Principio de Superposición
|
|
|
- Rosa María Quintero Acosta
- hace 8 años
- Vistas:
Transcripción
1 1 Sistemas en tiempo continuo discreto Un sistema en tiempo continuo discreto e puede ver como una transformación que se aplica a una señal de entrada en tiempo continuo discreto y produce una señal de salida en tiempo continuo discreto Un sistema en tiempo continuo discreto es lineal si cumple el principio de superposición. Utilizaremos la notación para representar la relación entrada/salida del sistema en tiempo continuo discreto Principio de Superposición 1 Aditividad Si Y Entonces 2 Homogeneidad Si Entonces Proyecto Curricular : Ingenieria electrónica Página 1,
2 2, donde es una constante arbitraria Estas dos propiedades se pueden combinar 1 y 2 en una sola ecuación. Donde y, son constantes. Para representar la transformación de entradas a salidas en orma funcional utilizamos la notación = [ ] El sistema es lineal si y solo si [ es una transformación lineal: ] = [ ] [ ], Definición Sean y son espacios vectoriales, un subespacio de y : Es una función tal que =, para todo, reales o complejos y,. En este caso a se le denomina transformación lineal u operador lineal de en. Ejemplos 1 La relación entrada/salida de un sistema está dada por = Es este sistema lineal o no lineal? Proyecto Curricular : Ingenieria electrónica Página 2
3 3 2 Consideremos un circuito cuya relación entrada/salida es = a = = es este sistema lineal o no lineal? Es este sistema lineal o no lineal? 3 Cuál de los siguientes sistemas es lineal a = / b = [ ] c = [ ] 4 Consideremos un circuito cuya entrada es la fuente de voltaje y cuya salida es la corriente en la bobina. Supongamos también que en el instante se tiene que = = La ecuación diferencial de entrada/salida que describe el comportamiento del sistema es = Para encontrar la expresión explicita de en función de resolvemos la ecuación diferencial ED Proyecto Curricular : Ingenieria electrónica Página 3
4 4 La solución se obtiene usando el factor integrante de la ecuación no homogénea =, donde Este sistema es no lineal a menos que = 0. En efecto: Consideremos la entrada = La correspondiente respuesta es = 5 Consideremos un sistema descrito por una ED de entrada/salida de la forma Proyecto Curricular : Ingenieria electrónica Página 4
5 5 = Demostrar que el sistema es lineal suponiendo condiciones iniciales nulas Sistemas variantes e invariantes con el tiempo Los sistemas que se modelan mediante ED lineales con coeficientes que varían en el tiempo, se denominan variantes con el tiempo. Mientras que los sistemas invariantes con el tiempo usualmente se modelan mediante ED lineales con coeficientes constantes. Es posible caracterizar los sistemas invariantes con el tiempo desplazando la señal de entrada. Algoritmo de comprobación de la invariancia temporal Paso 1. Encontremos Paso 2. Sea = y encontremos la salida correspondiente a la entrada Paso 3. Obtengamos a partir da la señal obtenida en el paso 1 y comparamos con Paso 4. Si =, el sistema es invariante con el tiempo. En caso contrario es variante con el tiempo. Ejercicio 1 Determinar si los sistemas descritos por las ecuaciones que se dan son invariantes con el tiempo Proyecto Curricular : Ingenieria electrónica Página 5
6 6 a = [ ] =, 0, 0 = 0 Ejercicio 2 Consideremos un sistema descrito por una ED de entrada/salida de la forma = Demostrar que el sistema es invariante con el tiempo Sistemas LTI Linear Time Invariant Lineales e invariantes con el tiempo El sistema descrito por una ED de entrada/salida de la forma = Demostrar que el sistema es LTI lineal e invariante con el tiempo suponiendo condiciones iniciales nulas La convolucion Ya vimos que los sistemas lineales están gobernados por el principio de superposición: Proyecto Curricular : Ingenieria electrónica Página 6
7 7 Si y Entonces De forma más general, si, = 1, 2,.., Y = = = Entonces = Función impulso y representación de señales en tiempo continúo Nos proponemos descomponer la señal de entrada en una serie de impulsos. La salida se obtiene como suma de respuestas resultantes de cada impulso. La aproximación para es Proyecto Curricular : Ingenieria electrónica Página 7
8 8 / donde / = 1, < /2 0, > /2 Es un pulso de amplitud unitaria y duración igual a. La aproximación se hace mejor si hacemos a medida que decrece y se emplean más pulsos para representar la señal de entrada En el límite cuando 0, la suma se convierte en una integral = lim = lim 1 / / Cada término de la suma representa el área bajo el impulso esimo de la aproximación = lim = 1 1 = En donde hemos sustituido por la variable continua, de forma que 1= y hemos definido Proyecto Curricular : Ingenieria electrónica Página 8
9 9 = lim 1 / O sea = lim 1 / De esta forma la función delta de Dirac o función impulso es un pulso de amplitud infinita y duración cero. Esta función debe ser tratada como una función generalizada, pues no puede definirse su valor puntualmente como en el caso de las funciones ordinarias. Veamos que un sistema LTI está completamente determinado por su respuesta al impulso. La cual se define como la salida correspondiente a la entrada. Es decir: ℎ Debido a la linealidad del sistema ℎ Además puesto que el sistema es invariante con el tiempo ℎ Para encontrar la salida de un sistema LTI a una entrada, representamos la señal de entrada como un tren de impulsos = lim 1 Proyecto Curricular : Ingenieria electrónica Página 9 /
10 10 Remplacemos ahora / por su límite = lim Se aplica la representación anterior al sistema LTI, la salida se puede determinar calculando por separado la respuesta debida a cada impulso, después, sumando todas las respuestas individuales para encontrar la salida total. Este método se puede usar ya que el sistema es LTI La respuesta producida por cada impulso puede calcularse fácilmente El impulso en = 0 produce la salida 0 0ℎ El impulso en = produce la salida ℎ El impulso en = 2 produce la salida 2 2 2ℎ 2 En general el impulso en = produce la salida ℎ La respuesta completa es = lim ℎ Proyecto Curricular : Ingenieria electrónica Página 10
11 11 A medida que 0 y el número de impulsos, se convierte en una variable continua, y la suma se convierte en una integral. Entonces la salida correspondiente a la entrada es = ℎ Proyecto Curricular : Ingenieria electrónica Página 11 = ℎ
12 Proyecto Curricular : Ingenieria electrónica Página 12 12
Clasificación de sistemas
Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,
2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo
MÉTODO DE VARIACIÓN DE PARÁMETROS
MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la
Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS
Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS 1.1.- SISTEMAS DE ECUACIONES LINEALES Ecuación lineal Las ecuaciones siguientes son lineales: 2x 3 = 0; 5x + 4y = 20; 3x + 2y + 6z = 6; 5x 3y + z 5t =
Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT
Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil
CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE
LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de
Métodos, Algoritmos y Herramientas
Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.
METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS
METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función
1 Ecuaciones diferenciales
1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Tema 4: Sistemas de ecuaciones e inecuaciones
Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado
Tema 3: Sistemas de ecuaciones lineales
Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión
TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal
Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial
Sistem as de ecuaciones lineales
Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias
MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas
ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de
Análisis Dinámico: Ecuaciones diferenciales
Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
Ecuaciones Diferenciales Ordinarias
Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López [email protected] Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA
Área : Tecnología Asignatura : Tecnología e Informática Grado : 7 Nombre del docente: Jorge Enrique Giraldo Valencia 1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA La ley de Ohm expresa la relación que
1.3.- V A L O R A B S O L U T O
1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez [email protected] 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que
Teoría Tema 6 Ecuaciones de la recta
página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
Álgebra Lineal Ma1010
Álgebra Ma1010 Departamento de Matemáticas ITESM Álgebra - p. 1/31 En este apartado se introduce uno de los conceptos más importantes del curso: el de combinación lineal entre vectores. Se establece la
VELOCIDAD Y ACELERACION. RECTA TANGENTE.
VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)
Estudio de fallas asimétricas
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.
OPTIMIZACIÓN VECTORIAL
OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
PRINCIPIOS DE LA DINÁMICA
Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento
Teoremas de Convergencia
Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
Sistemas de ecuaciones lineales
Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
Algebra Lineal XXVI: La Regla de Cramer.
Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
3 Aplicaciones de primer orden
CAPÍTULO 3 Aplicaciones de primer orden 3.3 Crecimiento de poblaciones En esta sección veremos dos modelos de ED que sirven para representar la forma en que evoluciona el número P.t/ de habitantes de una
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
Tema 5: Sistemas de Ecuaciones Lineales
Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones
C A P Í T U L O 5 PROPUESTA DE ENSEÑANZA: SECUENCIAS DIDÁCTICAS. Neevia docconverter 5.1
C A P Í T U L O PROPUESTA DE ENSEÑANZA: SECUENCIAS DIDÁCTICAS CAPÍTULO. PROPUESTA DE ENSEÑANZA: SECUENCIAS DIDÁCTICAS. En este capítulo se mostrarán las diferentes secuencias didácticas o instrumentos
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
Fabio Prieto Ingreso 2003
Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien
MATHEMATICA. Trigonometría. Ricardo Villafaña Figueroa
MATHEMATICA Trigonometría 2 Contenido Trigonometría... 3 Grados y radianes... 3 Gráficas de funciones trigonométricas... 6 Transformaciones de expresiones trigonométricas... 10 Simplificación... 10 Expansión...
Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30
Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición
Tema 1. Introducción al Control Automático
Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
Modelización por medio de sistemas
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable
Estabilidad BIBO de Sistemas Lineales
Estabilidad BIBO de Sistemas Lineales Notas para el curso del Sistemas Lineales 2 UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE INGENIERÍA INSTITUTO DE INGENIERÍA ELÉCTRICA Montevideo, segundo semestre del 27
CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD
CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos
Algebra Lineal Xa: Álgebra Vectorial en R3
Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: [email protected]
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:
. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
Teoremas de convergencia y derivación bajo el signo integral
Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones
Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ Forma general Circuito 109. Forma general transformación de fuentes. 3.3TRANSFORMACIÓN DE FUENTES Ejercicio 47. Transformación de fuentes. A partir del circuito y aplicando el método
Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.
Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Ecuaciones diferenciales
5 Ecuaciones diferenciales 5.1. Qué es una ecuación diferencial Una ecuación diferencial es una ecuación en la que la incógnita a despejar no es un número sino una función. Las operaciones que intervienen
Prácticas para Resolver PROBLEMAS MATEMÁTICOS
Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
Algunas Aplicaciones de la Transformada de Laplace
Algunas Aplicaciones de la Transformada de Laplace Dr. Andrés Pérez Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela 11 de marzo de 2016 A. Pérez Algunas Aplicaciones de la Contenido
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Introducción a la Teoría del Procesamiento Digital de Señales de Audio
Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Resumen el análisis de Fourier es un conjunto de técnicas matemáticas basadas en descomponer una señal en
MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida
Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la
Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.
EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación
Modelos Estocásticos I Tercer Examen Parcial Respuestas
Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado
ECUACIONES POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
MODELOS LINEALES. Alejandro Vera Trejo
MODELOS LINEALES Alejandro Vera Trejo Objetivo Se representará una situación determinada a través de la construcción de una o varias ecuaciones lineales. Se resolverán situaciones reales por medio de ecuaciones
Figura 3.1. Grafo orientado.
Leyes de Kirchhoff 46. ECUACIONES DE INTERCONEXION. Leyes de Kirchhoff..1. Definiciones. Una red está formada por la interconexión de componentes en sus terminales; y deben cumplirse simultáneamente las
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
