TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad"

Transcripción

1 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES

2 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES

3 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD 4. Introducción Hasta el momento, se han estudiado los sistemas con gdl viéndose que: Si un sistema no amortiguado es sacado de su posición de equilibrio y dejado en libertad, comienza a oscilar armónicamente con una frecuencia característica del sistema llamada frecuencia natural. El fenómeno de la resonancia se presenta al excitar el sistema con una fuerza armónica de frecuencia igual a la frecuencia natural. Los sistemas con gdl presentan importantes diferencias respecto a los sistemas con gdl; de hecho, su comportamiento es cualitativamente muy similar al de un sistema con N gdl. Sin embargo, si bien los conceptos matemáticos y físicos que aparecen en los sistemas con gdl son idénticos a los de sistemas con N gdl, tienen la ventaja de que sus ecuaciones algebraicas son todavía relativamente manejables y los ejemplos accesibles. Permiten, por ello, una formulación analítica sencilla y no dependiente del álgebra matricial. Figura 3 Sistemas mecánicos con gdl Se verá como si un sistema con gdl sin amortiguamiento es desplazado de su posición de equilibro y dejado en libertad, no siempre realiza un movimiento armónico y ni tan siquiera periódico, sino sólo para determinadas formas (tantas como gdl) de perturbar el equilibrio. Sólo para dos tipos ( gdl) de perturbaciones el movimiento subsiguiente es armónico y, en general, con distinta frecuencia para cada tipo de perturbación. Un sistema con gdl tendrá, por lo tanto, dos frecuencias naturales y, sometido a una excitación armónica, llegará a la condición de resonancia para dos frecuencias de excitación diferentes. El estudio del comportamiento dinámico de este tipo de sistemas facilitará la introducción de conceptos como respuesta síncrona, frecuencias y modos naturales de vibración y análisis modal. ELEMENTOS DE MÁQUINAS Y VIBRACIONES

4 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD 4. Ecuaciones del movimiento: Formulación matricial Sea el sistema discreto con gdl de la Figura 4.a. En este caso tan sencillo, las ecuaciones diferenciales del movimiento pueden obtenerse aplicando a cada una de las masas el Principio de D Alembert y estableciendo el equilibrio de fuerzas en la dirección del movimiento. Figura 4 Sistema con dos grados de libertad Así, teniendo en cuenta que la fuerza en el resorte y amortiguador centrales dependen de la posición y velocidad relativas entre ambas masas, estableciendo el equilibrio de fuerzas en dirección x (Fig.4.b) resulta: ( x x ) + c ( x x ) + F () t 0 m x x c x + ( x x ) c ( x x ) + F () t 0 m x 3x c x 3 ELEMENTOS DE MÁQUINAS Y VIBRACIONES

5 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Ecuaciones diferenciales, que no son independientes y constituyen un sistema ya que ambas incógnitas x (t) y x (t) aparecen en las dos, y pueden expresarse matricialmente: m x c c + m x c c c + c 3 x x x x F (t) F (t) o, de forma más abreviada, con notación matricial: [ M ]{} x + [ C]{} x + [ K]{} x { F(t) } Las matrices [M], [C] y [K], llamadas respectivamente matriz de inercia, matriz de amortiguamiento y matriz de rigidez, son simétricas, como se puede observar. Se observa, además, en este ejemplo que la matriz [M] es diagonal. Esta es una característica de los sistemas de parámetros discretos que no se presenta en muchas otras ocasiones. Si en la expresión las tres matrices [M], [C] y [K] fueran diagonales, las dos ecuaciones serían independientes o estarían desacopladas, siendo en tal caso resolubles cada una de ellas por las técnicas desarrolladas para los sistemas con gdl. ELEMENTOS DE MÁQUINAS Y VIBRACIONES

