MATERIALES FERROMAGNETICOS
|
|
|
- Pedro Páez Camacho
- hace 8 años
- Vistas:
Transcripción
1 MATERIALES FERROMAGNETICOS Bibliogafía consultada Seas- Zemasnky -Tomo II Fisica paa Ciencia de la Ingenieía, Mckelvey Seway- Jewett --Tomo II 1
2 Los mateiales feomagnéticos no son `lineales'. Esto significa que las elaciones ente B (o M)Y H no coesponden a líneas ectas. μ=μ(h) y χ=χ(h) χ >> y μ >> 1. En ealidad, lo que ocue es más complicado es el fenómeno de istéesis. B exteno= En los mateiales feomagnéticos los momentos magnéticos individuales de gandes gupos de átomos o moléculas se mantienen alineados ente sí debido a un fuete acoplamiento, aún en ausencia de campo exteio. Estos gupos se denominan dominios, cuyo tamaño 1-12 y 1-8 m3 y contienen ente 121 y 127 átomos. Mateiales feomagnéticos: ieo, cobalto, níquel y la mayoía de los aceos. En ausencia de campo aplicado, los dominios tienen sus momentos magnéticos netos distibuidos al aza. Cuando se aplica un campo exteio, los dominios tienden a alinease con el campo. Este alineamiento puede pemanece cuando se etia el campo exteno, ceando un imán pemanente La agitación témica tiende a desalinea los dominios. A tempeatua nomal, la enegía témica no es en geneal suficiente paa desmagnetiza un mateial magnetizado. Po encima de una cieta tempeatua, llamada tempeatua de Cuie, el mateial se vuelve paamagnético. Una foma de desmagnetiza un mateial feomagnético es calentalo 2 po encima de esta tempeatua.
3 CURVA DE HISTÉRESIS Se comienza con una muesta de mateial feomagnético desmagnetizado. Se considea que el paámeto de contol expeimental es el campo H, pues está diectamente elacionado a la coiente I (Ley de Ampèe). Al incementa H desde ceo, M y B del mateial ceceán monótonamente, descibiendo una cuva- Cuva de pimea imantación μ = B H µ es función de H con un ango de vaiación de vaios ódenes de magnitud. 3
4 Si desde el estado de satuación (2) se disminuye H, se obseva que el sistema no sigue la tayectoia pevia. Paa H= (3), el mateial queda magnetizado, B=B (magnético esidual) Si se aumenta H en valoes negativos, la muesta adquiee una magnetización invetida. Paa H=H c= (H coecitivo), B=, El mateial queda desmagnetizado (4). Al aumenta H,más y más dominios se alinean paalelos al campo aplicado, asta que M alcanza un valo máximo: ESTADO DE SATURACIÓN(2), B maximo = Bsat. Un aumento de H no ceaá nuevas alineaciones. Si se continúa aumentando H en valo negativos, se poduce una nueva satuación en el sentido opuesto (5). Si, desde (5) se aumenta H, se epite la situación anteio : paa H=, B=-B (6) ; H=H c, B= Si se epite esta opeación, el sistema ecoe siempe el mismo ciclo, conocido como ciclo de istéesis. 4
5 Cuvas de istéesis de un mateial, paa vaios valoes de Hmax. Desmagnetización de un mateial feomagnético, ecoiendo distintos ciclos de istéesis 5
6 El uso más fecuentes de los mateiales feomagnéticos son: a) como fuentes de campo magnético (imanes): Magnetos duos b) paa aumenta el flujo de B en cicuitos de coiente (motoes, geneadoes): Magnetos blandos c) almacenamiento magnético de infomación. istéesis ectangula 6
7 Tooide de mateial feomagnético lineal con N espias de coiente I dl μ H.dl = I Al igual que en el ejemplo de mateiales lineales se detemina H, usando la Ley de Ampee H() = NI (b < < 2π afuea c) B Paa detemina B es necesaio conoce la cuva de istéesis del mateial NI 2π 7
8 Si I = H = B = B χ M = B μ H= B= M= H= B M H= B= M= 8
9 I Tooide de mateial magnético lineal con N espias de coiente I y ente ieo dl dl B = μ H v B M =χmh = μ H H.dl = I L = 2πR = 2π + μ = cte << L ( b a ) 2 SUPONER No existe flujo dispeso ( po condiciones de contono) a << b 9
10 dl B µ µ H µ µ H B Po condiciones de contono B da = B B = B = μ I dl H.d l = H() dl = H () dl + Hμ () dl = NI B() B() dl + B(b < < c) = dl = NI L μ μ + μ μ H NIμ Hμ (b < < c) = = μ μ + ( L ) μ M NIμ H(b < < c) = μ + L μ ( ) NI v M = B μ H M(b < < c, μ) = μ + NI ( L ) μ ( μ μ ) M Si I = B = H = 1
11 Tooide de mateial feomagnético,n espias de coiente I y ente ieo dl Po condiciones de contono B da = B B = B = μ I dl L = 2πR = 2π + SUPONER ( b a ) << L No existe flujo dispeso ( po condiciones de contono) a << b 2 H.d l = H() dl = B() dl + Hμ () B + H μ μ ( L ) = NI dl = NI 11
