MDOF. Dinámica Estructural Aplicada II C 2012 UCA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MDOF. Dinámica Estructural Aplicada II C 2012 UCA"

Transcripción

1 MDOF Dinámica Estructural Aplicada II C 2012 UCA

2 Desde el punto de vista dinámico, interesan los grados de libertad en los que se generan fuerzas generalizadas de inercia significativas; es decir, fuerzas iguales a masa por aceleración o momento de inercia por aceleración angular. Sin embargo, si las fuerzas de inercia importantes son solamente las que generan las masas M1 y M2 al moverse lateralmente y las deformaciones de los pisos en sus planos son despreciables, tenemos un sistema de dos grados de libertad dinámicos, que son precisamente los desplazamientos laterales 1 y 2 de la figura. Esto no implica que los restantes giros y desplazamientos se anulan, sino que aunque suman valores distintos de cero, no generan fuerzas de inercia de consideración, además se desprecian las fuerzas verticales, porque el edificio es fuerte en el sentido vertical y se debe despreciar la rotación. Se debe considerar sólo el desplazamiento horizontal, porque la longitud de onda es grande con respecto a la base del edificio, por lo cual la estructura se mueve mayormente en el sentido horizontal.

3 Cuando el terreno experimenta un desplazamiento horizontal S, en la ecuación de equilibrio dinámico aparece la fuerza de inercia, igual a la masa por su aceleración absoluta X, la fuerza de rigidez y la de amortiguamiento. En el caso más sencillo, las fuerzas de rigidez y de amortiguamiento son respectivamente proporcionales al desplazamiento U y la velocidad Ú de la masa con respecto a su base. Sean K y C las correspondientes constantes de proporcionalidad que se supone no cambian con el tiempo; K es lo mismo que la matriz de rigidez lateral, en este caso de 1 fila por 1 columna, y C se llama coeficiente o relación de amortiguamiento. El conjunto de M, C, y K constituye un sistema lineal de un grado de libertad, con amortiguamiento viscoso o lineal, usando el Principio de D Alembert, la ecuación diferencial de equilibrio dinámico o de movimiento es: MÜ + C Ú + KU = 0

4 El punto sobre una cantidad significa derivación con respecto al tiempo. Considerando que x = S 0 + U, la ecuación anterior se escribe: M Ü + C Ú + K U = M S 0 Ec.2.25 Dividiendo esta ecuación entre M y definiendo W = K/M, C cr = KM y δ = C/ C cr, se llega a: Ü + 2 δ W Ú + W 2 U = S Ec.2.26 W se denomina frecuencia natural circular del sistema, C cr se conoce como amortiguamiento crítico y δ es la fracción de amortiguamiento crítico, que usualmente se expresa en porcentaje. De las definiciones de W y de C cr deducimos que C cr = 2MW, lo cual muestra que el amortiguamiento crítico está relacionado con la frecuencia fundamental de vibración. El período de vibración natural del sistema se calcula, 2Π/w. Ref. # 3.

5 Espectro de Respuesta Elástico Recuérdese que las propiedades del sistema que determinan tal respuesta son el período (o la frecuencia) de vibración T, y la fracción de amortiguamiento crítico δ. Para entender mejor el espectro de un acelerograma en diferentes estructuras conviene mantener fija la fracción de amortiguamiento crítico e ir calculando alguna respuesta máxima, usualmente la aceleración, para distintos valores de T; los resultados se grafican con T como abscisa y se obtiene así el espectro de respuesta del acelerograma. Nótese que la fuerza máxima que debe resistir el elemento elástico, como consecuencia del temblor en cuestión es: F = K D = (K/M) M D = M W 2 D = M A

6 Se nota que a mayor amortiguamiento menor respuesta, para cualquier período, y que para un amortiguamiento dado, existen períodos (alrededor de dos segundos en este caso), para los que la respuesta es sensiblemente mayor que para los demás (Fig. 2.6). Una característica adicional de estos espectros es que cuando T = 0, la seudo aceleración es igual a la aceleración máxima del terreno, es decir, al valor máximo de S (t).

