Rectas y planos en el espacio
|
|
|
- Emilia Morales Godoy
- hace 9 años
- Vistas:
Transcripción
1 Rectas y planos en el espacio Discute el siguiente sistema según el valor del parámetro a: ax 4y z 1 y az a x 14y 2az 8 Dada la recta x 4 y z 1, 5 2 averigua si el punto P(6, 2, 2) está contenido en la recta paralela a la anterior que pasa por el origen de coordenadas. Dado el plano 2x y 3z 4, determina si son o no paralelos: a) La recta 1 x 2 y b) El plano x 3y 2z 0. Los arquitectos son unos grandes conocedores de la geometría en el espacio. Una obra emblemática en la que se pueden observar perfectamente las rectas y los planos es la casa de la Cascada o casa Kaufmann. Diseñada entre 1934 y 1935 y construida durante 1936 y 1937, se considera la obra cumbre de Frank Lloyd Wrigt ( ). Proyectada como casa de campo para Edgar Kaufmann, hoy en día es un monumento nacional en Estados Unidos. Wright comentó sobre su obra: «Está diseñada para la música de la cascada, para aquel a quien le gusta oírla». Hoy en día el sonido de la cascada se percibe desde cualquier lugar de la casa. 102
2 1 Rectas en el espacio Una recta en el espacio queda determinada por un punto A y por una dirección definida por un vector no nulo, v, denominado vector director de la recta; r(a, v) es la determinación lineal de la recta. La determinación lineal de la recta no es única, ya que se puede tomar cualquiera de sus puntos; además, dada una recta, existen infinitos vectores directores (todos paralelos entre sí y con la misma dirección de la recta). Puede determinarse una recta en el espacio conociendo dos de sus puntos. En efecto, conocidos dos puntos de una recta, A y B, se puede determinar el vector A B y este será un vector director de la recta, puesto que tiene su misma dirección. La determinación de la recta será r(a, A B). Recuerda Una recta en el plano queda determinada por un punto A y por un vector no nulo, v, denominado vector director de la recta Ecuación vectorial de la recta Sea A(a 1, a 2, a 3 ) un punto de la recta y sea v un vector director; en la figura 5.1 se observa que, para un punto cualquiera, P(x, y, z), de la recta se puede escribir: O P OA A P y dado que A P tiene la misma dirección que v: O P O A v que es la ecuación vectorial de la recta en el espacio. Z A v P O Y FIGURA 5.1. X 1.2. Ecuaciones paramétricas de la recta Teniendo en cuenta que las coordenadas del punto A son (a 1, a 2, a 3 ), las del punto P, (x, y, z) y las componentes del vector v son (v 1, v 2, v 3 ), la ecuación vectorial se puede escribir: (x, y, z) (a 1, a 2, a 3 ) (v 1, v 2, v 3 ) Igualando las componentes se obtiene: Ecuaciones paramétricas de la recta en el espacio: x a 1 v 1 y a 2 v 2 z a3 v 3 Conocidos dos puntos de la recta, A(a 1, a 2, a 3 ) y B(b 1, b 2, b 3 ), las ecuaciones paramétricas de la recta se convierten en: x a 1 (a 1 b 1 ) y a 2 (a 2 b 2 ) z a3 (a 3 b 3 ) Observa Conocidos dos puntos de la recta, A(a 1, a 2, a 3 ) y B(b 1, b 2, b 3 ), un vector director es: v (a 1 b 1, a 2 b 2, a 3 b 3 ) Rectas y planos en el espacio