12 La inteseccion de la ecta μ μ = NI H B ( L ) μ Recta de Caga o de tabajo, su pendiente es negativa y aumenta cuando disminuye La intesección con la con la cuva de istéesis define el valo de B (Punto P) M M 12
13 μ Si I = B = H ( L ) μ B y H tienen sentido contaio en el mateial. La existencia de un enteieo poduce que B se coa desde B asta P si disminuye la ecta es más vetical y P se aceca a B. Si es gandes, aumenta el flujo dispeso disminuyendo B en el mateial P B M H μ B H B M H μ 13
14 μ Si I = B = H ( L ) μ M= B= H= 14
Capítulo Propiedades magnéticas de la materia
Capítulo 8 8. Popiedades magnéticas de la mateia 8.1 agnetismo de la mateia. Vecto imantación. Pemeabilidad magnética 8.2 Diamagnetismo 8.3 Paamagnetismo 8.4 Feomagnetismo. Ciclo de histéesis. odelo de
INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor
TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula
CAMPO MAGNÉTICO (III) Magnetismo en la materia
CAMPO MAGNÉTICO (III) Magnetismo en la mateia Campo Magnético Magnetismo en la mateia v Los átomos tienen momentos dipolaes magnéticos debido al movimiento de sus electones y al momento dipola magnético
UNIDAD VI: PROPIEDADES MAGNETICAS D ELA MATERIA
UNNE Facultad de Ingenieía UNIDAD VI: PROPIEDADES MAGNETICAS D ELA MATERIA Polos y dipolos magnéticos. Diamagnetismo y paamagnetismo. Magnetización. Vecto campo magnético H. Relación ente los vectoes H,
UNIDAD Nº 2 VECTORES Y FUERZAS
UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando
Dieléctricos Campo electrostático
Dielécticos Campo electostático 1. Modelo atómico de un dieléctico. 2. Dielécticos en pesencia de campos elécticos:, D y. 4. negía en pesencia de dielécticos. 3. Ruptua dieléctica. BIBLIOGRAFÍA: Tiple.
5 Procedimiento general para obtener el esquema equivalente de un transformador
Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de
ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas
ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo
Adaptación de impedancias
.- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V
Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE
U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El
0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.
VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala
Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE
LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.
El campo electrostático
1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos
Parametrizando la epicicloide
1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))
4.5 Ley de Biot-Savart.
4.5 Ley de Biot-Savat. Oto expeimento que puede ealizase paa conoce más sobe el oigen y compotamiento de las fuezas de oigen magnético es el mostado en la siguiente figua. Consiste de un tubo de ayos catódicos,
Tema 3. Campo eléctrico
Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
La transmisión de calor por conducción puede realizarse en cualquiera de los tres estados de la materia: sólido líquido y gaseoso.
II. RANSFERENCIA DE CALOR POR CONDUCCIÓN II.1. MECANISMO La tansmisión de calo po conducción puede ealizase en cualquiea de los tes estados de la mateia: sólido líquido y gaseoso. Paa explica el mecanismo
Parte 3: Electricidad y Magnetismo
Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las
PROBLEMAS DE ELECTROMAGNETISMO
º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente
MATERIALES MAGNÉTICOS
. MAGNETISMO EN MATERIALES HISTORIA MATERIALES MAGNÉTICOS Oigen de magnetismo: las cagas en movimiento, o sea las coientes elécticas En la mateia, las coientes elécticas que existen en foma pemanente son
TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA
ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación
Práctica 8: Carta de Smith
Páctica 8: Cata de Smith Objetivo Familiaización con el manejo de la Cata de Smith. Contenidos Repesentación de impedancias y admitancias. Obtención de paámetos de las líneas empleando la Cata de Smith.
Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría
Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina
Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio
Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P
SECCIÓN 2: ECUACIÓN DE CHÉZY Y FÓRMULAS EXPONENCIALES
El álculo de la ed de istibución: Hidáulica Aplicada SEIÓN : EUAIÓN E HÉZY Y FÓMUAS EXPONENIAES EUAIÓN E HÉZY Según ézy: V adio idáulico S Sección mojada P Peímeto mojado Pendiente de la línea de enegía,
CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.)
CARACERÍSCAS DE LOS GENERADORES DE CORRENE CONNUA (C.C.) Fueza electomotiz (f.e.m.) Es la causa que mantiene una tensión en bones del geneado. La fueza electomotiz (f.e.m.) es la tensión eléctica oiginada
CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY
Tópicos e Electicia y Magnetismo J.Pozo y R.M. Chobajian. CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY 8.1. Ley e Faaay En 1831 Faaay obsevó expeimentalmente que cuano en una bobina que tiene conectao un galvanómeto
ELECTRICIDAD MODULO 2
.Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están
Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones
Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una
2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN
19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas
TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico
Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.
VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es
VII.- EQUILIBRIO DE LAS RANSFORMACIONES REALES VII..- SISEMAS ERMODINÁMICOS La masa de los sistemas que evolucionan puede veni en moles, kg, etc., y po eso indicamos los potenciales temodinámicos con mayúsculas.
Campo Magnético. Campo magnético terrestre. Líneas de campo magnético creadas por un imán. Líneas de campo creado por una espira circular
CAMPO MAGNÉTICO (I) Intoducción Fueza ejecida po un campo magnético Movimiento de una caga puntual en un campo magnético Pa de fuezas sobe espias de coiente Efecto Hall BIBLIOGRAFÍA - Tiple. "Física".
CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB
7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,
UNIDAD IV: CAMPO MAGNETICO
UNNE Facultad de Ingenieía UNIDAD IV: CAMPO MAGNETICO Antecedentes. Inducción magnética. Líneas de inducción. Flujo magnético. Unidades. Fuezas magnéticas sobe una caga y una coiente eléctica. Momento
Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.
Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza
TEMA3: CAMPO ELÉCTRICO
FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo
El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas
I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio
Deflexión de rayos luminosos causada por un cuerpo en rotación
14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos
Capitulo 1. Carga y Campo eléctricos.
Capitulo 1. Caga y Campo elécticos. INTRODUCCIÓN Todos estamos familiaizados con los efectos de la electicidad estática, incluso algunas pesonas son más susceptibles que otas a su influencia. Cietos usuaios
IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014
IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b
6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS
6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la
CAPÍTULO II LEY DE GAUSS
Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio
Campo magnético. Introducción a la Física Ambiental. Tema 8. Tema 8.- Campo magnético.
Campo magnético. ntoducción a la Física Ambiental. Tema 8. Tema8. FA (pof. RAMO) 1 Tema 8.- Campo magnético. Campos magnéticos geneados po coientes elécticas: Ley de Biot- avat. Coientes ectilíneas. Ciculación
Ecuaciones generales Modelo de Maxwell
Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de
100 Cuestiones de Selectividad
Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad
EL CICLO DE HISTÉRESIS EN MATERIALES FERROMAGNÉTICOS. Figura 1. Dominios magnéticos de una porción de material ferromagnético.
M. C. Q. Alfredo Velásquez Márquez Profesor de la Facultad de Ingeniería, UNAM [email protected] EL CICLO DE ISTÉRESIS EN MATERIALES FERROMAGNÉTICOS Los materiales ferromagnéticos poseen pequeñas
TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.
TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta
ENSAYO de TRANSFORMADORES
NTRODCCÓN ENSAYO de TRANSFORMADORES Nobeto A. Lemozy La veificación del coecto funcionamiento de cualquie equipo es de suma impotancia, en paticula cuando se tata de unidades gandes y de mucho costo, y
2.4 La circunferencia y el círculo
UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula
MAGNITUDES VECTORIALES:
Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de
r r r r r µ Momento dipolar magnético
A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o
q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los
7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier
7. Estabilidad de sistemas temodinámicos. incipio de le Chatelie * Hasta ahoa hemos tabajado ecuentemente con la condición de equilibio d = a = cte o d = a =cte. imilamente mediante otas unciones temodinámicas.