6 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD 4.3 Vibraciones libres no amortiguadas. Modos de vibración La resolución del problema de vibraciones libres no amortiguadas permitirá la determinación de los parámetros modales característicos del sistema de dos grados de libertad: sus dos frecuencias naturales y sus dos modos naturales de vibración. Suponiendo que no hay fuerzas exteriores aplicadas al sistema y que los términos disipativos de energía son nulos, el sistema de ecuaciones del movimiento se reduce a ( + + 3): m 0 0 x + m x x x 0 0 La solución de este sistema de ecuaciones diferenciales puede abordarse por distintos procedimientos. Estando interesados en la posibilidad de que el sistema realice un movimiento armónico síncrono, se supondrán, análogamente a como se hacía con sistemas de gdl, soluciones de la forma: x (t) e iω t, x (t) e iω t Sustituyendo estos valores y sus derivadas segundas se obtendrán dos ecuaciones: ( m ω + ) 0 + ( m ω + ) 0 lo que constituye un sistema de ecuaciones en y. Para que dicho sistema tenga solución distinta de la idénticamente nula, se tendrá que cumplir que el determinante del sistema sea nulo. Desarrollando el determinante y ordenando, se obtiene una ecuación bicuadrática cuyas raices son: ( + m ) ( m m ) m + 4mm ω ± m m m m ELEMENTOS DE MÁQUINAS Y VIBRACIONES

7 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Si ω y ω son las dos soluciones de la ecuación, sólo podrá tener lugar movimiento armónico en estas dos frecuencias ω y ω que son las frecuencias naturales del sistema. El sistema de dos ecuaciones en y puede ponerse, a su vez, en la forma: ω m ω m Sustituyendo en cualquiera de estas expresiones los valores de ω y ω se determina la relación existente entre las amplitudes de los movimientos de las dos masas. Los movimientos síncronos que cumplen esta relación de amplitudes son armónicos, y reciben el nombre de modo natural de vibración. Hay dos modos naturales, (, ) y (, ), uno para cada frecuencia, ω, ω. Al desplazar el sistema de su posición de equilibrio según un modo natural y soltarlo, comenzará a oscilar libre y armónicamente a la frecuencia del modo. Se puede demostrar que, ambos modos son ortogonales entre sí respecto a las matrices de inercia y rigidez; es decir: m 0 {, } 0 {, } 0 0 m Como las dos amplitudes de un modo no están determinadas más que en la relación existente entre ellas, es una práctica habitual el normalizar los modos de forma que: j j j m 0 {, } j 0 m j, ELEMENTOS DE MÁQUINAS Y VIBRACIONES

8 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD 4.4 Coordenadas naturales. Introducción al Análisis Modal Además de las coordenadas x (t) y x (t) empleadas para definir el movimiento del sistema (Fig. 5), un cambio de coordenadas interesante es: o bien, matricialmente: () t y () t + y () t x () t y () t + y () t x x x y y {} x [ ] {} y donde se ha llamado matriz [] a la matriz cuyas columnas son los modos naturales de vibración - matriz de modos -. Introduciendo esta transformación de coordenadas en la ecuación matricial de movimiento del sistema y premultiplicando por [] T : T T [ ] [ M] [ ] { y } + [ ] [ K] [ ] {} y {} 0 Teniendo en cuenta las ortogonalidades y ortonormalidad resulta: 0 0 ω y + y 0 0 y ω y Figura 5 Sistema de gdl 0 0 o bien, teniendo en cuenta que las matrices presentes son diagonales: () t + ω y () t 0 () t + ω y () t 0 y y ELEMENTOS DE MÁQUINAS Y VIBRACIONES

9 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Estas dos ecuaciones son independientes, y puede cada una de ellas resolverse con los métodos estudiados para los sistemas con gdl. A las coordenadas y (t) e y (t), definidas con este cambio de variable se les denomina coordenadas naturales, y en ellas las ecuaciones del movimiento están desacopladas. El método seguido a la hora de desacoplar las ecuaciones del sistema constituye la técnica de análisis modal. Cabría ahora, por tanto, pensar en la posibilidad de estudiar las vibraciones libres con amortiguamiento. Pero surge entonces una nueva dificultad por el hecho de que, en general, esta transformación de coordenadas, que diagonaliza las matrices de rigidez e inercia, no hace lo mismo con la matriz de amortiguamiento. Este caso no se estudiará ahora, pero se puede considerar incluido en el que se realizará posteriormente para sistemas de N gdl. ELEMENTOS DE MÁQUINAS Y VIBRACIONES