3 Ejemplos 1. Dada la recta (x, y, z) (3, 1, 5) (2, 1, 0), averiguar si los puntos A(5, 2, 5), B(1, 2, 5) y C(1, 0, 6) pertenecen a ella. Sustituyendo en la ecuación de la recta los puntos dados: (5, 2, 5)(3, 1, 5)(2,1, 0) (2, 1, 0)(2,1, 0) 1 (1,2, 5)(3, 1, 5)(2,1, 0) (4,3, 0)(2,1, 0) / (1, 0, 6)(3, 1, 5)(2,1, 0) (2,1, 1)(2,1, 0) / Solo el punto A pertenece a la recta. 2. Dados los puntos A(0, 3, 2) yb(1, 0, 5), escribir las ecuaciones paramétricas de la recta que pasa por dichos puntos. Un vector director de la recta será el vector A B (1, 3, 3). La recta que pasa por el punto A y que tiene por vector director A B es la de ecuaciones: x y 3 3 z Ecuaciones en forma continua de la recta Despejando en cada una de las ecuaciones paramétricas el parámetro, se obtiene: Ecuaciones en forma continua de la recta en el espacio: x a 1 y a 2 z a 3 v 1 v 2 v 3 [ Ecuación en forma general de la recta De las ecuaciones en forma continua de la recta pueden obtenerse tres ecuaciones: x a 1 y a 2 v 1 v 2 xv 2 yv 1 a 2 v 1 a 1 v 2 0 x a 1 z a 3 v 1 v 3 xv 3 zv 1 a 3 v 1 a 1 v 3 0 y a 2 z a 3 v 2 v 3 yv 3 zv 2 a 3 v 2 a 2 v 3 0 De estas, solo son necesarias dos cualesquiera de ellas; luego se obtiene un sistema de dos ecuaciones con tres incógnitas, cuya solución presenta un grado de libertad y, por tanto, son los puntos de la recta. Este sistema recibe el nombre de ecuación general de la recta y se tratará con más detalle en epígrafes siguientes. Conocidos dos puntos de la recta, A(a 1, a 2, a 3 ) y B(b 1, b 2, b 3 ), su ecuación continua se convierte en: x a1 y a2 z a3 b 1 a1 b 2 a2 b 3 a3 En general, las ecuaciones de las rectas son: Ecuación vectorial Formas Ecuaciones paramétricas ECUACIONES DE LA RECTA Ecuaciones O P O A v (x,y,z) (a 1, a 2, a 3 ) (v 1, v 2, v 3 ) x a 1 v 1 y a 2 v 2 z a3 v 3 Ecuación continua x a 1 y a 2 z a 3 v 1 v 2 v 3 Si los puntos P 1, P 2,, P n están alineados, es decir, pertenecen a una misma recta, los vectores P 1 P 2, P 3, P n deberán ser paralelos. Si los vectores P 1 P 2, P 3, P n son paralelos, son linealmente dependientes dos a dos, luego el rango de este conjunto de vectores deberá ser 1: rango (P 1 P 2, P 3, P n) Geometría
4 Ejemplos 3. Determinar si los puntos A(1, 1, 1), B(0, 3, 1) yc(2, 2, 0) están o no alineados. Calculamos los vectores: A B (1, 2, 2) A C (1, 3, 1) Si los vectores A B y A C son proporcionales, los puntos A, B y C, estarán alineados: Por tanto, los puntos A, B y C no están alineados. 4. Calcular la ecuación en forma continua de la recta que pasa por el punto A(1, 1, 2) y que tiene dirección perpendicular a los vectores u (0, 1, 3) y v (1, 1, 1). Un vector director perpendicular al mismo tiempo a los vectores u y v es el siguiente: i j u v k i 3j k La ecuación de la recta pedida será: x 1 2 y 1 3 z 2 1 ctividades 1 Calcula las ecuaciones paramétricas de la recta que pasa por el punto P(7, 5, 2) y tiene la dirección del vector k. Solución: x 7 y 5 z 2 2 Halla la ecuación continua de la recta que pasa por el origen de coordenadas y por el punto medio del segmento de extremos A(2, 1, 5) y B(7, 3, 1). Solución: x 9/2 y 1 z Existe algún valor de m para el cual A(1, m, 0), B(m, 2, 1) y C( 3, 8, 1) estén alineados? Solución: m 5 4 Están los puntos A(3, 4, 2), B(2, 1, 0) y C(1, 6, 2) alineados? Si es así, calcula la ecuación continua de la recta que los contiene. Solución: A, B y C están alineados. x 2 y 1 z Calcula la ecuación vectorial de la recta que pasa por el origen de coordenadas y es paralela a la siguiente recta: s: x 1 y z Solución: (x,y,z) (2, 3, 1) Rectas y planos en el espacio
