 4. Grafos y caminos 5. Implementación de listas, colas, y pilas 6. Implementación

Más detalles

Programación II Árboles binarios de búsqueda (ABB)

Programación II Árboles binarios de búsqueda (ABB) Programación II Árboles binarios de búsqueda (ABB) Definición Un árbol binario de búsqueda(abb) a es una estructura de datos de tipo árbol binario en el que para todos sus nodos, el hijo izquierdo, si

Más detalles

PROGRAMA EDUCATIVO INFORMATICA ADMINISTRATIVA

PROGRAMA EDUCATIVO INFORMATICA ADMINISTRATIVA PROGRAMA EDUCATIVO INFORMATICA ADMINISTRATIVA UNIDAD DE APRENDIZAJE ADMINISTRACION DE BASES DE DATOS Unidad de competencia III Manejar las estructuras dinámicas en memoria secundaria Arboles ELABORACION

Más detalles

Matemáticas Discretas Tc1003 Teoría de Grafos

Matemáticas Discretas Tc1003 Teoría de Grafos Definición. Sea A un grafo. A recibe el nombre de árbol sí y sólo si: A es conexo. A no contiene circuitos. Ejemplos: Definición. Sea A un árbol. Un vértice de grado 1 se llama una hoja. Un vértice de

Más detalles

PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS

PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR ESIME CULHUACAN NOMBRE ALUMNO: 1. Objetivo PRÁCTICA No. 9 RECORRIDOS EN ÁRBOLES BINARIOS El alumno comprenderá y aplicara

Más detalles

El TAD Árbol. El TAD Árbol

El TAD Árbol. El TAD Árbol Objetivos! Presentar el árbol como estructura de datos jerárquica! Estudiar diferentes variantes de árboles, tanto en su especificación como en su implementación Contenidos 3.1 Concepto, definiciones y

Más detalles

Estructuras de Datos y Algoritmos

Estructuras de Datos y Algoritmos Estructuras de Datos y Algoritmos Tema 5.1. Árboles. Árboles binarios y generales Prof. Dr. P. Javier Herrera Contenido 1. Introducción 2. Terminología 3. Árboles binarios 4. Árboles generales Tema 5.1.

Más detalles

Tema 08: TAD Árbol. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

Tema 08: TAD Árbol. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom Tema 08: TAD Árbol M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Descripción del TAD Árbol Especificación

Más detalles

3.6. Árboles B DEFINICIONES

3.6. Árboles B DEFINICIONES DEFINICIONES Un árbol B de orden m es un árbol m-camino de búsqueda que está vacío o satisface las siguientes propiedades: El nodo raíz tiene al menos una clave (o dos hijos) Todos los nodos interiores,

Más detalles

Estructura de Datos. Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos)

Estructura de Datos. Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos) Ing. En Sistemas Computacionales Estructura de Datos Unidad V Estructuras no lineales estáticas y dinámicas. (Árboles y grafos) Ing. Néstor Alejandro Carrillo López Arboles Un árbol es un conjunto finito

Más detalles

1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N 2-1 b. 2 N+1-1 c. 2 N d. 2 N+1 i.

1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N 2-1 b. 2 N+1-1 c. 2 N d. 2 N+1 i. 1. Cuál es el número total máximo de nodos que tiene un árbol binario de N niveles? a. N - 1 b. N1-1 c. N d. N1 i.. Dado el siguiente árbol binario: raiz Q K T D M R Y B J P W N a. Cuáles son los antecesores

Más detalles

3. ÁRBOLES. Definición. Un árbol es un conjunto finito de nodos R, tal que:

3. ÁRBOLES. Definición. Un árbol es un conjunto finito de nodos R, tal que: 3. ÁRBOLES Una estructura muy utilizada en el manejo de información es la estructura de árbol. Caracteriza a los sistemas jerárquicos y se emplea principalmente en el procesamiento de datos para la toma

Más detalles

12/08/2017 AVL. Especificación sobre árboles AVL. AVL: rotaciones

12/08/2017 AVL. Especificación sobre árboles AVL. AVL: rotaciones VL Se dice que un árbol binario está balanceado si y sólo si en cada nodo las alturas de sus 2 subárboles difieren como máximo en 1. Todos los árboles perfectamente balanceados son árboles VL. Especificación

Más detalles

Estructura de Datos. Códigos de Huffman. Primer Semestre, Compresión de Archivos. Compresión de Archivos

Estructura de Datos. Códigos de Huffman. Primer Semestre, Compresión de Archivos. Compresión de Archivos Estructura de Datos Códigos de Huffman Prof.: Mauricio Solar Prof.: Lorna Figueroa Primer Semestre, 2 Los algoritmos estudiados hasta ahora han sido diseñados, en general, para que utilicen el menor tiempo

Más detalles

Outline Desbalance Árboles Red-Black Rotaciones Inserción en Arboles Red-Black. Roberto Carlos Abreu Díaz. November 5, 2009

Outline Desbalance Árboles Red-Black Rotaciones Inserción en Arboles Red-Black. Roberto Carlos Abreu Díaz. November 5, 2009 November 5, 2009 1 2 Reglas de los árboles Red-Black 3 4 luego de la inserción del nodo Outline de árboles binarios Cuando un árbol binario tiene la mayoría de sus nodos en un lado cae en desbalance Como

Más detalles

Ejercicios del Tema 3 Estructuras jerárquicas: Árboles

Ejercicios del Tema 3 Estructuras jerárquicas: Árboles ALGORITMOS Y ESTRUCTURAS DE DATOS II Ingeniería Técnica en Informática de Gestión Ingeniería Técnica en Informática de Sistemas Ejercicios del Tema 3 Estructuras jeráruicas: Árboles Árboles n-arios 1.

Más detalles

Introducción a los árboles. Lección 11

Introducción a los árboles. Lección 11 Introducción a los árboles Lección 11 Árbol: Conjunto de elementos de un mismo tipo, denominados nodos, que pueden representarse en un grafo no orientado, conexo y acíclico, en el que existe un vértice

Más detalles

ARBOLES B. Lo que si es cierto es que la letra B no significa "binario", ya que:

ARBOLES B. Lo que si es cierto es que la letra B no significa binario, ya que: ARBOLES B El problema original comienza con la necesidad de mantener índices en almacenamiento externo para acceso a bases de datos, es decir, con el grave problema de la lentitud de estos dispositivos

Más detalles

Estructuras de datos: Árboles binarios de

Estructuras de datos: Árboles binarios de Estructuras de datos: Árboles binarios de búsqueda, Facultad de Informática Universidad de A Coruña Table of Contents Árboles binarios de búsqueda 1 Árboles binarios de búsqueda 2 Table of Contents Árboles

Más detalles

4.1 Concepto de árbol.

4.1 Concepto de árbol. Apuntes Estructura de Datos Autor: Ing. Felipe Alanís González Página 1 4.1 Concepto de árbol. Una estructura de árbol es una forma de representar la JERARQUÍA de ciertos objetos en una forma gráfica.

Más detalles

Universidad Tecnológica Nacional Facultad Regional Buenos Aires. Gestión de Datos. Árboles

Universidad Tecnológica Nacional Facultad Regional Buenos Aires. Gestión de Datos. Árboles Universidad Tecnológica Nacional Facultad Regional Buenos Aires Gestión de Datos Árboles Ing. Enrique Reinosa Leandro R. Barbagallo Septiembre 2007 Índice Índice... 2 Introducción... 3 Formalización...

Más detalles

Tema 7: Árboles ESTRUCTURAS DE DATOS 1

Tema 7: Árboles ESTRUCTURAS DE DATOS 1 Tema 7: Árboles ESTRUCTURAS DE DATOS 1 Contenidos Definiciones Conceptos de Árboles Binarios Especificación algebraica Implementaciones Programación con Árboles Binarios Árboles Binarios de Búsqueda Introducción

Más detalles

Estructura de datos y algoritmos. Tema V TDA DINÁMICOS NO LINEALES: Árboles: árboles binarios

Estructura de datos y algoritmos. Tema V TDA DINÁMICOS NO LINEALES: Árboles: árboles binarios Estructura de datos y algoritmos Tema V TDA DINÁMICOS NO LINEALES: Árboles: árboles binarios TEMA V : TIPOS DE DATOS ABSTRACTOS NO LINEALES: ÁRBOLES 5.1 Conceptos y definiciones 5.2 Árboles perfectamente

Más detalles

Estructuras de Datos Clase 20 Árboles de búsqueda

Estructuras de Datos Clase 20 Árboles de búsqueda Estructuras de Datos Clase 20 Árboles de búsqueda Dr. Sergio A. Gómez http://cs.uns.edu.ar/~sag Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina

Más detalles

Diseño de Conjuntos y Diccionarios

Diseño de Conjuntos y Diccionarios Diseño de Conjuntos y Diccionarios Representación de Conjuntos y Diccionarios TAD Diccionario(clave, significado) Observadores básicos def?: clave c x dicc(clave, significado) d bool obtener: clave c dicc(clave,

Más detalles

Estructura de Datos Árboles Árboles 2-3

Estructura de Datos Árboles Árboles 2-3 Estructura de Datos Árboles 1-2-3 Árboles 2-3 Prof.: Mauricio Solar Prof.: Lorna Figueroa Primer Semestre, 2010 1 Arboles 1-2-3 Árbol n-ario ordenado de orden 3 Cada nodo tiene 1 ó 2 elementos 75 Nodo

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

EJERCICIO 2 (3 PUNTOS) A) Sea el árbol binario AVL de la figura siguiente: B) Dada la estructura de la figura siguiente:

EJERCICIO 2 (3 PUNTOS) A) Sea el árbol binario AVL de la figura siguiente: B) Dada la estructura de la figura siguiente: ASIGNATURA TITULACIÓN APELLIDOS ESTRUCTURA DE DATOS Y DE LA INFORMACIÓN EJERCICIO 1 (3 PUNTOS) GRUPO CURSO CONVOCATORIA NOMBRE 23 / 24 EXTRAORDINARIA- SEPTIEMBRE CALIFICACIÓN Dado el tipo abstracto de

Más detalles

Archivos Indice. Indexación y. Asociación. Conceptos Básicos Indices Ordenados Arboles. Asociación. Docente: Albert A.

Archivos Indice. Indexación y. Asociación. Conceptos Básicos Indices Ordenados Arboles. Asociación. Docente: Albert A. Docente: Albert A. Osiris Sofía 1º Cuatrimestre 2002 Conceptos Básicos Indices Ordenados Arboles Asociación Indexación y Asociación Archivos Indice 1 2 3 1 Archivos Indice Ordenados Asociativos Primario

Más detalles

168 Capítulo 4. Representación de conjuntos mediante árboles

168 Capítulo 4. Representación de conjuntos mediante árboles 16 Capítulo. Representación de conjuntos mediante árboles En cuanto al tiempo de ejecución, básicamente podemos aplicar el mismo análisis que en la inserción. El tiempo total para una supresión será proporcional

Más detalles

3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS.

3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS. 3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS 3.1.- CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS. 3.2.- BOSQUES Y COMPONENTES CONEXOS. NEXON LENIN CEFERINO POMPOSO Los árboles son particularmente

Más detalles

Estructuras de datos Árboles B

Estructuras de datos Árboles B Estructuras de datos Árboles B Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Árboles B p. 1 Árboles B Árboles B son árboles balanceados que no son binarios. Todos los vértices contienen

Más detalles

El método main de la clase PruebaArbol, empieza creando una instancia de un objeto Árbol vacío y asigna su referencia a la variable árbol

El método main de la clase PruebaArbol, empieza creando una instancia de un objeto Árbol vacío y asigna su referencia a la variable árbol Árboles Las listas enlazadas, pilas y colas son estructuras de datos lineales (es decir, secuencias). Un árbol es una estructura de datos bidimensional no lineal, con propiedades especiales. Los nodos

Más detalles

Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial

Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial (Facultad de Informática) Curso 00 0 Estructuras de Datos y Algoritmos (FI-UPV) Curso 00 0 Árboles. Si la acción P fuera escribir

Más detalles

Definición de árbol. Árboles

Definición de árbol. Árboles ÁRBOLES Árboles * Definición de árbol * Formas de representación * Nomenclatura sobre árboles * Árboles binarios * Declaración de árbol binario * Recorridos sobre árboles binarios * Construcción de un

Más detalles

Tema 6: Estructuras de datos recursivas

Tema 6: Estructuras de datos recursivas Tema 6: Estructuras de datos recursivas Índice 1 Listas jerárquicas...2 2 Árboles binarios... 4 3 Árboles genéricos...7 4 Referencias...10 1. Listas jerárquicas Las listas tienen la propiedad de la clausura

Más detalles

UNIVERSIDAD NACIONAL DEL ALTIPLANO

UNIVERSIDAD NACIONAL DEL ALTIPLANO UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERA MECÁNICA ELÉCTRICA, ELECTRÓNICA Y SISTEMAS ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS Monografía: Recorrido y búsqueda en árboles Autor: Lizbeth

Más detalles

Estructuras de Datos. Clase 20 Árboles de búsqueda. Dr. Sergio A. Gómez.

Estructuras de Datos. Clase 20 Árboles de búsqueda. Dr. Sergio A. Gómez. Clase 20 Árboles de búsqueda http://cs.uns.edu.ar/~sag Bahía Blanca, Argentina Motivaciones El árbol binario de búsqueda permite implementar conjuntos mapeos con un tiempo de operaciones buscar, insertar

Más detalles

Estructuras de Datos II

Estructuras de Datos II Estructuras de Datos II Segundo Parcial Los árboles B+ son estructuras de datos jerárquicas que se utilizan para almacenar y manipular datos ordenados de forma muy eficiente, ya que por su estructura y

Más detalles

Tema Árboles generales. 9.2 Árboles binarios 9.3 Árboles de búsqueda

Tema Árboles generales. 9.2 Árboles binarios 9.3 Árboles de búsqueda Informática Haskell Matemáticas Curso 2004-2005 Pepe Gallardo Universidad de Málaga Tema 9. Árboles 9.1 Árboles generales 9.2 Árboles binarios 9.3 Árboles de búsqueda 9.1 Árboles generales Un árbol es

Más detalles

Estructuras Dinámicas de datos.

Estructuras Dinámicas de datos. Estructuras Dinámicas de datos. Las estructuras dinámicas de datos son estructuras que crecen a medida que ejecuta un programa. Una estructura dinámica de datos es una colección de elementos llamadas nodos

Más detalles

Descubrir los árboles como paradigma de los tipos Recursivos de Datos

Descubrir los árboles como paradigma de los tipos Recursivos de Datos TEMA 5 ÁRBOLES(*) Una de las estructuras las datos más importantes y prominentes que existen es el árbol. No es un árbol en el sentido botánico de la palabra, sino uno de naturaleza más abstracta. Todos

Más detalles

Un árbol A es un conjunto finito de uno o más nodos tales: ,...V n. ) se dividen en m>=0 conjuntos disjuntos denominados A 1

Un árbol A es un conjunto finito de uno o más nodos tales: ,...V n. ) se dividen en m>=0 conjuntos disjuntos denominados A 1 POTIII 2.5 rboles Un árbol es un conjunto finito de uno o más nodos tales: 1. xiste un nodo especial denominado RIZ(V 1 ) del árbol 2. os nodos restantes (V 1,V 2,...V n ) se dividen en m>=0 conjuntos

Más detalles

Arboles Binarios de Búsqueda en C++

Arboles Binarios de Búsqueda en C++ Arboles Binarios de Búsqueda en C++ por CCG/Mayo-2014 Tema de Arboles Binarios de Búsqueda, como un poco de teoría para su mejor entendimiento seguidamente mostrare la implementación en lenguaje de programación

Más detalles

Árboles y esquemas algorítmicos. Tema III

Árboles y esquemas algorítmicos. Tema III Árboles y esquemas algorítmicos Tema III Bibliografía Tema III (lecciones 15 a 22) del libro Campos Laclaustra, J.: Estructuras de Datos y Algoritmos, Prensas Universitarias de Zaragoza, Colección Textos

Más detalles

Matemáticas Discretas Tc1003 Teoría de Grafos

Matemáticas Discretas Tc1003 Teoría de Grafos Definición. Sea A un grafo. A recibe el nombre de árbol sí y sólo si: A es conexo. A no contiene circuitos. Ejemplos: Definición. Sea A un árbol. Un vértice de grado 1 se llama una hoja. Un vértice de

Más detalles

Programación 2 Práctico 9 - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario

Programación 2 Práctico 9 - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario Práctico - TADs Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario Objetivos Trabajar con los tipos abstractos de datos Árbol Binario de Búsqueda, Árbol Finitario y Árbol n-ario. Desarrollar y analizar

Más detalles

Clase adicional 9. Listas enlazadas. Temas. Listas enlazadas Árboles Problemas de la clase adicional Ejercicios de diseño

Clase adicional 9. Listas enlazadas. Temas. Listas enlazadas Árboles Problemas de la clase adicional Ejercicios de diseño Clase adicional 9 Temas Listas enlazadas Árboles Problemas de la clase adicional Ejercicios de diseño Listas enlazadas Previamente en este curso, ya habrá trabajado con dos de las estructuras de datos

Más detalles