7 Los espectros de temblores reales tienen forma irregular, y presentan variaciones bruscas en la respuesta máxima en función del período natural. Por tanto, es posible que dos estructuras que tengan casi las mismas características dinámicas, respondan de manera bastante distinta a un sismo dado. En la práctica este hecho tiene menos importancia, gracias a la influencia del amortiguamiento, que hace menos bruscas las variaciones de los espectros, ya que no se conoce con certeza el período natural, por las incertidumbres que existen en el cálculo de masas y rigideces, así como la interacción suelo estructura que modifican el período fundamental de vibración.

8 Para las aplicaciones prácticas, los espectros de diseño se presentan como curvas suavizadas o líneas rectas (ver Fig. 2.7, Ref.#1). El suavizar un espectro se justifica, debido a las dificultades determinando las frecuencias exactas y las formas modales de las estructuras durante los terremotos severos, cuando el comportamiento probablemente sea no lineal.

9

10 Sistemas Lineales de Varios Grados de Libertad sin Torsión.

11 En edificios es usualmente aceptable suponer que las masas están concentradas en los niveles de los pisos y que las fuerzas de inercia importantes son solo las laterales. Las fuerzas en los elementos elásticos se calculan como el producto de la matriz de rigidez lateral K por los desplazamientos laterales, es decir: Fe = KU

12

13 De análoga manera las fuerzas de amortiguamiento viscoso se pueden expresar como el producto de una matriz de amortiguamiento por las velocidades, o sea como: Fa = C U Donde el punto denota derivación con respecto al tiempo. En general no es necesario calcular C, el efecto del amortiguamiento se toma en cuenta en los espectros de diseño.

14

15

16 Matriz de Masa y Rigidez para una Estructura de n pisos Propiedades de Masa y Rigidez Para simplificar la solución, usualmente se asume que para edificios de varios niveles, la masa del nivel se ubique en el centro del nivel correspondiente. Estos resultados se ubican en una matriz diagonal. Donde : Δ = deformación E = módulo de elasticidad V = cortante I = momento de inercia K = rigidez lateral

17

18

19 En lugar de resolver la ecuación (Ec.2.30), se considera primero el caso más simple en el que no existen amortiguadores (sus efectos se incluyen después en forma aproximada), y no existe movimiento del terreno, con lo cual dicha ecuación, se convierte en: M Ü + K U = 0

20 Toda estructura elástica puede vibrar libremente en forma tal que el desplazamiento de cada una de sus masas con respecto a su posición de equilibrio estático es igual al producto de una función de la posición de la masa considerada por una función del tiempo, que es la misma para todas las masas. En otras palabras, los desplazamientos se pueden expresar como: U (t) = Z q (t)

21

22

23

24

25 Frecuencias y Modos de Vibración. Matemáticamente, la expresión Ec.2.41 constituye un problema de valores característicos. Desarrollando el determinante se obtiene una ecuación algebraica de grado n cuya incógnita es W 2, siendo n el número de grados de libertad (tres en el caso de la Fig. 2.8) cuya solución conduce a n valores de W 2, es decir a n frecuencias naturales de vibración W, que corresponde a otros tantos períodos naturales 2π /W. Para estructuras estables los valores de W 2 son reales y positivos, y sus raíces cuadradas son las frecuencias naturales. Se acostumbra enumerar a W en orden creciente; así la primera frecuencia W1 (llamada frecuencia fundamental), tiene el menor valor y la última Wn, el mayor. Reemplazando cada valor de la frecuencia Wj en Ec.2.40 podemos obtener vectores Zj diferentes de cero; cada uno de ellos se llama modo de vibración. No resultan soluciones únicas para cada modo, sino solamente valores relativos entre las Zij, es decir que no están definidas las amplitudes de las vibraciones de las masas, sino las relaciones entre todas ellas.