5 2 El plano Observa Los vectores directores del plano deben ser linealmente independientes, es decir, no paralelos. v FIGURA 5.2. A u A u v Un plano en el espacio queda determinado por un punto A y dos vectores, u y v, no nulos y no paralelos, que se denominan vectores directores del plano. La expresión (A, u, v) se denomina determinación lineal del plano. La determinación lineal del plano no es única, ya que puede tomarse uno cualquiera de los puntos de este, y los vectores directores del plano tampoco son únicos (figura 5.2). Puede determinarse un plano conociendo tres de sus puntos, A, B y C, con la condición de que no estén alineados, ya que con estos tres puntos se pueden obtener dos vectores del plano que serán linealmente independientes y que, por tanto, serán vectores directores suyos: (A, A B, AC ) Ecuación vectorial del plano Si un punto P(x, y, z) pertenece al plano (A, u, v), el vector A P deberá ser combinación lineal de u y v: A P u v. Observando la figura 5.3 se puede escribir: O P OA A P. A(a 1,a 2,a 3 ) A P O A O P O FIGURA 5.3. P(x,y,z) Ecuación vectorial del plano: O P O A u v, 2.2. Ecuaciones paramétricas del plano Si las coordenadas de A son (a 1, a 2, a 3 ) y las de P son (x, y, z), entonces O A (a1, a 2, a 3 ) y O P (x, y, z). Si, además, las componentes de los vectores u y v son, respectivamente, (u 1, u 2, u 3 ) y (v 1, v 2, v 3 ), sustituyendo en la ecuación vectorial se obtiene: (x, y, z) (a 1, a 2, a 3 ) (u 1, u 2, u 3 ) (v 1, v 2, v 3 ) Igualando las componentes resulta: Ecuaciones paramétricas del plano: z a3 u 3 v 3 x a 1 u 1 v 1 y a 2 u 2 v 2, 2.3. Ecuación general del plano Dados un plano (A, u, v) y un punto P(x, y, z) que pertenezca al plano, los vectores AP, u y v deben ser linealmente dependientes: rango (A P, u, v) 2 Luego: x a 1 u 1 v 1 y a 2 u 2 v 2 0 z a 3 u 3 v 3 Desarrollando el determinante anterior se obtiene una expresión del tipo: Ecuación general o implícita del plano: Ax By Cz D 0 A, B, C, D 106 Geometría
6 Si varios puntos, P 1, P 2,, P n, son coplanarios, es decir, pertenecen a un mismo plano, los vectores P 1 P 2, P 3, P n deberán ser tales que únicamente sean linealmente independientes dos a dos, ya que cualquiera de ellos se puede expresar como combinación lineal de otros dos. Si ocurre esto, el rango de este conjunto de vectores deberá ser 2: rango (P 1 P 2, P 3, P n ) 2 Observa Si cuatro puntos del espacio no son coplanarios, forman un tetraedro. Ejemplos 5. Dados el punto A(1/2, 3, 2) y la recta (x, y, z) (2,, 5 2), con, averiguar la ecuación general del plano que contiene a ambos. La recta dada pasa por el punto P(2, 0, 5) y tiene la dirección del vector v (1, 1, 2). Este puede ser uno de los dos vectores directores del plano. Para determinar el otro calculamos un vector que una el punto A(1/2, 3, 2) y el punto de la recta P(2, 0, 5), u (3/2, 3, 3). La ecuación general del plano será: x 1/2 1 3/2 y z La ecuación del plano es 6x 3z 3 0 2x z Averiguar si los puntos O(0, 0, 0), A(1, 1, 3), B(5, 2, 2) y C(3, 4, 8) son coplanarios. Si el rango del conjunto de vectores O A (1, 1, 3), O B (5, 2, 2) y O C (3, 4, 8) es menor que 3, los puntos serán coplanarios. Como el siguiente determinante: x 3 2 z es nulo, el rango del conjunto de vectores O A, O B y O C es menor que 3 y, por tanto, los puntos O, A, B y C son coplanarios. 7. Determinar la ecuación del plano coordenado OXZ. Escogemos un punto de este plano, por ejemplo, el origen de coordenadas O(0, 0, 0), y dos vectores directores: La ecuación del plano será: i (1, 0, 0) k (0, 0, 1) Z x 1 0 y z 0 1 P(x, 0, z) O Y Desarrollando el determinante anterior por la tercera columna, se obtiene que 0 y 0. La ecuación del plano OXZ es y 0. X Todos los puntos del plano OXZ cumplen la misma condición: son de la forma (x, 0, z) (figura 5.4). FIGURA Rectas y planos en el espacio
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera
TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas
TEMA 5. RECTAS Y PLANOS. INCIDENCIA.