10 TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD 4.5 Vibraciones forzadas. Condiciones de resonancia Se estudia el caso en que no existe amortiguamiento, y se prescindirá también de la componente de la respuesta debida a las condiciones iniciales (sin amortiguamiento, esta componente no desaparecerá nunca, pero como ya se han estudiado las vibraciones libres, se prescindirá de ellas en virtud del Principio de Superposición). Supóngase actuando sobre el sistema una excitación armónica síncrona de modo que las ecuaciones diferenciales del movimiento del sistema respondan a la expresión: m 0 0 x m + x x f e x f ω ω e i t i t Suponiendo soluciones en la forma x () t e, x () t iωt, sustituyendo estos valores y sus derivadas segundas en la ecuación anterior y reordenando, se obtiene el siguiente sistema de dos ecuaciones con dos incógnitas: ( m ω + ) f + ( mω + ) f Aplicando la regla de Cramer para resolver este sistema de ecuaciones se obtienen los valores de las amplitudes de los movimientos armónicos que se están buscando: que pueden expresarse: f ( m ω ) + f ( m ω ) ( m ω ) f ( mω ) + f ( m ω ) ( m ω ) ELEMENTOS DE MÁQUINAS Y VIBRACIONES

11 f m m ( m ω ) + f ( ω ω ) ( ω ω ) f m m ( mω ) + f ( ω ω ) ( ω ω ) TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD amplitudes que se hacen infinitas cuando la frecuencia de excitación ω coincide con cualquiera de las dos frecuencias naturales. Por lo tanto, un sistema de gdl tiene dos condiciones de resonancia. En el ejemplo representado en la Figura 6, pueden apreciarse las amplitudes de los movimientos de las dos masas para diferentes valores de la frecuencia de excitación, observándose claramente la presencia de dos resonancias alrededor de las frecuencias de 8 y Hz, aproximadamente. Figura 6 Doble resonancia Considérese ahora el caso en el que hay amortiguamiento viscoso lineal. En el caso más general, las ecuaciones de equilibrio serán m m x c c x x f iωt e m m x c c + + x x f Haciendo como antes y suponiendo soluciones de la forma Se obtendrá x iωt iωt () t e, x () t e ELEMENTOS DE MÁQUINAS Y VIBRACIONES

12 donde, DEPARTAMENTO DE Z Z ( ω) Z( ω) ( ω) Z ( ω) ij TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD f f ( ω) ω mij + iωcij ij Z + son las llamadas impedancias mecánicas. Despejando por la regla de Cramer y de la expresión matricial del sistema de ecuaciones y teniendo en cuenta que la matriz de impedancias es simétrica ( ) Z( ω) f Z( ω) ( ω) Z ( ω) Z ( ω) f ω Z ( ) Z( ω) f Z( ω) ( ω) Z ( ω) Z ( ω) f ω Z expresiones que se suelen escribir en la forma H H donde los términos ( ω) ij ( ω) H( ω) ( ω) H ( ω) f f {} []{} H F H representan algo análogo al papel que la función de transferencia desempeñaba en los sistemas con gdl. Así, a la matriz [H] se la denomina matriz de transferencia. Mediante la ecuación anterior se puede estudiar la respuesta estacionaria de cualquier sistema ante unas fuerzas armónicas síncronas de amplitudes conocidas. ELEMENTOS DE MÁQUINAS Y VIBRACIONES

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones Notación y Definiciones ELEMENTOS DE MÁQUINAS Y VIBRACIONES -.1 - ELEMENTOS DE MÁQUINAS Y VIBRACIONES -. - ABSORBEDOR DINÁMICO DE VIBRACIONES o AMORTIGUADOR DINÁMICO: se trata de un sistema mecánico masa-resorte(-amortiguador)

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES 1 FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES T1 Vibraciones mecánicas 2 ÍNDICE» 1.1. Ecuaciones del movimiento

Más detalles

Ejemplos de los capítulos V, VI, y VII

Ejemplos de los capítulos V, VI, y VII . Derive las ecuaciones de movimiento del sistema de tres grados de libertad mostrado a continuación por medio de: a) La Segunda Ley de Newton. b) Las ecuaciones de Lagrange. Suposiciones: El sistema es

Más detalles

Fundamentos del Análisis de Sistemas Vibratorios de un Número Finito de Grados de Libertad.

Fundamentos del Análisis de Sistemas Vibratorios de un Número Finito de Grados de Libertad. Fundamentos del Análisis de Sistemas Vibratorios de un Número Finito de Grados de Libertad. José aría Rico artínez Departamento de Ingeniería ecánica División de Ingenierías, Campus Irapuato-Salamanca

Más detalles

SISTEMAS DE MÚLTIPLES GRADOS DE LIBERTAD

SISTEMAS DE MÚLTIPLES GRADOS DE LIBERTAD UNIVERSIDAD AUÓNOMA DEL ESADO DE MÉXICO FACULAD DE INGENIERÍA MARZO 5 SISEMAS DE MÚLIPLES GRADOS DE LIBERAD ELABORADO POR ING. DAVID GUIÉRREZ CALZADA MARZO DE 5 ÍNDICE Introducción 3 Objetivos del tema

Más detalles

MDOF. Dinámica Estructural Aplicada II C 2012 UCA

MDOF. Dinámica Estructural Aplicada II C 2012 UCA MDOF Dinámica Estructural Aplicada II C 2012 UCA Desde el punto de vista dinámico, interesan los grados de libertad en los que se generan fuerzas generalizadas de inercia significativas; es decir, fuerzas

Más detalles

ELEMENTOS DE MÁQUINAS Y VIBRACIONES

ELEMENTOS DE MÁQUINAS Y VIBRACIONES INGENIERÍA MECÁNICA INGENIARITZA MEKANIKOA ENERGETIKOA ETA MATERIALEEN SAILA ELEMENTOS DE MÁQUINAS Y VIBRACIONES JESÚS Mª PINTOR BOROBIA DR. INGENIERO INDUSTRIAL DPTO. DE INGENIERÍA MECÁNICA UUNNI II VVEERRSSI

Más detalles

Análisis Dinámico en Estructuras

Análisis Dinámico en Estructuras en Estructuras Félix L. Suárez Riestra Dpto. Tecnología de la Construcción Universidade da Coruña Introducción El Capítulo 1 se convierte en una simple aproximación a los conceptos fundamentales que rigen

Más detalles

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS ALBERTO RUIZ-CABELLO LÓPEZ EJERCICIO 4 1. Matriz de masas concentradas del sistema. La matriz de masas concentradas para un edificio a cortante es una matriz diagonal en la que cada componente no nula

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

TEMA 3 SISTEMAS DE 1 GRADO DE LIBERTAD. Sistemas de 1 Grado de Libertad

TEMA 3 SISTEMAS DE 1 GRADO DE LIBERTAD. Sistemas de 1 Grado de Libertad Sistemas de Grado de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 3. - ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 3. - 3. Introducción Se estudian aquí las vibraciones de sistemas con un grado de libertad,

Más detalles

II. Vibración libre de un sistema de un grado de libertad

II. Vibración libre de un sistema de un grado de libertad Objetivos: 1. Definir que es vibración libre. 2. Recordar el método de diagrama de cuerpo libre para deducir las ecuaciones de movimiento. 3. Introducir el método de conservación de energía para deducir

Más detalles

vibraciones, pequeños movimientos que pueden repetirse con mayor o menor velocidad alrededor de una posición media de equilibrio estable.

vibraciones, pequeños movimientos que pueden repetirse con mayor o menor velocidad alrededor de una posición media de equilibrio estable. vibraciones, pequeños movimientos que pueden repetirse con mayor o menor velocidad alrededor de una posición media de equilibrio estable. vibraciones mecánicas, aquellas variaciones en el tiempo de la

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES CONCEPTO Un sistema de m ecuaciones lineales con n incógnitas es un sistema de la forma: a 11 x 1 + a 12 x 2 +... + a 1n x n b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n b 2.........................

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1 Definiciones Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de expresiones de la forma: a 11 x 1 + a 12 x 2 + + a 1n x n = a 21 x 1 + a 22 x 2 + +

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

Vibraciones Mecánicas MC-571. Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Vibraciones Mecánicas MC-571. Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Vibraciones Mecánicas MC-571 Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería 1) Matriz de amortiguamiento Considerando el sistema mostrado. Las ecuaciones de movimiento pueden ser derivadas

Más detalles

Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones

Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Matemáticas Aplicadas MA101 Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería En ingeniería es frecuente

Más detalles

Respuesta forzada sinusoidal (solución EDO no homogénea)

Respuesta forzada sinusoidal (solución EDO no homogénea) Matemáticas Aplicadas MA101 Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería En ingeniería es frecuente

Más detalles

Planificaciones DINAMICA DE LAS ESTRUCTURAS. Docente responsable: BERTERO RAUL DOMINGO. 1 de 8

Planificaciones DINAMICA DE LAS ESTRUCTURAS. Docente responsable: BERTERO RAUL DOMINGO. 1 de 8 Planificaciones 8412 - DINAMICA DE LAS ESTRUCTURAS Docente responsable: BERTERO RAUL DOMINGO 1 de 8 OBJETIVOS Dar a los estudiantes y graduados de Ingeniería Civil, Mecánica y Naval los conocimientos necesarios

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 26 de Abril de 2011 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase 05) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Álgebra Lineal y Geometría

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

Planificaciones Dinámica de las Estructuras. Docente responsable: BERTERO RAUL DOMINGO. 1 de 8

Planificaciones Dinámica de las Estructuras. Docente responsable: BERTERO RAUL DOMINGO. 1 de 8 Planificaciones 6418 - Dinámica de las Estructuras Docente responsable: BERTERO RAUL DOMINGO 1 de 8 OBJETIVOS Dar a los estudiantes y graduados de Ingeniería Civil, Mecánica y Naval los conocimientos necesarios

Más detalles

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1 Prof: Sergio Vera Sistemas con un grado de libertad (SDOF) 1. Una masa de 0,453 kg unida a un resorte liviano introduce un alargamiento de 7,87 mm. Determine la frecuencia natural del sistema. Graficar

Más detalles

Vibraciones Mecánicas

Vibraciones Mecánicas Mecánica PAG: 1 Universidad Central de Venezuela Facultad de Escuela de Mecánica Departamento de Unidad Docente y de Investigación Mecánica de Máquinas Asignatura Mecánica PAG: 2 1. PROPÓSITO Las máquinas

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

PROGRAMA DE CURSO HORAS DE TRABAJO PERSONAL ,5 5,5 REQUISITOS DE CONTENIDOS ESPECÏFICOS

PROGRAMA DE CURSO HORAS DE TRABAJO PERSONAL ,5 5,5 REQUISITOS DE CONTENIDOS ESPECÏFICOS PROGRAMA DE CURSO CÓDIGO NOMBRE DEL CURSO FI2001 Mecánica NÚMERO DE UNIDADES DOCENTES CÁTEDRA DOCENCIA AUXILIAR TRABAJO PERSONAL 10 3 1,5 5,5 REQUISITOS REQUISITOS DE ESPECÏFICOS CARÁCTER DEL CURSO FI1002,

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Tema 4. Oscilaciones pequeñas

Tema 4. Oscilaciones pequeñas Mecánica teórica Tema 4. Oscilaciones pequeñas Tema 4A Universidad de Sevilla - Facultad de Física cotrino@us.es 24 de octubre de 2017 Tema 4A (Grupo 2) Mecánica Teórica (2017-2018) 24 de octubre de 2017

Más detalles

Modelo del Desarrollo del Programa de una Asignatura

Modelo del Desarrollo del Programa de una Asignatura 2005-2006 Hoja 1 de 9 CENTRO: TITULACIÓN: ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS LICENCIADO EN MÁQUINAS NAVAIS Código: 631311608 Denominación: ASIGNATURA: Curso: 1º 1 er Cuatrimestre X 2º Cuatrimestre

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 005/006 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

1 de 6 24/08/2009 9:54 MATRICES Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853 En

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS R. Artacho Dpto. de Física y Química ÍNDICE 1. Oscilaciones o vibraciones armónicas 2. El movimiento armónico simple 3. Consideraciones dinámicas del MAS

Más detalles

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Matemáticas Aplicadas MA101 Semana 07 EDO de 2do orden homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales

Más detalles

Nombre de la asignatura: Carrera: Clave de la asignatura: Participantes

Nombre de la asignatura: Carrera: Clave de la asignatura: Participantes 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Vibraciones Mecánicas Ingeniería Mecánica MCT - 0542 2 3 7 2.- HISTORIA DEL PROGRAMA

Más detalles

Semana 06 EDO de orden alto - Aplicaciones

Semana 06 EDO de orden alto - Aplicaciones Matemáticas Aplicadas MA101 Semana 06 EDO de orden alto - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales de orden

Más detalles

Solución de Sistemas de Ecuaciones Diferenciales Lineales

Solución de Sistemas de Ecuaciones Diferenciales Lineales Solución de Sistemas de Ecuaciones Diferenciales Lineales Departamento de Matemáticas, CCIR/ITESM 9 de febrero de Índice..Introducción.................................................Ejemplo.................................................3.Ejemplo................................................