26 Se demuestra que los modos de vibración tienen las siguientes propiedades: a) Ortogonalidad con respecto a la matriz de masas. Zj T M Zr = 0 si j r Ec.2.42 Ref. # 3 b) Ortogonalidad con respecto a la matriz de rigideces. Zj T K Zr = 0 si j rec.2.43 Ref. # 3 c) Los modos naturales constituyen un conjunto completo, lo que significa que cualquier configuración de desplazamiento U puede expresarse como una combinación lineal de las Zj, es decir: U = Σj aj Zj Ec.2.44

27 Los productos mj * = Zj T M Z j y Kj * = Zj T K Zj son cantidades escalares que se denominan masa y rigidez generalizadas del modo j, respectivamente. Sus valores dependen de la escala de cada modo, aunque el cociente del segundo sobre el primero se mantiene constante y es igual al cuadrado de la frecuencia del modo en cuestión.

28 Pendientes: Revisión de Ejemplos MDOF Método Iterativo de Stodolla Vianello Método de la Determinante (Folletos en Blog de la UCA / Uso del RNC 07)

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS ALBERTO RUIZ-CABELLO LÓPEZ EJERCICIO 4 1. Matriz de masas concentradas del sistema. La matriz de masas concentradas para un edificio a cortante es una matriz diagonal en la que cada componente no nula

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

CONSTRUCCIONES SISMORRESISTENTES

CONSTRUCCIONES SISMORRESISTENTES CONSTRUCCIONES SISMORRESISTENTES ACCIÓN SÍSMICA SOBRE LAS CONSTRUCCIONES Respuesta de las construcciones COMPORTAMIENTO (RESPUESTA) DEL EDIFICIO Fuerzas de inercia Acción dinámica Respuesta dinámica

Más detalles

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones Notación y Definiciones ELEMENTOS DE MÁQUINAS Y VIBRACIONES -.1 - ELEMENTOS DE MÁQUINAS Y VIBRACIONES -. - ABSORBEDOR DINÁMICO DE VIBRACIONES o AMORTIGUADOR DINÁMICO: se trata de un sistema mecánico masa-resorte(-amortiguador)

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada DINAMICA ESTRUCTURAL SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada Sistema sometido a cargas armónicas: Donde la carga p(t) tiene una forma senosoidal con amplitud P o y una frecuencia angular w Consideramos

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

6.- APLICACIÓN DE FEMA-273 Y ANÁLISIS MODAL PUSHOVER.

6.- APLICACIÓN DE FEMA-273 Y ANÁLISIS MODAL PUSHOVER. 6.- APLICACIÓN DE FEMA-73 Y ANÁLISIS MODAL PUSHOVER. (Application of FEMA-73 and Analysis Modal Pushover) INTRODUCCIÓN.- A continuación se presenta una comparativa en el análisis estático no lineal Pushover,

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION 5 CINEMTIC DEL CUERPO RIGIDO EN MOVIMIENTO PLNO 5.1 INTRODUCCION Cuerpo Rígido Sistema dinámico que no presenta deformaciones entre sus partes ante la acción de fuerzas. Matemáticamente, se define como

Más detalles

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

APLICACIÓN DEL SISMO VERTICAL A UN ELEMENTO SUSCEPTIBLE DEL MISMO. MÉTODO SIMPLIFICADO, UTILIZANDO CÁLCULOS SENCILLOS Y LA AYUDA DE CYPE 3D.

APLICACIÓN DEL SISMO VERTICAL A UN ELEMENTO SUSCEPTIBLE DEL MISMO. MÉTODO SIMPLIFICADO, UTILIZANDO CÁLCULOS SENCILLOS Y LA AYUDA DE CYPE 3D. APLICACIÓN DEL SISMO VERTICAL A UN ELEMENTO SUSCEPTIBLE DEL MISMO. MÉTODO SIMPLIFICADO, UTILIZANDO CÁLCULOS SENCILLOS Y LA AYUDA DE CYPE 3D. Podemos entender como elementos susceptibles al sismo vertical,

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

7. PÉNDULO DE TORSIÓN

7. PÉNDULO DE TORSIÓN 7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento

Más detalles

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él?