TEMA 5. RECTAS Y PLANOS. INCIDENCIA. SISTEMA DE REFERENCIA EN EL ESPACIO. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora
RECTAS Y PLANOS EN EL ESPACIO
RECTAS Y PLANOS EN EL ESPACIO 4 6 7 8 9 0 Calcula las ecuaciones paramétricas de la recta que pasa por el punto P(7,, ) y tiene la dirección del vector k. ACTIVIDADES x 7 y z Halla la ecuación continua
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
UNIDAD 3 : ELEMENTOS GEOMÉTRICOS
UNIDAD 3 : ELEMENTOS GEOMÉTRICOS 3.A.1 Características de un lugar geométrico 3.A ELEMENTOS DE GEOMETRÍA PLANA Se denomina lugar geométrico a todo conjunto de puntos que cumplen una misma propiedad o que
Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )
1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto
2. PUNTOS, RECTAS Y PLANOS
2. PUNTOS, RECTAS Y PLANOS 2.1. RELACIONES ENTRE LOS PUNTOS DEL ESPACIO Y LOS VECTORES. AXIOMAS DEL ESPACIO AFÍN Entendemos por espacio afín tridimensional como el conjunto de puntos del espacio intuitivo
x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8
Paralelismo y perpendicularidad MATEMÁTICAS II 1 1 Una recta es paralela a dos planos secantes, a quién es también paralela? Una recta paralela a dos planos secantes también es paralela a la arista que
G E O M E T R Í A M É T R I C A P L A N A
G E O M E T R Í A M É T R I C A P L A N A. PUNTO MEDIO D E UN SEGME NTO. S IMÉTRICO DE U N PUNTO Sean A y a,a b B,b las coordenadas de dos puntos del plano que determinan el segmento AB. Las coordenadas
Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría
6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.
El haz de planos paralelos queda determinado por un vector normal, n A, B,
HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π
Ecuación Vectorial de la Recta
Ecuación Vectorial de la Recta Definimos una recta r como el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. Si P(x 1, y 1 ) es un punto de la recta r, el vector tiene
Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.
Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como
Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional
página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5
Tema 6 La recta Índice
Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma
Ejercicios de Rectas y planos.
Matemáticas 2ºBach CNyT. Ejercicios Rectas, planos. Pág 1/9 Ejercicios de Rectas y planos. 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A(1, 0, 0) y B(0, 1, 0). Las coordenadas
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean
TEMA 6 Ejercicios / 3
TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores
. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v
EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 6. Geometria analítica en el plano
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 Dados los vectores: u (, ) v, w (4, 6) z (/, ) x (, ) Cuáles de las siguientes afirmaciones son ciertas? a) Los vectores u y v son paralelos.
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Teoría Tema 9 Ecuaciones del plano
página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria
TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO
Ejercicios Selectividad Temas 6 y 7 Geometría en el espacio Mate II 2º Bach. 1 TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO EJERCICIO 1 : Julio 11-12. Optativa (3 ptos) Para los puntos A(1,0,2) y B(-1,2,4) y la
es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no
El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i
BLOQUE II. GEOMETRÍA.
BLOQUE II. GEOMETRÍA. PROBLEMAS SELECTIVIDAD (PAU) CANTABRIA 2000-204 I.E.S. LA MARINA. CURSO 204/205. MATEMÁTICAS II. Condidera el plano y la recta r dados por : ax + 2y 4z 23 = 0, r: 3 a) ( PUNTO) Halla
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real
GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos
PUNTOS, RECTAS Y PLANOS EN EL ESPACIO
6 PUNTOS, RECTAS Y PLANOS EN EL ESPACIO Página 153 REFLEXIONA Y RESUELVE Puntos alineados en el plano Comprueba que los puntos A (5, 2), B (8, 3) y C (13, 5) no están alineados. Halla el valor de n para
GEOMETRIA EN EL ESPACIO
GEOMETRIA EN EL ESPACIO ECUACIONES DE LA RECTA Y EL PLANO EN EL ESPACIO Una recta queda determinada por un punto conocido P, y un vector director. Luego, si X es un punto genérico de la recta, se obtiene
Espacios vectoriales. Vectores del espacio.
Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del
x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y
EJERCICIOS DE GEOMETRÍA
1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando
MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias
Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos
Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta...
Unidad 5 ESPACIO AFÍN 5.. Introducción.... - - 5.. Ecuaciones de la recta.... - - 5.3. Ecuaciones del plano.... - 4-5.4. Posiciones relativas (Incidencia y paralelismo).... - 6 - Anexo I.- EJERCICIOS...
Bloque 2. Geometría. 3. La recta. 1. Definición de recta
Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,
Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:
x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
Unidad 5: Geometría analítica del plano.
Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
1. Operaciones con vectores
1. OPERACIONES CON VECTORES Academia Nakis (Lugones)684-61-61-03. 1 Resumen Geometría en 3D 1. Operaciones con vectores Sean los vectores W 1 = (a 1, b 1, c 1 ),W 2 = (a 2, b 2, c 2 ),W 3 = (a 3, b 3,
TEMA III: PERPENDICULARIDAD
TEMA III: PERPENDICULARIDAD 3.1.D Rectas y planos perpendiculares Una recta es perpendicular a un plano cuando es perpendicular a dos rectas no paralelas que pasan por su pie. De lo anterior se desprende
= λ + 1 y el punto A(0, 7, 5)
94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen
Unidad 5: Geometría Analítica
Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Espacio métrico 2º Bachillerato
Espacio métrico 2º Bachillerato Presentación elaborada por la profesora Ana Mª Zapatero a partir de los materiales utilizados en el centro (Editorial SM) Ángulo entre dos rectas El ángulo de dos rectas
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:
EJERCICIOS DE GEOMETRÍA
EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II LOGSE Antonio López García Juan Fernández Maese Angeles Juárez Martín GEOMETRÍA GEOMETRÍA Índice Temático.- VECTORES... 5..- VECTORES. OPERACIONES CON VECTORES...
Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:
PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE
GEOMETRÍA ANALÍTICA EN EL ESPACIO (ÁNGULOS, DISTANCIAS Y SIMETRÍAS)
GEOMETRÍA ANALÍTICA EN EL ESPACIO (ÁNGULOS, DISTANCIAS Y SIMETRÍAS ÁNGULOS EN EL ESPACIO ÁNGULO ENTRE DOS RECTAS El ángulo formado por dos rectas que se cortan en un punto, o bien por dos rectas que se
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO
Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio
1. Ecuaciones de la recta en 3D
La recta y el plano en R 3 Primer taller de Geometría Analítica Vectorial 3D Indicador Ecuaciones de la recta en el espacio Ecuaciones del plano en el espacio Rectas determinadas por intersección de dos
INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: SEPTIEMBRE DE 2016 UNIDAD DE APRENDIZAJE
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo.
Resuelve Página Diagonal de un ortoedro y volumen de un paralelepípedo. Expresa la diagonal de un ortoedro en función de sus dimensiones, a, b y c. c b a c c b b a Diagonal = a + b + c. Calcula el volumen
3.1 El espacio afín R n
3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero
Problemas métricos. 1. Problemas afines y problemas métricos
. Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas
GEOMETRÍA MÉTRICA. Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué dos valores puede tomar k para que d(a,b)=3? Solución:
INTRODUCCIÓN. A1. Observa que: Ministerio de Educación, Cultura y Deporte. Año 2003 Si A(x 1,y 1,z 1 ) y B(x 2,y 2,z 2 ), entonces GEOMETRÍA MÉTRICA Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué
a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede.
Ejercicios y problemas propuestos Página Para practicar Dependencia e independencia lineal. Base y coordenadas Dados estos vectores: u(,, ), v (,, ), w (,, ), z (,, ) a) Cuántos de ellos son linealmente
Geometría analítica del plano
8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto
TEMA 12. RECTAS Y PLANOS. INCIDENCIA.
TEMA 12. RECTAS Y PLANOS. INCIDENCIA. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora consideraremos el sistema de referencia
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido
1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.
1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A
5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.
. Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos
MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3
MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las
Ecuación del plano. Conociendo. N n x,n y,n z y la distancia n a la que se encuentra el plano del
Ecuación del plano Conociendo N n x,n y,n z y la distancia n a la que se encuentra el plano del origen de coordenadas ( medidaen la dirección del vectorn ), deberemos encontrar la expresión del punto P
Geometría del plano y el espacio
Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer
Tema 6: Ángulos y distancias en el espacio
Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones
RECTAS Y PLANOS EN EL ESPACIO
UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen
GEOMETRIA ANALITICA EN EL ESPACIO
CAPITULO VII CALCULO II GEOMETRIA ANALITICA EN EL ESPACIO Es el estudio de las formas geométricas en un sistema ordenado. Un sistema de ejes coordenados en el espacio, dividen al espacio en ocho octangulos.
Tema 6. Apéndice: La esfera
Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: La esfera (Apéndice del TEMA 6) 141 Tema 6 Apéndice: La esfera La superficie esférica (la esfera) es el conjunto de puntos del espacio que
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta
TEMA 2: EL PLANO AFÍN
TEMA : EL PLANO AFÍN En la primera mitad del siglo XVIII nació una rama completamente nuea de la Matemática que surge por la necesidad de relacionar las curas del plano con las ecuaciones algebraicas de
MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos
Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b
ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.
ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS
TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos
Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 6 88 Ángulos entre rectas y planos TEMA 6 Ángulos, distancias, simetrías Problemas Resueltos Dadas las rectas r y s
GEOMETRÍA: ESPACIO AFÍN
GEOMETRÍA: ESPACIO AFÍN.- ECUACIONES DE LA RECTA EN EL PLANO..- Ecuación vectorial Sea Pab (, ) un punto de la recta r, v = ( v, v) dirección que r, y, sea (, ) en el siguiente dibujo: un vector, no nulo,
Planos y Rectas. 19 de Marzo de 2012
el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos
es el lugar geométrico de los puntos p tales que ; R (1)
LA RECTA DEL PLANO ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS La recta en el plano como lugar geométrico Dados un punto p un vector no nulo u, la recta T paralela a u que pasa por p es el lugar geométrico
SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.
SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:
TEMA 4. Vectores en el espacio Problemas Resueltos
Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a b b) a b c)
TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO.
TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO. 1. Distancia entre dos puntos: Si A= (a 1, a 2, a 3 ) y B= (b 1, b 2, b 3 ), entonces: 2.Ángulo entre elementos del espacio: Ángulo entre dos rectas: d (A, B)
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO 2016-17 1 2 Ejercicio 1º.- Considera las matrices A 1 1 y B 0 1 1 0 a) (1,25 puntos) Encuentra las matrices X e Y tales que X Y = A T y 2X Y = B. b)
La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín
La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene
58 EJERCICIOS de RECTAS y PLANOS 2º BACH.
58 EJERCICIOS de RECTAS y PLANOS 2º BACH. NOTA: En los ejercicios de Geometría se recomienda comenzar, antes de nada, por: Imaginarse la situación; podemos ayudarnos, para ello, de bolígrafos (para representar
LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.
LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe
