Estudio De Un Absorbente Electroacústico
|
|
|
- Alfonso Rodríguez Aguilar
- hace 9 años
- Vistas:
Transcripción
1 Estudio De Un Absorbente Electroacústico Javier Rodríguez De Antonio Junio de 2008 Laboratoire d Electromagnètisme et d Acoustique Asistente: Hervé Lissek
2 JUSTIFICACIÓN DEL TRABAJO Y OBJETIVOS El problema de la atenuación del ruido de baja frecuencia todavía persiste pese a que ha sido ampliamente estudiado. Las técnicas para absorber ruido de alta frecuencia (superior a 500 Hz), como son los materiales porosos, resonadores de Helmholtz o espumas no ofrecen resultados aceptables a bajas frecuencias. Serían necesarios volúmenes impracticables de materiales porosos para intentar absorber frecuencias menores a 500 Hz, y lo mismo ocurre con los resonadores de Helmholtz. Esta ineficacia de los materiales pasivos absorbentes tradicionales ha motivado el desarrollo de nuevas técnicas para absorber el ruido reverberante de baja frecuencia, usando altavoces y materiales con control activo. En este trabajo se desarrolla un altavoz disipador pasivo, basado en el uso de una resistencia como absorbente de energía, y se optimizan los parámetros del altavoz y el valor de ésta resistencia disipadora. DISEÑO DE UN ALTAVOZ ELÉCTRICO DISIPADOR En esta sección se describe el diseño de un altavoz disipador de energía de acuerdo con determinadas características específicas. Nos centraremos en el caso de las bajas frecuencias, y en el caso de que el disipado lo lleva a cabo una resistencia. El programa usado para el diseño y los ensayos ha sido MATLAB. Nuestro objetivo final es el de conseguir un coeficiente de reflexión igual a 0 para un rango específico de frecuencias. Podemos definir el coeficiente de reflexión como: Pero también puede ser determinado como Donde es la impedancia característica del medio (el aire en este caso) determinado por Y es la impedancia acústica del altavoz, que es la relación entre la presión en el área de contacto de la superficie y la velocidad de volumen total que mueve esta superficie. Esto se puede expresar como: 1
3 Siendo la presión acústica y la velocidad de volumen. De esta forma podemos igualar el valor de la impedancia interna del altavoz a la impedancia característica del aire para reducir en lo posible el valor de. Para introducir la parte mecánica del altavoz, la lew que tenemos que satisfacer es que la presión acústica originada por una superficie radiante está relacionada con la fuerza que mecánica que la impulsa por la expresión: Donde es la superficie del elemento radiante, y también por: Si usamos la misma analogía para las partes mecánica y acústica, podemos representar la transducción mecánico-acústica con un transformador tipo T. Como se ha visto anteriormente, el diafragma de un altavoz se representa por una masa mecánica, una resistencia mecánica y una compliancia mecánica, y todos estos elementos se mueven con la misma velocidad. Entonces la variable velocidad debe ser común a todos ellos. El movimiento del diafragma esta relacionado con la intensidad de corriente en la parte eléctrica del altavoz por Donde es la tensión inducida producida por el movimiento del diafragma, es la densidad del flujo magnético, y es la longitud del conductor. Así obtenemos un circuito eléctrico compuesto por una resistencia, y una inductancia. 2
4 Figura 1 En la figura, y son la impedancia de radiación, y representan la oposición que presenta el aire que existe delante y detrás del diafragma al movimiento del mismo. Si el altavoz está cortocircuitado después de los elementos eléctricos, a frecuencias por debajo del corte del filtro 1/(sLe+Re),, la bobina actúa como un freno electrodinámico, y una disipación física se añade a la parte mecánica del altavoz. Se puede conectar una impedancia eléctrica apropiada a los terminales de la bobina del altavoz, para optimizar la disipación y la mitigación acústica. Ahora podemos simplificar el circuito completo transformando los elementos mecánicos y eléctricos y las variables en elementos acústicos, considerando las relaciones de los transformadores, y podemos calcular el calor de la impedancia acústica del sistema. Para conseguir una disipación total de la energía acústica, tiene que ser igual a., y tendremos que buscar la resistencia óptima añadida al altavoz para obtener este resultado. Diseño del circuito pasivo Podemos diseñar un circuito conectado a los terminales de un altavoz para alterar la respuesta a un recinto acústico unido al mismo. Un altavoz en una caja acústica simula la respuesta de un resonador de Helmholtz. Si se pueden ajustar las propiedades de este resonador de Helmholtz virtual, el altavoz se puede usar para atenuar modos acústicos muy resonantes, de la misma manera que lo hace un resonador de Helmholtz. A bajas frecuencias, donde w << Re/Le, la influencia del inductor Le se puede despreciar. En este caso, la absorción se puede incrementar conectando una resistencia R a los terminales del altavoz. Ésta resistencia R, unida a la resistencia de la bobina Re, puede emular la respuesta acústica de un resonador de Helmholtz. La absorción mecánica d del resonador queda representada en el circuito de un altavoz como una impedancia 3
5 mecánica. La resistencia eléctrica de disipación se sitúa en paralelo a esta absorción, de forma que la absorción total del resonador de Helmholtz virtual resulta: Nótese que la absorción total queda restringida en un rango entre d y d+1/rs. Un altavoz con bajo d y Re proporcionará el mayor rango de ajuste. Figura 2 Diseño de una resistencia de disipación a 125 Hz Ahora vamos a abordar el problema de la abosorción a bajas frecuencias. Basándonos en el criterio anterior, podemos diseñar un equivalente eléctrico para un resonador de Helmholtz para el caso concreto de 125 Hz. Simplificando el diagrama del altavoz disipador, en la parte eléctrica tenemos una resistencia como resultado de la unión de Re y Rc. Y una inductancia representada por un condensador de valor: 4
6 Figura 3 Al estar trabajando a bajas frecuencias, tenemos y podemos despreciar el valor del condensador y eliminarlo. También podemos usar las impedancias acústicas obteniendo una única impedancia. Figura 4 Donde Es la suma de las resistencias acústica de disipación. y eléctrica resultante incluyendo la resistencia 5
7 Entonces el criterio es igualar la resistencia equivalente a la impedancia característica del aire : Y a partir de ahí, resulta sencillo obtener el valor de la Resistencia de disipación : Ahora la ecuación en el dominio temporal para el circuito simplificado es: Donde la impedancia acústica de radiación ha sido dividida en una masa y una resistencia. Y en el dominio de Laplace: De modo que podemos obtener la impedancia acústica del sistema 3049, reescribiendo la ecuación como: Parámetros del altavoz Elegimos un diafragma de 0.1 m y una bobina muy ligera: El número de espiras del cable es ; el diámetro: El campo magnético es de ; La longitud de la bobina es ; La superficie de la sección del cable es: ; De modo que obtenemos una masa de la bobina igual a ; Donde = 8960 es la densidad del cobre, y un factor de fuerza Con esta información y fijando el valor de la frecuencia de resonancia en 125 Hz, podemos obtener los valores de los parámetros mecánicos del altavoz: 6
8 De donde extraemos los valores de los parámetros eléctricos y acústicos equivalentes, así como los valores de la suma de resistencias y de la resistencia óptima, para la disipación a 125 Hz. Y ahora podemos obtener la curva de impedancia del altavoz: Figura 5 7
9 Y de la admitancia acústica : Figura 6 ESTUDIO EXPERIMENTAL DE UN ALTAVOZ DISIPADOR Podemos determinar el coeficiente de absorción de un material usando un tubo de impedancia, de acuerdo con la norma ISO Este método consiste en el uso de un tubo de impedancia, dos micrófonos, y un analizador numérico de frecuencias. También podemos determinar la impedancia o admitancia acústica en la superficie del material absorbente. La fuente sonora se sitúa en uno de los extremos del tubo, y el material sometido al test (el altavoz en este caso), se coloca en el otro extremo. Las ondas planas se generan dentro del tubo por la fuente de ruido, y la descomposición del campo de interferencias se realiza por la medida de las presiones acústicas en dos puntos fijos usando dos micrófonos incrustados en la pared del tubo o un micrófono a lo largo del mismo. Las medidas quedan determinadas en función de la frecuencia con una resolución marcada por la frecuencia de sampleo y la longitud reistrada de la frecuencia numérica del sistema de análisis usado para las medidas. El dominio de frecuéncia útil depende de la longitud del tubo y del espaciamiento entre los micrófonos. Se puede obtener un mayor rango de frecuencias combinando medidas de diferentes longitudes y espaciamientos. 8
10 Resultados Para las siguientes medidas, se ha usado un tubo de impedancia terminado en un altavoz SPH-300TC montado en una caja de 50x50x34, que actúa como una compliancia de valor: Donde es el volumen de aire en la caja, y 1.4exp(5) es el coeficiente de compresión adiabático del aire. Montados en la pared del tubo, existían dos micrófonos Norsonic 1201 conectados al sistema de análisis de señal PULSE. Para el altavoz cortocircuitado, el coeficiente de absorción y el valor de la admitancia acústica para cada frecuencia se muestran en las figuras 7 y 8, respectivamente y para el altavoz terminado en una resistencia estas curvas se muestran en las figuras 9 y 10: Figura 7 9
11 Figura 8 Figura 9 10
12 Figura 10 CONCLUSIONES El principal objetivo de este trabajo era optimizar los parámetros de un altavoz para conseguir absorción total en un rango específico de bajas frecuencias. En este caso, el altavoz más útil es un altavoz pasivo, terminado en una resistencia, de forma que su funcionamiento sea similar a un resonador de Helmholtz. La frecuencia de resonancia es donde se puede obtener la absorción total. Moviendo esta frecuencia a lo largo del espectro, y cambiando su forma, es posible variar el valor de la masa mecánica y la compliancia. Con los diseños de MATLAB se ha visto que es posible conseguir absorción total en bajas frecuencias, a pesar de que son necesarios materiales extremadamente ligeros para construir el altavoz. Las pruebas experimentales con el tubo de impedancias han demostrado que el prototipo funciona, de forma que una vez conseguidas las características óptimas del altavoz, es posible construir paneles de este tipo de altavoces para controlar la reflexión de un recinto. 11
13 12
Un altavoz es un transductor electroacústico que convierte señales eléctricas en señales acústicas
Tema 6 Altavoces 6. Introducción Un altavoz es un transductor electroacústico que convierte señales eléctricas en señales acústicas e ( t ) TEM f ( t ) TMA p ( t ) El transductor mecánico-acústico está
INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis
INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia
SESION 10: GENERADORES DE C.C.
SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por
Unidad Didáctica 4 Electricidad
Unidad Didáctica 4 Electricidad 1. Corriente eléctrica 2. Resistencia y Ley de Ohm 3. Condensadores y bobinas 4. Transformadores 5. Sistema de distribución de altavoces - distribución en alta tensión -
Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso
oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a
Electroacústica básica: Altavoces, Parlantes y Cajas acústicas I
Electroacústica básica: Altavoces, Parlantes y Cajas acústicas I Es el turno ahora de mencionar ciertos conceptos básicos sobre parlantes. Es un tema muy largo, tedioso y requiere del conocimiento de Métodos
Transitorios, Circuitos de Corriente Alterna, Transformadores.
Física 3 Guia 5 - Corrientes variables Verano 2016 Transitorios, Circuitos de Corriente Alterna, Transformadores. 1. Un condensador de 3µF se carga a 270 V y luego se descarga a través de una resistencia
Inducción electromagnética. M del Carmen Maldonado Susano
Inducción electromagnética M del Carmen Maldonado Susano Cuando las intensidades de corriente son del mismo sentido existen entre ellas fuerzas atractivas; cuando las intensidades de corriente son de sentido
ELECTRÓNICA Bobina. El valor de una bobina viene dado en Henrios, H, pudiendo encontrarse bobinas que se miden en milihenrios, mh.
ELECTRÓNICA Bobina CPR. JORGE JUAN Xuvia-Narón Tecnología La o inductor es un elemento muy interesante. A diferencia del condensador o capacitor, la por su forma, espiras de alambre arrollados, almacena
INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos
INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo
CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores
CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en
CIRCUITOS II. Presentación del Curso
CIRCUITOS II Presentación del Curso Introducción Repaso de semestres anteriores: Fuentes que varían con el tiempo V(t) Fuente senoidal Circuitos con interruptores El curso es base para asignaturas en las
46º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON VIRTUAL ACOUSTICS AND AMBISONICS
DISEÑO Y CONSTRUCCIÓN DE UN TRANSDUCTOR (SUBKICK) PARA REALZAR FRECUENCIAS BAJAS DE UN BOMBO DE BATERÍA PACS: 43.38.-P Romo, William; Herrera Martínez, Marcelo Universidad de San Buenaventura Carrera 8
Partes de un altavoz
Partes de un altavoz Suspensión Bóveda Cono Araña Bobina móvil Imán 1 Transducción Tensión [e] Fuerza Velocidad Bobina Cono Aire [f] [u] Presión [p] Electro-mecánica Mecánico-acústica Electro-acústica
Física re-creativa. Experimentos de Física usando nuevas tecnologías. S. Gil y E. Rodríguez
Física re-creativa Experimentos de Física usando nuevas tecnologías S. Gil y E. Rodríguez!"Dedicatoria!"Prefacio!"Agradecimientos!"Sugerencias para el uso de este libro Módulo I - Conceptos básicos de
2.1 Estudio de la inducción electromagnética.
Página7 UNIDAD 2 Funcionamiento de la máquina de corriente continua como generador. 2.1 Estudio de la inducción electromagnética. La producción de energía eléctrica, bien sea por dinamos, bien por alternadores,
Fundamentos de acústica
Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido
TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.
TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.
Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.
Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente
MEDICIÓN. El propósito de la medición industrial es mejorar la calidad o la eficiencia de la producción.
MEDICIÓN El propósito de la medición industrial es mejorar la calidad o la eficiencia de la producción. La medición puede ser: Directa Indirecta Cuantitativa Cualitativa FUNCIONES DE UN ELEMENTO DE MEDICIÓN
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PUEBAS DE ACCESO A A UNVESDAD.O.G.S.E. CUSO 008-009 CONVOCATOA DE JUNO EECTOTECNA E AUMNO EEGÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico
SILABO DE FISICA ELECTRICA
UNIVERSIDAD PRIVADA DEL NORTE Departamento de Ciencias I. DATOS GENERALES SILABO DE FISICA ELECTRICA 1.1 Facultad : Ingeniería 1.2 Carrera Profesional : Ingeniería de Sistemas 1.3 Departamento Académico
MEDIDA DE LA VELOCIDAD DEL SONIDO
Laboratorio de Física General (Ondas mecánicas) MEDIDA DE LA VELOCIDAD DEL SONIDO Fecha: 02/10/2013 1. Objetivo de la práctica Determinación de la velocidad del sonido (y la constante adiabática del aire)
RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE
MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud
, Ind ice general. 1-1 Descripción general El modelo electromagnético Unidades en el SI y constantes universales 8 Resumen 10
, Ind ice general CAPíTULO1 EL MODELO ELECTROMAGNÉTICO 2 1-1 Descripción general 2 1-2 El modelo electromagnético 4 1-3 Unidades en el SI y constantes universales 8 Resumen 10 CAPíTULO2 ANÁLISIS VECTORIAL
Clase 7 Inductancia o Reactancia Inductiva
Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos
CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN
CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA
Índice de contenidos
FundamentosdeElectrotecniaparaIngenieros Índice de contenidos TEMA 1... 9 CONCEPTOS BÁSICOS DE ELECTRICIDAD... 9 TEMA 1.- CONCEPTOS BÁSICOS DE ELECTRICIDAD... 11 1.1.- Introducción... 11 1.2.- Naturaleza
Contenido. Circuitos Eléctricos - Dorf. Alfaomega
CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis
CURSO: ELECTRÓNICA BÁSICA UNIDAD 3: OSCILADORES - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN
CURSO: ELECTRÓNICA BÁSICA UNIDAD 3: OSCILADORES - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN Muy a menudo dispositivos electrónicos tales como receptores, transmisores y una gran variedad de aparatos
Las Ondas y la Luz. Las Ondas
Las Ondas Una onda consiste en la propagación de una perturbación física en un medio que puede ser material (aire, agua, tierra, etc) o inmaterial (vacío), según la cual existe transporte de energía, pero
PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA
PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA 1) Dadas dos cargas eléctricas positivas, iguales, situadas a una distancia r, calcula el valor que ha de tener una carga negativa situada en el punto medio del segmento
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,
- Comprobar experimentalmente, las relaciones de transformación de impedancia, voltaje y corriente de un transformador ideal.
1. Objetivos -Proponer, simular, calcular y reproducir para el análisis, la topología de diversos circuitos acoplados magnéticamente (al menos 6). Dos con acople en aire, dos con núcleo abierto y dos con
CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna
Desarrollo del tema.- 1. Los dipolos. 2. Las relaciones de potencia en los dipolos. 3. Concepto de potencia aparente y reactiva. 4. La notación compleja de la potencia. 5. El teorema de Boucherot. 6. El
TIEMPO DE REVERBERACIÓN
TIEMPO DE REVERBERACIÓN 1 Tiempo de reverberación Se define como el tiempo que transcurre desde que la fuente cesa su emisión hasta que la energía acústica presente en el interior de una sala cae 60 db.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro
GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo
GUÍA 6: CIRCUITOS MAGNÉTICOS Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de
Asignatura: Teoría de Circuitos
Asignatura: Teoría de Circuitos Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Profesor(es) responsable(s): María Josefa Martínez Lorente Curso:2º Departamento: Ingeniería
LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 9
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
Implementación de efectos acústicos
Práctica 3: Implementación de efectos acústicos 3.0.- Objetivos Al finalizar esta práctica, el alumno debe ser capaz de: Grabar una señal de voz procesarla en Matlab. Añadir un eco, con diferente amplitud
PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Septiembre 2014 OPCIÓN B: TECNOLOGÍA INDUSTRIAL
PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Septiembre 2014 OPCIÓN B: TECNOLOGÍA INDUSTRIAL DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: /
Medida del campo magnético terrestre
Práctica 8 Medida del campo magnético terrestre 8.1 Objetivo El objetivo de esta práctica es medir el valor del campo magnético terrestre. Para ello se emplea un campo magnético de magnitud y dirección
Ejercicios Propuestos Transporte eléctrico.
Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad
3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2
3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una
Proyecto de aula. Física II. Este proyecto está fundamentado en una pregunta problema para todo el curso Cómo funciona un motor eléctrico?
Reconocimiento: Este proyecto fue diseñado por el doctor, profesor del Instituto de Física de la Universidad de Antioquia, quien autoriza su publicación en el aula virtual del curso de Física II. Proyecto
Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga
Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga 4.1. Introducción Los motores de corriente continua sin escobillas ( DC brushless motors
CAPÍTULO 5. SISTEMA COLECTOR ÓPTIMO.
CAPÍTULO 5. SISTEMA COLECTOR ÓPTIMO. 122 5.1. CÁLCULO DEL SISTEMA COLECTOR ÓPTIMO Una vez calculados los parámetros eólicos del parque, vamos a diseñar el sistema colector. La línea a la que vamos a conectar
Conductores de carbón. Resistencias. Aislante. Semiconductores. El cuerpo humano como conductor Práctica 10. Mediciones en Corriente Continua y
INDICE Prefacio de la Serie 13 Prólogo 15 Seguridad 17 Nota sobre el Contenido Cada una de las prácticas está ordenada del siguiente modo: Finalidades.- Se enumeran y especifican los fines propuestos.
PRÁCTICA 2. OSCILOSCOPIOS HM604 Y HM 1004 (II)
PRÁCTICA 2. OSCILOSCOPIOS HM604 Y HM 1004 (II). MEDIDOR DE IMPEDANCIAS HM 8018: CIRCUITOS RESONANTES SERIES Y PARALELOS (MEDIDAS DE PARÁMETROS DE LA SEÑAL) 2.1.- Objetivos: Calcular el desfase de una señal
Tema 4: Electrocinética
Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 3. Máquinas Asíncronas o de Inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:
Sistema de Ahorro de Electricidad
Sistema de Ahorro de Electricidad El Equipo Ahorrador de Electricidad Es un sistema integrado por circuitos RLC de etapas múltiples que contiene: Una Resistencia eléctrica, Bobina (inductancia) y un Condensador
INDICE Capitulo 1. Circuitos Eléctricos en Corriente Continua: Conceptos y Fenómenos Capitulo 2. Resistencia Eléctrica. Ley de Ohm
INDICE Prólogo XI Capitulo 1. Circuitos Eléctricos en Corriente Continua: Conceptos y 1 Fenómenos Introducción 1 1.1. Conceptos previos 3 1.1.1. Estructura de la materia 3 1.1.2. Estructura de los átomos
GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo
GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres
LABORATORIO No 8 CUADRIPOLOS RED DE DOS PUERTOS
8.1. OBJETIVO GENERAL. LABORATORIO No 8 CUADRIPOLOS RED DE DOS PUERTOS Finalizada la presente práctica estaremos en condiciones de determinar y cuantificar los parámetros Z, Y, h, g, Transmisión Directos
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUES DE ESO UNIVERSIDD.O.G.S.E. URSO 2005-2006 ONVOTORI JUNIO EETROTENI E UMNO EEGIRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si
EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11
Resuelve los siguientes problemas sobre los temas vistos en clase. En una placa circular de 5cm de radio existe una densidad de flujo magnético de 4 T. Calcula el flujo magnético, en webers y maxwell,
Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace
Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace Cristian Iván Eterovich Estudiante de Ingeniería Electricista/Electrónica/en Sistemas de Computación Universidad Nacional
CORRIENTE ELÉCTRICA. Con respecto a la electricidad se distinguen dos tipos de materiales:
CORRIENTE ELÉCTRICA Autor: Santiago Camblor Índice 1 La carga eléctrica. 2 Tipos de materiales 3 La corriente eléctrica 4 Elementos de un circuito 5 Unidades y magnitudes eléctricas 6 ESQUEMA ELÉCTRICO
LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS
Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION
Tecnología del Audio
Tecnología del Audio Tecnología del Audio El estudio de grabación Efectos / Procesadores de señal Micrófonos & accesorios Mezcla básica El estudio de grabación El estudio de grabación Cuarto de control
Potencia Eléctrica en C.A.
Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada
REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.
XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E
PRUEBS DE CCESO UNIVERSIDD.O.G.S.E. /.O.C.E CURSO 2003-2004 - CONVOCTORI: JUNIO EECTROTECNI E UMNO EEGIRÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje
TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R
TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA BASICA DEPARTAMENTO DE FÍSICA APLICADA
TIPO DE FUNDAMENTACIÓN Los contenidos de Física II constituyen una parte muy importante de los conocimientos básicos que forman el soporte de los conocimientos específicos del Ingeniero. Este programa
ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna
ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández ([email protected]) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela
Potencia y energía electromagnética.
Potencia y energía electromagnética. Importancia. Existen muchos dispositivos de interés práctico para los ingenieros electrónicos y eléctricos que se basan en la transmisión o conversión de energía electromagnética.
TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos
TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional
Circuito equivalente, pérdidas, y pruebas en un motor de inducción
Martínez López Juan Raúl Máquinas Eléctricas Grupo 4 1 Circuito equivalente, pérdidas, y pruebas en un motor de inducción Circuito equivalente El circuito equivalente de un motor de inducción tiene gran
Cálculos del sistema de disipación de calor.
Cálculos del sistema de disipación de calor. Los cálculos presentados a continuación se basan en el modelo eléctrico unidimensional del flujo térmico originado por la energía disipada en la juntura de
Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:
INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también
Capítulo-1: Introducción a las Técnicas de Puesta a Tierra ( Grounding )
Capítulo-1: Introducción a las Técnicas de Puesta a Tierra ( Grounding ) 1 Puesta a Tierra para Circuitos en Continua (DC) y Alterna (AC) a Bajas Frecuencias En la figura 1 definimos I en términos de cargas
FISICA APLICADA. A. Preguntas: Leer el material bibliográfico para responder las siguientes preguntas.
TRABAJO PRACTICO UNIDAD 3 SONIDO A. Preguntas: Leer el material bibliográfico para responder las siguientes preguntas. 1. Qué es una onda? 2. Qué tipo de perturbación produce el sonido sobre el medio?
UNIDAD CURRICULAR: TEORÍA DE ONDAS VII Prof. Juan Hernández Octubre Eje de Formación Prelación HAD HTIE
PROGRAMA ANALÌTICO FACULTAD: INGENIERÌA ESCUELA: INGENIERÍA ELECTRÓNICA UNIDAD CURRICULAR: TEORÍA DE ONDAS Código de la Escuela Código Período Elaborado por Fecha Elaboración Plan de Estudios 25 25-0927
UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología FILTROS
UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología Introducción. FILTROS En el tema de ALTAVOCES, el apartado 2.4 hacia referencia a los tipos
Soluciones para la atenuación de armónicos
Soluciones para la atenuación de armónicos Modificando la instalación para atenuar los armónicos posicionar las cargas perturbadoras Z 2 Cargas sensibles aguas arriba del sistema Z 1 Cargas perturbadoras
ALTERNA (III) TRIFÁSICA: Problemas de aplicación
ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS.- CARACTERÍSTICAS DE LA MÁQUINA ASÍNCRONA O DE INDUCCIÓN Las principales características de estas máquinas son:
P A R T A D O. 5 Diseño térmico. Electrónica Industrial
A 3.4 P A R T A D O 5 Diseño térmico 52 A Introducción 3.4 A. Introducción Siempre que por un elemento conductor circula una corriente eléctrica, se generan unas pérdidas de potencia que elevan la temperatura
ANEXO 5 TIPOS DE MICROFONOS
ANEXO 5 TIPOS DE MICROFONOS 1.1 Micrófonos Dinámicos: La mayoría pertenecen a este grupo. No necesitan ningún tipo de alimentación eléctrica, se conectan al equipo y funcionan. Son económicos y resistentes.
7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff.
7. ircuitos de corriente alterna. orriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 0. uál es la capacidad de un circuito oscilante si la carga máxima
APUNTE: EL TRANSFORMADOR
APUNTE: EL TRANSFORMADOR Área de EET Página 1 de 6 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 2002. Página 2 de 6 INDICE
Al final de cada cuestión se índica su puntuación
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos INSTRUCCIONES: El alumno elegirá una de las dos opciones A o B PUNTUACIÓN: Al final de cada cuestión se índica su puntuación CUESTIÓN
MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA
MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS
Ondas. Slide 1 / 28. Slide 2 / 28. Slide 3 / 28. Movimiento de Ondas. Movimiento de Ondas. Todo tipo de ondas que viajan transmiten energía
Slide 1 / 28 Ondas Movimiento de Ondas Slide 2 / 28 Una onda viaja a lo largo de su medio, pero las partículas individuales se mueven hacia arriba y abajo. Movimiento de Ondas Slide 3 / 28 Todo tipo de
PRACTICA DE PROGACION DEL SONIDO
PRACTICA DE PROGACION DEL SONIDO TUBO DE IMPEDANCIA Realizado por: Mario Enrique Casado García David Murillo Silo INDICE 1. Introducción 2. Funcionamiento del tubo de impedancia 3. Equipos que intervienen
5.3 La energía en los circuitos eléctricos.
CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones
Corriente eléctrica - 1 v Goodman & Zavorotniy
Problemas del capítulo Corriente eléctrica 1. Si 560 C de carga eléctrica pasan a través de una bombilla en 8 min., cuál es la magnitud de la corriente eléctrica promedio que pasa a través de la misma?
Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS Electricidad y Magnetismo Unidad 7. Inducción Electromagnética INDUCCIÓN ELECTROMAGNÉTICA A principios de
Fundamentos Físicos II Convocatoria extraordinaria Julio 2011
P1.- Una antena emite ondas de radio frecuencia de 10 8 Hz con una potencia de 5W en un medio caracterizado por una constante dieléctrica 5 y permeabilidad magnética µ o. Puede suponerse que está transmitiendo