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

1. Oscilador Armónico simple

1. Oscilador Armónico simple 1. Oscilador Armónico simple La ecuación de un oscilador armónico simple es una Ecuación Diferencial Ordinaria (EDO) lineal y tiene la forma: ÿ = ω 2 0 y (1) y(0) = y 0 ;ẏ(0) = v 0 (2) Donde y es la posición

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Tabla de contenido INTRODUCCIÓN Motivación Objetivos Organización de la memoria... 2 REVISIÓN BIBLIOGRÁFICA...

Tabla de contenido INTRODUCCIÓN Motivación Objetivos Organización de la memoria... 2 REVISIÓN BIBLIOGRÁFICA... Tabla de contenido INTRODUCCIÓN... 1 1.1. Motivación... 1 1.2. Objetivos... 1 1.3. Organización de la memoria... 2 REVISIÓN BIBLIOGRÁFICA... 4 2.1. Introducción... 4 2.2. El método modal espectral... 4

Más detalles

DES: Clave de la materia: Prerrequisito (s):

DES: Clave de la materia: Prerrequisito (s): UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA DES: Programa(s) Educativo(s): Tipo de materia (Obli/Opta): Ingeniería Ingeniería Aeroespacial Optativa Clave: 08MSU0017H FACULTAD DE INGENIERÍA Clave de la materia: CI581

Más detalles

Respuesta de sistemas dinámicos con un grado de libertad

Respuesta de sistemas dinámicos con un grado de libertad Respuesta de sistemas dinámicos con un grado de libertad F. Javier Cara ETSII-UPM Curso 213-214 1 Contenido Cálculo de la respuesta mediante la ecuación diferencial Transformación en ecuación diferencial

Más detalles

Física I Apuntes de Clase 9, Turno H Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 9, Turno H Prof. Pedro Mendoza Zélis Física I Apuntes de Clase 9, 18 Turno H Prof. Pedro Mendoza Zélis Movimiento Armónico Simple (M.A.S.) Es interesante analizar un tipo de movimiento que es el que ocurre cuando un objeto es apartado de

Más detalles

MODELACIÓN DE UNA ESTRUCTURA TIPO EDIFICIO MEDIANTE EL FORMALISMO DE EULER-LAGRANGE. Dr. Josué Enríquez-Zárate Investigador RTO Energy

MODELACIÓN DE UNA ESTRUCTURA TIPO EDIFICIO MEDIANTE EL FORMALISMO DE EULER-LAGRANGE. Dr. Josué Enríquez-Zárate Investigador RTO Energy MODELACIÓN DE UNA ESTRUCTURA TIPO EDIFICIO MEDIANTE EL FORMALISMO DE EULER-LAGRANGE Dr. Josué Enríquez-Zárate Investigador RTO Energy CONTENIDO Introducción Modelo dinámico de la estructura tipo edificio

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos En parte Según Cap.1 Libro Levanuyk+Cano Antes de tratar aplicación de método Fourier para sistemas continuos http://www.youtube.com/watch?feature=endscreen&nr=1&v=no7zppqtzeg => Consideramos sistemas

Más detalles

Los pasos que se dan son:

Los pasos que se dan son: Hasta ahora hemos admitido que podemos trabajar con la red de cores de nuestro sólido usando una aproximación clásica lo que nos ha permitido determinar los «modos normales de vibración» en el sentido

Más detalles

Análisis de un moto-ventilador por medio de métodos de elementos finitos y mediciones de vibraciones.

Análisis de un moto-ventilador por medio de métodos de elementos finitos y mediciones de vibraciones. Universidad Austral de Chile Facultad de Ciencias de la Ingeniería Escuela de Ingeniería Civil Acústica Profesor Patrocinante: Jorge P. Arenas, PhD. Instituto de Acústica Universidad Austral de Chile Análisis

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

ANEXO IX DE LA RESOLUCIÓN Nº 415 HCD Análisis Estructural Página 1 de 6 Programa de:

ANEXO IX DE LA RESOLUCIÓN Nº 415 HCD Análisis Estructural Página 1 de 6 Programa de: Análisis Estructural Página 1 de 6 Programa de: Análisis Estructural UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Civil Escuela:

Más detalles

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA G1306 - Dinámica de Estructuras Marinas. Ruido y Vibraciones en Buques Grado en Ingeniería Marina Curso Académico 2016-2017 1. DATOS IDENTIFICATIVOS Título/s Grado

Más detalles

TEMA 1 INTRODUCCIÓN. Introducción

TEMA 1 INTRODUCCIÓN. Introducción Introducción ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 1.1 - ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 1.2 - 1.1 Introducción La experiencia demuestra que el comportamiento de un sistema mecánico es muy diferente

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal ,0 1,5 5,0. Horas de Cátedra

PROGRAMA DE CURSO. Horas de Trabajo Personal ,0 1,5 5,0. Horas de Cátedra Código FI2001 Nombre PROGRAMA DE CURSO Mecánica Nombre en Inglés Mechanics SCT Unidades Docentes Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3,0 1,5 5,0 Requisitos FI1002: Sistemas

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

CAPÍTULO 1. Ecuaciones de Movimiento del Sistema

CAPÍTULO 1. Ecuaciones de Movimiento del Sistema CAPÍTULO 1 Ecuaciones de Movimiento del Sistema El sistema que se construyó y cuyo análisis es del presente capítulo tiene las siguientes constricciones: 1. El carro solo se puede desplazar en la dirección

Más detalles

Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss

Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss página 1/6 Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss Índice de contenido Matriz del sistema y matriz ampliada...2 Método de Gauss...3 Solución única, ausencia

Más detalles

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente. Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica

Más detalles

Tema 5: Movimiento Armónico Simple.

Tema 5: Movimiento Armónico Simple. Tema 5: Movimiento Armónico Simple. 5.1 Oscilaciones y vibraciones Movimientos periódicos de vaivén alrededor de la posición de equilibrio. Oscilaciones (amplitud apreciable) y vibraciones (amplitud inapreciable)

Más detalles

Acústica y vibraciones mecánicas

Acústica y vibraciones mecánicas Sistemas de un grado de libertar libre Ecuación de movimiento de un sistema masa-resorte Considerando el sistema de la figura y por la aplicación dela segunda ley de Newton o principio de conservación

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA CARTA DESCRIPTIVA PERSONALIZADA

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA CARTA DESCRIPTIVA PERSONALIZADA UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA IT-7-ACM-04-R03 CARTA DESCRIPTIVA PERSOLIZADA Materia asignada: Nombre del Docente: No. de Empleado: VIBRACIONES MECÁNICAS

Más detalles

Tema 9: Movimiento oscilatorio*

Tema 9: Movimiento oscilatorio* ema 9: Movimiento oscilatorio* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez/Prof.Dra. Ana M. Marco Ramírez Física I. Grado en Ingeniería

Más detalles

REDUCCIÓN DE VIBRACIONES

REDUCCIÓN DE VIBRACIONES REDUCCIÓN DE VIBRACIONES Vibraciones Mecánicas MC-571 Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería 1) Introducción Existen situaciones donde las vibraciones mecánicas pueden ser deseables

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no materia. Pero aunque no sea materia sí puede interaccionar

Más detalles

Rectas y planos en el espacio

Rectas y planos en el espacio Rectas y planos en el espacio 1. 2. 3. Discute el siguiente sistema según el valor del parámetro a: ax 4y z 1 y az a x 14y 2az 8 Dada la recta x 4 y z 1, 5 2 averigua si el punto P(6, 2, 2) está contenido

Más detalles

Contenidos Control y Automatización

Contenidos Control y Automatización Tema 2: Modelos Matemáticos Susana Borromeo Juan Antonio Hernández Tamames Curso 2014-2015 Contenidos 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización. Función de Transferencia

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

donde g es la gravedad y l es la longitud de la

donde g es la gravedad y l es la longitud de la Bioclimática Lección: Principios físicos de vibraciones Elaborado por: Pilar Cristina Barrera Silva Mg. Educación, Física, Licenciada en Artes Plásticas Investigadora en Bioclimática y en Didáctica de

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION Facultad de Ingeniería Eléctrica y Electrónica Ciclo 008-B ÍNDICE GENERAL INTRODUCION... 1. OBJETIVOS...3. EXPERIMENTO...3.1 MODELO FISICO... 3 3. DISEÑO...5 4. EQUIPOS Y MATERIALES:...6 5. VARIABLES INDEPENDIENTES...6

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

REPASO DE ÁLGEBRA MATRICIAL

REPASO DE ÁLGEBRA MATRICIAL REPASO DE ÁLGEBRA MATRICIAL 1. Porqué necesitamos matrices? Qué son las matrices? Dónde está la matriz en este cuadro? (que por cierto fué hecho por Alberto Durero en 1514 y se llama Melancolía ) Las matrices

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 17 ÁLGEBRA II (LSI PI) UNIDAD Nº GEOMETRÍA ANALÍTICA Facultad de Ciencias Exactas y Tecnologías aa Error! No hay texto con el estilo especificado en el documento. 1 UNIVERSIDAD NACIONAL DE SANTIAGO DEL

Más detalles

INDICE. Prefacio Parte I. Ecuaciones Diferenciales Ordinarias 1 Capitulo Uno.

INDICE. Prefacio Parte I. Ecuaciones Diferenciales Ordinarias 1 Capitulo Uno. INDICE Prefacio Parte I. Ecuaciones Diferenciales Ordinarias 1 Capitulo Uno. 2 Ecuaciones Diferenciales en General 1. Conceptos de ecuaciones diferenciales 3 1.1. Algunas definiciones y observaciones 3

Más detalles

2 + c c 4. Solución: Nótese que la ecuación vectorial que verifican los pesos se puede escribir matricialmente como.

2 + c c 4. Solución: Nótese que la ecuación vectorial que verifican los pesos se puede escribir matricialmente como. Asignatura: ÁLGEBRA LIEAL Fecha: 9 de Julio de 0 Fecha publicación notas: 5 de Julio de 0 Fecha revisión examen: 8 de Julio de 0 Duración del examen: horas APELLIDO Y OMBRE: DI: Titulación:. (0,5 puntos)

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MECÁNICA (27/05/2009)

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MECÁNICA (27/05/2009) UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MECÁNICA (27/05/2009) NOMBRE: CARNET: PREGUNTA 1: (16pts) El inicio de un sistema de tuberías se puede simular como una barra de masa M b =100kg y longitud L=2m

Más detalles

Ingeniería y Arquitectura Programa de asignatura

Ingeniería y Arquitectura Programa de asignatura Identificación de la asignatura Nombre de la asignatura: Dinámica de Estructuras Clave: MIES Área académica: Ingenierías y Arquitectura Programa académico al que pertenece: Maestría en Ingeniería Estructural

Más detalles

PRACTICA 2 VIBRACIONES FORZADAS. 1. Familiarizar al estudiante con los equipos y formas de medición de vibraciones utilizando acelerómetros.

PRACTICA 2 VIBRACIONES FORZADAS. 1. Familiarizar al estudiante con los equipos y formas de medición de vibraciones utilizando acelerómetros. Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 2.1. Objetivos PRACTICA 2 VIBRACIONES FORZADAS 1. Familiarizar al estudiante

Más detalles

02 Elementos finitos para tensión/ compresión axial. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

02 Elementos finitos para tensión/ compresión axial. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 02 Elementos finitos para tensión/ compresión axial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 El método de los elementos finitos El método de los elementos

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad CIENCIAS BÁSICAS Fecha de Actualización 20/04/18 Programa FÍSICA Semestre V Nombre MECÁNICA CLÁSICA Código 21049 Requisitos 21315, 22143 Créditos 4 Nivel de Formación

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

Teorías sobre la Resistencia a Rotura de una Lámina

Teorías sobre la Resistencia a Rotura de una Lámina 6 Teorías sobre la Resistencia a Rotura de una Lámina 6.1 Introducción. Existen diversos criterios de rotura relativos a una lámina ortótropa. La bondad de cada uno de ellos sólo puede ser establecida

Más detalles

Algebra vectorial y matricial

Algebra vectorial y matricial Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Estabilidad de ecuaciones diferenciales

Estabilidad de ecuaciones diferenciales Capítulo 3 Estabilidad de ecuaciones diferenciales En este tema estudiaremos como resolver sistema de ecuaciones diferenciales lineales de coeficientes constantes utilizando la transformada de Laplace,

Más detalles

3. Método de cálculo.

3. Método de cálculo. Método de cálculo 7. Método de cálculo. Como método de cálculo vamos a seguir el método de los desplazamientos, en el que las incógnitas son los desplazamientos de los nudos de la estructura. Y para estudiar

Más detalles

IV. Vibración bajo condiciones forzadas generales

IV. Vibración bajo condiciones forzadas generales Objetivos: 1. Reconocer que existen excitaciones periódicas no harmónicas y no periódicas.. Analizar la respuesta de un sistema de primer y de segundo orden bajo una fuerza periódica general. 3. Analizar

Más detalles