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él? LA ENERGÍA E l concepto de energía es uno de los más importantes del mundo de la ciencia. En nuestra vida diaria, el termino energía tiene que ver con el costo del combustible para transporte y calefacción,

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m Problema 1 Sea el puente de la Figura 1 consistente en una sección cajón de hormigón armado simplemente apoyado en sus extremos y que apoya al centro sobre una columna circular empotrada en la base. La

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica:

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica: IIND 4º CURSO. ESTRUCTURAS PROBLEMAS PROPUESTOS DE DINÁMICA NOTA: Cuando proceda considerar el factor de amortiguamiento, tómese: ζ= 0,02. D 1. Una viga simplemente apoyada de 1,85 m de luz está formada

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

3. Método de cálculo.

3. Método de cálculo. Método de cálculo 7. Método de cálculo. Como método de cálculo vamos a seguir el método de los desplazamientos, en el que las incógnitas son los desplazamientos de los nudos de la estructura. Y para estudiar

Más detalles

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014 FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DENSIDAD HORARIA

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Estática. Principios Generales

Estática. Principios Generales Estática 1 Principios Generales Objetivos Cantidades básicas e idealizaciones de la mecánica Leyes de Newton de movimiento y gravitación SI sistema de unidades y uso de prefijos Cálculo numérico Consejos

Más detalles

Análisis de deformación y dimensionado de un grupo de pilotes

Análisis de deformación y dimensionado de un grupo de pilotes Manual de Ingeniería No. 18 Actualización: 06/2016 Análisis de deformación y dimensionado de un grupo de pilotes Programa: Grupo de pilotes Archivo: Demo_manual_18.gsp El objetivo de este capítulo es explicar

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Olimpíada Argentina de Física

Olimpíada Argentina de Física Pruebas Preparatorias Primera Prueba: Cinemática - Dinámica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma. - Escriba su nombre

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

REDUCCIÓN DE VIBRACIONES

REDUCCIÓN DE VIBRACIONES REDUCCIÓN DE VIBRACIONES Vibraciones Mecánicas MC-571 Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería 1) Introducción Existen situaciones donde las vibraciones mecánicas pueden ser deseables

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

EJEMPLOS DE APLICACIÓN DE CARGAS ASOCIADAS AL BALANCE DE ENERGÍA

EJEMPLOS DE APLICACIÓN DE CARGAS ASOCIADAS AL BALANCE DE ENERGÍA EJEMOS DE AICACIÓN DE CARGAS ASOCIADAS A BAANCE DE ENERGÍA Ejemplo 1: Sea la viga simplemente apoyada de luz y rigidez fleional E I, es sometida en su sección central a una carga estática cuyo valor máimo

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal Análisis Estructural - 9 Enunciado Dada la estructura de la Figura, idealizada mediante un marco con vigas rígidas y columnas inextensibles, sometida a una carga armónica lateral de 8 t, se pide: ) Determinar

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

INTRODUCCIÓN AL DISEÑO SÍSMICO INSTITUTO DE INVESTIGACIONES ANTISISMICAS ING. ALDO BRUSCHI FACULTAD DE INGENIERIA - UNIVERSIDAD NACIONAL DE SAN JUAN

INTRODUCCIÓN AL DISEÑO SÍSMICO INSTITUTO DE INVESTIGACIONES ANTISISMICAS ING. ALDO BRUSCHI FACULTAD DE INGENIERIA - UNIVERSIDAD NACIONAL DE SAN JUAN INTRODUCCIÓN AL DISEÑO SÍSMICO INSTITUTO DE INVESTIGACIONES ANTISISMICAS ING. ALDO BRUSCHI FACULTAD DE INGENIERIA - UNIVERSIDAD NACIONAL DE SAN JUAN Dinámica de sistemas de varios grados de libertad. Estructuras

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

CONCLUSIONES 5. CONCLUSIONES.

CONCLUSIONES 5. CONCLUSIONES. 5. CONCLUSIONES. Entre los sistemas de referencia empleados para el cálculo de las fuerzas elásticas, para un elemento finito de dos nodos que utiliza la teoría de Euler- Bernoulli [11], basándose en las

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

BOLILLA 4 Movimiento Circular y Leyes de Newton

BOLILLA 4 Movimiento Circular y Leyes de Newton BOLILLA 4 Movimiento Circular y Leyes de Newton 1. Movimiento Circular. En ausencia de fuerzas, el movimiento en línea recta y a velocidad constante continúa indefinidamente. El movimiento circular, sin

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

ESTRUCTURAS SIMETRICAS

ESTRUCTURAS SIMETRICAS ESTRUCTURAS SIMETRICAS Las estructuras reales presentan con mucha frecuencia diseños que tienen la característica de ser simétricas con relación a algún plano, como por ejemplo las estructuras de muchos

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos

Más detalles

TEMA CONTENIDO OBJETIVO BIBLIOGRAFÍA HORAS TEORÍA Y TALLER(*)

TEMA CONTENIDO OBJETIVO BIBLIOGRAFÍA HORAS TEORÍA Y TALLER(*) FÍSICA I CON LAB. Datos de identificación 6885 Unidad Didáctica: Teoría, Taller y Laboratorio Horas clase: Tres, dos y dos, horas, semana, mes Tipo de materia: Obligatoria Eje de formación: Básica Materia

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

2. MÉTODOS PARA ESTIMAR LA DEMANDA SÍSMICA DE SISTEMAS DE VARIOS GRADOS DE LIBERTAD.

2. MÉTODOS PARA ESTIMAR LA DEMANDA SÍSMICA DE SISTEMAS DE VARIOS GRADOS DE LIBERTAD. 2. MÉTODOS PARA ESTIMAR LA DEMANDA SÍSMICA DE SISTEMAS DE VARIOS GRADOS DE LIBERTAD. (Methods to estimate seismic demands of Multi Degree of Freedom Systems) INTRODUCCIÓN.- El procedimiento del análisis

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Unidad IV: Sistemas de ecuaciones diferenciales lineales

Unidad IV: Sistemas de ecuaciones diferenciales lineales Unidad IV: Sistemas de ecuaciones diferenciales lineales 4.1 Teoría preliminar 4.1.1 Sistemas de EDL Los problemas de la vida real pueden representarse de mejor manera con la ayuda de múltiples variables.

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

Introducción al cálculo numérico. Método de Euler

Introducción al cálculo numérico. Método de Euler Capíítullo T1 Introducción al cálculo numérico. Método de Euler En la figura 1.1 se muestra una masa sometida a la aceleración de la gravedad soportada por un muelle un amortiguador viscoso colocados en

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA I (688) HERMOSILLO, SONORA, SEPTIEMBRE DEL 2004 Clave de la Materia: 688 Carácter: Obligatoria, Eje de formación

Más detalles

INTRODUCCIÓN A LA AEROELASTICIDAD

INTRODUCCIÓN A LA AEROELASTICIDAD INTRODUCCIÓN A LA AEROELASTICIDAD ÍNDICE 1. Aeroelasticidad. Definiciones previas 2. Modelo de fuerzas aerodinámicas 3. Modelo de fuerzas aeroelásticas 4. Inestabilidades inducidas por el viento 1. Inestabilidad

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL UNIFORME

UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL UNIFORME FUNDACION CATALINA DE MARÍA LICEO SAGRADO CORAZÓN- COPIAPÓ 67 AÑOS, 1949 2016 Vivamos la Misericordia, educando con Calidad desde el Amor y la Reparación UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL

Más detalles

SISTEMAS DE CONTROL Fundamentos de modelado

SISTEMAS DE CONTROL Fundamentos de modelado SISTEMAS DE CONTROL Fundamentos de modelado Se desarrollarán los modelos de sistemas continuos en el tiempo, eléctricos, mecánicos, electrónicos y electromecánicos, básicamente de tipo lineal, invariantes

Más detalles

16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL

16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL 16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL 16.1 OBJETIVO El objetivo de este módulo es obtener el movimiento horizontal provocado por una acción horizontal en la cabeza del pilote, de una forma

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles