ESTADÍSTICA ÁREA CIENCIAS BÁSICAS
|
|
|
- Celia Escobar Fuentes
- hace 9 años
- Vistas:
Transcripción
1 ÁREA IENIAS BÁSIAS ESTADÍSTIA GUÍA N º 3 PROBABILIDADES 1) Durante el transcurso de un día, una máquina produce tres artículos, cuya calidad individual, definida como defectuosa o no defectuosa, se determina al final del día. Describa el espacio muestral generado por la producción diaria. 2) Para cada uno de los siguientes experimentos aleatorios dados, describa su respectivo espacio muestral: a. Lanzar dos dados al aire. b. Extraer una ficha de una caja que contiene 5 fichas blancas y 7 fichas azules. c. Elegir dos personas para un cargo de un grupo de 4 contadores, 5 ingenieros y 3 licenciados. 3) Explique los siguientes conceptos básicos: Experimento Aleatorio, Espacio Muestral, Suceso Elemental, Suceso. P ) Sean A y B sucesos de ; tales que: A ; P B ; y; P A B alcule: P A B a. b. A B c. P B A P = d. P A e. P A B f. P A/ B 5) Indique el significado en Álgebra de Sucesos de: a. Sea A suceso de, si A = Ocurre A, entonces b. Sean A y B sucesos de, entonces: A B A B A B A B A B A =
2 6) Sean A y B sucesos de, tales que: A 0.4; P B 0.7; y; P A B P. alcule: a. Probabilidad de que ninguno de los sucesos ocurra. b. Probabilidad de que sólo ocurra B. P A B c. d. P A e. P A B f. P A B 7) En una fábrica de computadores, se ha observado que el 16% de los equipos recién ensamblados presenta exactamente un defecto; el 45 tiene exactamente dos defectos y el 1% tiene exactamente tres o más defectos. uál es la probabilidad de que un equipo seleccionado al azar no tenga ningún defecto? 8) Se desea seleccionar un equipo de evaluación de tres personas a partir de un grupo formado por 10 hombres y 6 mujeres. Si cada grupo de tres personas tiene la misma probabilidad de ser elegido. cuál es la probabilidad de que el grupo quede formado sólo por mujeres? 9) Si se sabe que la probabilidad de que el comprador de un automóvil nuevo pida que el aire acondicionado venga instalado de fábrica es de 0.6, y que las diferentes decisiones de los compradores son independientes. uál es la probabilidad de que los próximos 5 compradores pidan que el aire acondicionado venga instalado de fábrica? 10) En un lote de 27 artículos 3 de ellos son defectuosos. Se eligen tres artículos al azar uno tras otro (sin reposición). Hallar la probabilidad de que los tres artículos estén buenos. 11) onsidere tres cajas con la siguiente información cada una de ellas: aja N 1: contiene 14 ampolletas, de las cuales 6 son defectuosas. aja N 2: contiene 10 ampolletas, de las cuales 4 son defectuosas. aja N 3: contiene 20 ampolletas, de las cuales 5 son defectuosas. Si se elige una caja al azar y luego una ampolleta de dicha caja: a. uál es la probabilidad de que la ampolleta sea defectuosa? b. uál es la probabilidad de que se escoja la aja N 1 y luego una ampolleta buena? c. Si la ampolleta elegida es defectuosa. uál es la probabilidad de que provenga de la aja N 2?
3 12) Se ha importado una caja con ciertas franquicias, que contiene 50 repuestos de los cuales se sabe que en la caja vienen 2 con defectos. Si se eligen dos de estos repuestos para vendérselos a un cliente uál es la probabilidad de que: a. Los dos repuestos resulten buenos? b. Sólo uno de los repuestos resulte defectuoso?. c. Los dos repuestos resulten defectuosos? 13) Una planta recibe reguladores de voltaje de dos diferentes proveedores, B, B. El % de los reguladores se compran a B1 y el resto a B 2. El porcentaje de reguladores defectuosos que se reciben de B1 es un 8 % y de B2 es el 10 %. SI se elige un regulador al azar de los adquiridos por la planta. a. Determine la probabilidad de que el regulador de voltaje funcione de acuerdo con las especificaciones. b. Si el regulador de voltaje elegido funciona determine la probabilidad de que haya sido fabricado por B 1. 14) Un lote consta de 10 artículos buenos, 4 con pequeños defectos y 2 con defectos graves. Se elige un artículo al azar. Determine la probabilidad de que: a. El artículo elegido no tenga defectos. b. El artículo elegido tenga un defecto grave. c. El artículo elegido sea bueno o tenga un defecto grave. 15) Un lote consta de 10 artículos buenos, 4 con pequeños defectos y 2 con defectos graves. Se eligen dos artículos al azar, uno tras otro. Determine la probabilidad de que: a. Ambos artículos estén buenos. b. Ambos tenga defectos graves. c. Ninguno esté bueno. 16) En una fábrica de pernos, las máquinas A, B y fabrican el 25%, 35% y 40% de la producción total respectivamente. De lo que producen, el 5% de A, el 4% de B y el 2% de son pernos defectuosos. Se escoge un perno al azar de la producción de la fábrica y se encuentra que es defectuoso uál es la probabilidad que el perno provenga de la máquina A? 17) Un aparato electrónico consta de dos partes. Se sabe que la probabilidad de que falle la primera parte es de 0.20; la de que fallen las dos partes es de 0.15 y la de que falle sólo la segunda parte es de alcular la probabilidad de que: a. Falle sólo la primera parte. b. Falle la primera parte cuando se sabe que falló la segunda parte. c. Falle sólo una de las dos.
4 18) En una empresa las secretarias A, B y escriben todos los pedidos especiales de bodega. De los archivos se sabe que las secretarias escriben el 40%, 25% y 35% de los pedidos especiales respectivamente. Se sabe además que la secretaria A comete un error cada 100 pedidos, la secretaria B comete error en el 4% de los pedidos y la secretaria comete error en el 2% de los pedidos. a. Si se elige un pedido al azar uál es la probabilidad de que el pedido seleccionado no contenga error? b. Si un departamento de la empresa recibe un pedido que contiene error. uál es la probabilidad de que el pedido haya sido escrito por la secretaria B? 19) En una empresa onsultora trabajan especialistas en RR.HH., Administración y ontabilidad. Se sabe que en un año esta empresa se presenta a propuestas que se dividen en: 30% en RR.HH., 40% en Administración y el resto en ontabilidad. De años anteriores se sabe que la probabilidad de adjudicarse una propuesta de RR.HH. es 35%, en administración es 72% y un 75% para contabilidad. a. Si la consultora se presenta a una propuesta y no se la adjudica. uál es la probabilidad de que la propuesta haya sido de RR.HH.? b. Qué porcentaje de las veces la empresa se adjudica una propuesta cualquiera?. 20) Una ompañía de Seguros divide a las personas en dos grupos, quienes son propensos a los accidentes y quienes no los son. Sus estadísticas muestran que una persona propensa a accidentes tendrá, en no más de un año, un accidente con una probabilidad de 0.4; mientras que esta probabilidad decrece a 0.2 en aquellas personas que no son propensas a los accidentes. Si pensamos que el 30% de la población es propensa a los accidentes, uál es la probabilidad de que una persona que compra una nueva póliza tenga un accidente en no más de un año?. 21) Se sabe que el 18% de los automóviles que circulan por santiago producen algún tipo de contaminación. Se toma una muestra al azar de 5 vehículos que transitan por la capital. uál es la probabilidad de que: a. Sólo dos de ellos contaminen. b. A lo menos dos de ellos contaminen. c. A lo más 4 de ellos contaminen. d. ontaminen más de 3. e. ontaminen a lo más 3. 22) Se sabe que los D producidos por una empresa salen defectuosos con probabilidad, independiente unos de otros, del 1%. La ompañía vende los discos en paquetes de 10 y garantiza el reembolso del dinero si más de uno de los 10 discos sale defectuoso. uál es el porcentaje de paquetes que se devuelven?
5 23) Sea X B 6,4 a. P(x = 0) b. P(x = 1) c. P(x = 2) d. P(x > 3) e. P(x < 4). Encuentre: 24) En una gran Empresa omercial el 78% son hombres. Si se eligen al azar a dos representantes para cierto cargo, uál es la probabilidad de que ninguno sea hombre? 25) En una tienda comercial se desea estudiar la preferencia sobre tres marcas de televisores diferentes. El 28% de los clientes prefiere la marca A, el 38% prefiere la marca B y el resto la marca. Se sabe que de los que prefirieron la marca A, el 65% son clientes de la tienda; de los que prefirieron la marca B, el 27% no son clientes de la tienda y de los que prefirieron la marca el 48% son clientes. a. Qué porcentaje de los clientes de la tienda fueron encuestados? b. Si una persona que fue encuestada resultó ser cliente de la tienda. uál es la probabilidad de que haya preferido la marca?. 26) El sueldo de los empleados de una empresa se distribuye normalmente con media $ y desviación típica $ Determine: a. La probabilidad de que un empleado elegido al azar gane más de $ b. El porcentaje de empleados que gana a lo más $ c. El porcentaje de empleados que gana entre $ y $ d. Se ha decidido otorgar un reajuste a los empleados que ganan a lo más $ Si se eligen 5 empleados al azar, uál es la probabilidad de que sólo 2 de ellos reciban el reajuste? 27) El tiempo que una persona demora en ir de su casa al trabajo es una variable aleatoria normal con media 45 minutos y desviación típica 30 minutos. a. Qué porcentaje de los empleados demora a lo más 40 minutos? b. De 6 empleados elegidos al azar, uál es la probabilidad de que sólo 2 de ellos demoren menos de 30 minutos de su casa al trabajo? c. Si la hora de entrada al trabajo es a las 9:00 y un empleado salió de su casa a la 8:30, uál es la probabilidad de que llegue atrasado? 28) En el IPLA, se sabe que la estatura de los estudiantes se distribuye normalmente con media 1,67 mts. Y desviación típica 0,50 mts.. Para formar la selección de básquetbol se exige que los postulantes como mínimo midan 1,77 mts.. Si se eligen 5 estudiantes al azar, cuál es la probabilidad que sólo 2 de ellos puedan formar el equipo?
6 29) El tiempo que un empleado demora en ir de su casa al trabajo es una variable aleatoria normal. Se ha observado que el 99,72 % de los empleados demora más de 34,37 minutos y el 4,75 % demora más de 56,22 minutos. a. uál es el tiempo promedio que demoran los empleados de dicha empresa en ir de su casa al trabajo? b. uál es la probabilidad de que un empleado elegido al azar demora más de una hora en llagar a su trabajo? 30) El Gerente de crédito de una gran empresa comercial estima que el monto por deudas impagas en el año, es una variable aleatoria normal con media $ y desviación típica $ a. Si se analiza una de las deudas impagas, elegida al azar, uál es la probabilidad de que el monto adeudado se encuentre entre $ y $350000? b. A partir de que monto se encuentra el 10% de las mayores deudas impagas? c. Si se eligen al azar 8 cuentas impaga, en forma independiente, uál es la probabilidad de que a lo menos una de las deudas tenga un monto superior a los $380000?
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
Teoría de muestras 2º curso de Bachillerato Ciencias Sociales
TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------
Práctica 2: Probabilidades A (a) Suponiendo que todos los resultados son igualmente probables. Encuentre P (A), P (B), P (A
1 Mediante diagramas de Venn probar que: (a) A = (b) A = A (c) A A = (d) A A = S (e) S = (f) = S (g) ( A ) = A (h) (A B) = A B (i) (A B) = A B : Probabilidades 2 El siguiente diagrama de Venn describe
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
3 PROBABILIDAD. = el conjunto de los cuatro objetos defectuosos y los. C = al menos uno defectuoso = B
ROL Tres caballos,, y, participan en una carrera que sólo puede ganar uno. La probabilidad de que gane es el doble de la de que gane, y la probabilidad de que gane es el doble de la de que gane. uáles
Guía de Modelos Probabilísticos
Guía de Modelos Probabilísticos 1. Distribución Binomial 1. Una máquina produce cierto tipo de piezas de las cuales el 5 % son defectuosas. Se seleccionan en forma independiente 5 piezas al azar. Calcule
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELETIVIDAD ANDALUÍA 2009 MATEMÁTIAS APLIADAS A LAS IENIAS SOIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1, Ejercicio
4. Tienes 5 libros, de cuántas maneras diferentes puedes escoger uno o más de dichos libros?
Universidad Autónoma Latinoamericana Taller de Repaso para Parcial 1 Estadística Análisis Combinatorio: 1. Una clase consta de 7 niños y 3 niñas. De cuántas maneras diferentes el profesor puede escoger
Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios
1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.
INSTRUCTIVO PARA TUTORÍAS
INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara
Probabilidad Condicional- Probabilidad Total- Teorema de Bayes
Probabilidad Condicional- Probabilidad Total- Teorema de ayes De un grupo de 50 empleados, 30 tiene una antigüedad de más de 10 años. Se eligen dos empleados al azar. Calcular la probabilidad de que los
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA
GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA Deberán apoyarse en los ejercicios resueltos en clase marcados con el símbolo E Los conceptos de probabilidad, fenómeno aleatorio, determinista,
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar
La probabilidad es el estudio de los experimentos aleatorios o no determinísticos.
II.- Probabilidad 1 Definición de Probabilidad La probabilidad es el estudio de los experimentos aleatorios o no determinísticos. 2 Experimentos deterministicos y aleatorios Experimentos determinísticos.
b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir?
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 4, curso 2006 2007. Ejercicio 1. Suponer que los cuatro motores de una aeronave comercial se disponen para que
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es
Estadística. Convocatoria ordinaria. Mayo de Nombre. Titulación Grupo
Estadística. Convocatoria ordinaria Mayo de 2015 Nombre. Titulación Grupo Problema 1 (1.75 puntos) En una ciudad, el 40% de las personas son rubias, el 30% tiene los ojos azules y el 10% son rubios con
Depto. de Matemática GUÍA DE MATEMÁTICA NIVEL II MEDIO 2º SEMESTRE
Nombre: Depto. de Matemática GUÍ DE MTEMÁTI NIVEL II MEDIO 2º SEMESTRE urso: Fecha: ONTENIDOS: Fracciones lgebraicas- Sistemas de ecuaciones - Semejanza,división, Thales, Pitágoras, Euclides- Ángulo en
C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES:
C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES: 1. Los pacientes que llegan a una clínica pueden seleccionar una de tres secciones para ser atendidos. Supongamos que los médicos se asignan al azar
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD EJERCICIO 1 Considera el siguiente conjunto de datos bidimensionales: X 1 1 2 3 4 4 5 6 6 y 2.1 2.5 3.1 3.0 3.8 3.2 4.3 3.9 4.4 a)sin efectuar cálculos
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia
PROBLEMAS RESUELTOS DE PROBABILIDAD
PROBLEMAS RESUELTOS DE PROBABILIDAD D A B y B 1. Sean A y B subconjuntos del conjunto U y sea C A B E A. a) Dibuje diagramas de Venn separados para representar los conjuntos C, D y E. b) Utilizando las
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
Tema 8. Muestreo. Indice
Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José
Juan Carlos Colonia P. PROBABILIDADES
Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado
Juan José Hernández Ocaña
En la mayoría de los casos el muestreo se realiza sin reemplazo, por lo tanto si el tamaño de la población es reducido, la probabilidad de cada observación cambiará Como la probabilidad de éxito no es
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1
1 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado. Sean los sucesos: A: la suma de los números obtenidos es exactamente 8. B: los números obtenidos son iguales. a)
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento
La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento Hay que considera que esta distribución es lo contrario de la distribución binomial ya que
Probabilidad - 2ºBCS. De dos sucesos A y B, asociados a un mismo experimento aleatorio, se conocen las probabilidades C. = 0.
Probabilidad - ºBS EJERIIO De dos sucesos A y B, asociados a un mismo experimento aleatorio, se conocen las probabilidades P ( 0., P ( A / 0. y A B ) 0.. a) alcule A. b) Halle P (. c) Determine si A y
PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado.
PROBLEMAS DE PROBABILIDAD. BOLETIN II.1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. 2. Hallar la probabilidad de sacar por suma o bien 4, o bien 11 al lanzar dos dados. 3.
GUÍA DE EJERCICIOS N 14 PROBABILIDADES
LICEO CARMELA CARVAJAL DE PRAT PROVIDENCIA DPTO DE MATEMATICA GUÍA DE EJERCICIOS N PROBABILIDADES SECTOR: Matemática PROFESOR(es): Marina Díaz MAIL DE PROFESORES: [email protected] [email protected]
Por definición la cardinalidad de un conjunto es el conteo de elementos de tal conjunto, por lo tanto son positivas. # 0, # Ω 0 P(A) 0 ii.
EJERCICIOS RESUELTOS DE PROBABILIDADES: 1) Sea Ω = {,,, } A = {,,, } ; r n Se define: P (A) = # # Demostrar que P(A) es función probabilidad. SOLUCION: Para que P(A) sea función probabilidad debe cumplir
JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.
Variables Aleatorias Discretas
Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.
1) Una caja contiene 3 bolitas rojas y 4 amarillas se extraen dos, una después de la otra y sin reposición. X= No de bolitas rojas extraídas
ENCUENTRO # 47 TEMA: Distribución binomial CONTENIDOS: 1. Definición. Distribución binomial 2. Ejercicios propuestos 3. Ejercicios de Entrenamiento PAES Ejercicios Reto 1) Una caja contiene 3 bolitas rojas
RELACIÓN DE EJERCICIOS DE PROBABILIDAD
RELACIÓN DE EJERCICIOS DE PROBABILIDAD 1. A una reunión llegan Carmen, Lola, Mercedes, Juan, Fernando y Luis. Se eligen dos personas al azar sin importar el orden: a) Obtén el espacio muestral de este
POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA
POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA Distribución de Poisson Cuando una variable discreta se usa para estimar la cantidad de sucesos u ocurrencia en un determinado intervalo de tiempo o espacio es necesario
EJERCICIOS DE PROBABILIDADES
Ejercicios : 1. Se lanza un dado y se observa que número de aparece en la cara superior. 2. Se lanza una moneda cuatro veces y se cuenta el número total de caras obtenidas 3. El ala de un aeroplano se
Ejercicios (Probabilidades) 1) Una carta se extrae aleatoriamente de una baraja de 52. Encontrar la probabilidad de que sea: a. Un as.
Ejercicios (Probabilidades) 1) Una carta se extrae aleatoriamente de una baraja de 52. Encontrar la probabilidad de que sea: a. Un as 1/13 b. Diez de corazones 1/52 c. Un 3 de tréboles o un 6 de diamantes
Generalidades 1. Sea X una variable aleatoria continua con función densidad dada por
Generalidades 1. Sea X una variable aleatoria continua con función dendad dada por kt f ( t ) = 0 1 t en otro caso Determine a) el valor de la constante k b) E(X) y V(X) c) la función de distribución acumulada
TALLER 3 ESTADISTICA I
TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral
Apuntes de Clases. Modelos de Probabilidad Discretos
2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica
Probabilidad del suceso imposible
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------
INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.
Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno
MATEMÁTICAS APLICADAS CCSS II. EJERCICIOS: ESTADISTICA: Probabilidad (SELECTIVIDAD) Profesora: Domitila de la Cal Vázquez Página 1
Profesora: Domitila de la Cal Vázquez Página 1 Profesora: Domitila de la Cal Vázquez Página 2 3A-El 35% de los créditos de un banco son para vivienda, el 50% para industrias y el 15% para consumo diverso.
Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales
Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación
PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2
PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para
(1 punto) (1.5 puntos)
Ejercicios de inferencia estadística. 1. Sea la población {1,2,3,4}. a) Construya todas las muestras posibles de tamaño 2, mediante muestreo aleatorio simple. b) Calcule la varianza de las medias muestrales.
LISTA DE EJERCICIOS PARA ETS DE PROBABILIDAD (IE, ICA, e ISISA)
LISTA DE EJERCICIOS PARA ETS DE PROBABILIDAD (IE, ICA, e ISISA) PROBABILIDAD CONDICIONAL 1. Dados P (A) = 0.4, P (B A) = 0.3 y P (B c A c ) = 0.2, determine: a) P (A c ). b) P (B A c ). c) P (B). d) P
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica
Teorema del límite central
TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución
04 Ejercicios de Selectividad Probabilidad. 1. [ A-3] Lena y Adrián son aficionados al tiro con arco. Lena da en el blanco con probabilidad
Ejercicios propuestos en 2009 7 1 [2009-1-A-3] Lena y Adrián son aficionados al tiro con arco Lena da en el blanco con probabilidad 11, y 9 Adrián con probabilidad Si ambos sucesos son independientes,
UNIVERSIDAD DE LA SALLE
UNIVERSIDAD DE LA SALLE Taller Probabilidad Básica. Bioestadística. 1. Determine cuáles de los siguientes experimentos son aleatorios y en caso afirmativo hallar su espacio muestral: (a) Extraer una carta
ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017
PROBABILIDAD (EvAU EBAU 2017) 1 ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017 Publicado el día 29 de junio de 2017. El presente documento se actualizará cuando se disponga
Problema 1. Problema 2
Probabilidad 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Probabilidad Problema 1 I.2- Sean A, B y C tres sucesos, tales que P(A) = 0.2, P(B) = 0.8 y P(A B)
La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es:
La estadística es una materia dedicada a la recopilación, organización, estudio y análisis de datos de un hecho en particular. La estadística descriptiva tabula, representa y describe una serie de datos
DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples.
es una representación gráfica que permite visualizar un experimento de pasos múltiples. Considere un experimento que consiste en lanzar dos monedas. Defina los resultados experimentales en términos de
UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017
INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos
ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i
ESTADÍSTICA 1.- Un equipo ciclista quiere estudiar el estado de las bicicletas a lo largo de cuatro años. Toma una muestra de 20 bicicletas y mira los Kilómetros que han recorrido: Kilómetros recorridos:
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA
robabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA -XII- Grupo B.- Tres máquinas de una planta de montaje producen el %, 5% y 5% de productos, respectivamente. Se sabe que el %, %,
Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno
Probabilidad condicional e independencia
Probabilidad condicional e independencia Probabilidad condicional La probabilidad de un determinado suceso en un experimento aleatorio puede modificarse si se posee alguna información antes de la realización
RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad
RELACIÓN DE PROBLEMAS Distribuciones de probabilidad 1. Se lanzan al aire dos monedas tres veces consecutivas. Sea X la v.a. que representa el número de veces que se obtiene cara en ambas monedas en los
PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS
PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS En lo que sigue le presentamos 50 puntos que fueron incluidos en diferentes evaluaciones finales de los fundamentos
Resuelve los ejercicios de Probabilidades condicionales
Resuelve los ejercicios de Probabilidades condicionales 1. Supón que una organización de investigación del consumidor ha estudiado el servicio de garantía que ofrecen los 200 distribuidores de neumáticos
19y20 Cálculo de probabilidades.
ACTIVIDADES DE REFUERZO 9y20 Cálculo de probabilidades. Probabilidad compuesta. Consideremos el experimento consistente en extraer una carta de una baraja española y anotar su palo. Sean los sucesos A:
EJERCICIOS DE DISTRIBUCION NORMAL, BINOMIAL Y POISSON
EJERCICIOS DE DISTRIBUCION NORMAL, BINOMIAL Y POISSON 1. Si 15 de 50 proyectos de viviendas violan el código de construcción, Cuál es la probabilidad de que un inspector de viviendas, que selecciona aleatoriamente
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD PROBABILIDAD MISCELANEA DE EJERCICIOS UNIDAD 2
EJERCICIOS CAPITULO 4 1.- Un inspector de aduanas decide revisar 2 de 6 embarques provenientes de Madrid por la vía aérea. Si la selección es aleatoria y 3 de los embarques contienen contrabando; Encuentre
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
Tema 4. Distribución Binomial y Poisson
Universidad de Los Andes Facultad de Ciencias Económicas y Sociales Escuela de Administración y Contaduría Estadística I Sección 06 - I2016 Prof. Douglas Rivas Tema 4. Distribución Binomial y Poisson Conceptos
12 ESTADÍSTICA Y PROBABILIDAD
12 ESTADÍSTICA Y PROBABILIDAD 12.1.- TABLAS DE FRECUENCIA ABSOLUTA Y RELATIVA. PARÁMETROS ESTADÍSTICOS. 12.2.- GRÁFICOS ESTADÍSTICOS 12.3.- CÁLCULO DE PROBABILIDADES. REGLA DE LAPLACE. 12.1.- TABLAS DE
Tiempo completo Tiempo parcial Total Mujeres Hombres Total
ASIGNACION DE ROBABILIDAD A manera de introducción al tema analicemos las diferencias entre eventos mutuamente excluyentes, no mutuamente excluyentes, dependientes e independientes. Ejemplo : En un grupo
HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD
pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician
TALLER N 2. www.siresistemas.com/clases www.fundacionsire.org www.siresistemas.com
TALLER N 2 1. Supóngase que los nueve valores siguientes, representan observaciones aleatorias provenientes de una población normal: 1, 5, 9, 8, 4, 0, 2, 4, 3. Constrúyase un intervalo de confianza de
La distribución de Probabilidad normal, dada por la ecuación:
La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada
La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas.
La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas. Dado un experimento y cualquier evento A: La expresion
PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL
POILIDD Y DISTIUIÓ IOMIL.- Una bolsa contiene bolas negras y rojas. Se extraen sucesivamente tres bolas. Obtener: a El esacio muestral. b El suceso extraer tres bolas del mismo color. c El suceso extraer
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
Instrucciones. No hable durante el experimento o usted será inmediatamente excluido del mismo! Buena suerte!
Instrucciones Gracias por participar en este experimento sobre toma de decisiones! Usted recibirá quetzales por haber venido al experimento; esos quetzales son suyos independiente de los resultados del
a. Elija una muestra aleatoria simple de tamaño n=6 de esta población. Use una tabla de números aleatorios o Excel para la
Ejercicios Unidad I 1. Suponga que estamos investigando sobre el porcentaje de alumnos que trabajan de una población de 20 alumnos de la Universidad de Talca. Base de datos de la población: Nombre Alumno
ESTADÍSTICA Y PROBABILIDAD
I.E.S. Federico Mayor Zaragoza 2º BACHILLERATO SEMIPRESENCIAL MATEMÁTICAS APLICADAS A LAS CIENCIA SOCIALES II ACTIVIDADES DE RECUPERACIÓN NOMBRE: Fecha de entrega: 01/09/2014 ESTADÍSTICA Y PROBABILIDAD
Ensayo o prueba: es la realización concreta de un experimento aleatorio.
Tema 4. Probabilidad Resumen del tema 4.1. Introducción a la Probabilidad Experimento: cualquier proceso que permite asociar a cada individuo de una población un símbolo (numérico o no) entre los símbolos
UNIDAD IV PROBABILIDAD
UNIDAD IV PROBABILIDAD Probabilidad de un evento M. en C. Mario Arturo Vilchis Rodríguez EXPERIMENTOS, RESULTADOS Y CONJUNTOS La probabilidad es la posibilidad numérica de que ocurra un evento. La probabilidad
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
UNIVERSIDAD COMPLUTENSE DE MADRID
INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que consta dicha opción.
Asignatura: Probabilidad y Estadística (LM-PM)
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA Asignatura: Probabilidad y Estadística (LM-PM) - 2016 Docentes a cargo: Pablo Torres
14. En una tienda de electrodomésticos se venden dos marcas, A y B. Se ha comprobado que un tercio de los clientes elige un electrodoméstico de la
PROBABILIDAD 1. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores eran nativos de esa
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