F. Trig. para ángulos de cualquier magnitud
F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo
De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos
CAMPO GRAVITATORIO FCA 04 ANDALUCÍA
CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.
Interacción gravitatoria
Inteacción gavitatoia H. O. Di Rocco I.F.A.S., Facultad de Cs. Exactas, U.N.C.P.B.A. June 5, 00 Abstact Tatamos en esta clase de oto de los modelos fundamentales de la Física toda: el movimiento en campos
CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM
Documento elaboado po Jaime Aguila Moeno Docente áea económica Univesidad del Valle Sede Buga CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM OBJETIVO DEL
TEMA 6. SOLIDIFICACIÓN ESTRUCTURA DEL TEMA CTM SOLIDIFICACIÓN
CM SOLIDIFICACIÓN EMA 6. SOLIDIFICACIÓN En pácticamente todos los metales, y en muchos semiconductoes, ceámicos, polímeos y compuestos, el pocesado implica la tansfomación de estado a, al educi la tempeatua
rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO
EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x)
1 FUNCIONES DE DOS VARIABLES DERIVACIÓN IMPLÍCITA (Tangente a una cuva de nivel); FUNCIONES HOMOGÉNEAS Deivación implícita ecta tangente a una cuva de nivel Si (a, b) es un punto que cumple la ecuación
Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO
Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen
Tema 7 PROPIEDADES MAGNÉTICAS DE LA MATERIA (RESUMEN)
Tema 7 PROPIEDADES MAGNÉTICAS DE LA MATERIA (RESUMEN) Todas las sustancias tienen en común esta constituidas po átomos fomados po un núcleo odeado de electones que desciben óbitas ceadas. Éstos pueden
UF0219: Montaje y mantenimiento eléctrico de parque eólico
UF0219: Montaje y mantenimiento eléctico de paque eólico Elaboado po: Equipo Nuevos Negocios en la Red Edición: 7.0 NUEVOS NEGOCIOS EN LA RED S.L. ISBN: 978-84-16199-72-3 Depósito legal: MA 1315-2014 No
UNIVERSIDAD DE ZARAGOZA
Reflectometía en el dominio del tiempo UNIERIDAD DE ZARAGOZA FACUTAD DE CIENCIA DEPARTAMENTO DE FIICA APICADA AREA DE EECTROMAGNETIMO CARACTERIZACIÓN DIEÉCTRICA POR T. D. R. DE UNA MEZCA REINA EPOXY TITANATO
Propiedades magnéticas
Propiedades magnéticas Fuerzas magnéticas Las fuerzas magnéticas se generan mediante el movimiento de partículas cargadas Eléctricamente; existen junto a las fuerzas electrostáticas. Distribuciones del
Campo gravitatorio: cuestiones PAU
Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde
SISTEMA DE ILUMINACION AUDIO-RITMICA
SISTEMA DE ILUMINACION AUDIO-RITMICA AUTOR: Otega Villaseño Manuel Eduado e-mail: [email protected] ESCUELA: Univesidad de Guadalajaa, Cento Univesitaio de Ciencias Exactas e Ingenieías C.U.C.E.I. MATERIA:
D = 4 cm. Comb. d = 2 mm
UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible
13.1 Estática comparativa en el modelo IS-LM con pleno empleo
Capítulo 3 Modelo de ofeta y demanda agegada de pleno empleo. a síntesis neoclásica El modelo IS-M completo es el modelo de la síntesis neoclásica con pecios flexibles y, po lo tanto, con pleno empleo.
INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO
NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.
A continuación obligamos, aplicando el producto escalar, a que los vectores:
G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla
Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS
Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del
Interacción electromagnética 3 6. CAMPO ELÉCTRICO.
Inteacción electomagnética 6. CMPO ELÉCTRICO. Desaollamos la unidad de acuedo con el siguiente hilo conducto: 1. Cómo se explican las fuezas electostáticas? 1.1. Cuál es la causa de los fenómenos de electización?
Elementos de la geometría plana
Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po
Interacción electromagnética 3 6. CAMPO ELÉCTRICO.
Inteacción electomagnética 6. CMPO ELÉCTRICO. Desaollamos la unidad de acuedo con el siguiente hilo conducto: 1. Cómo se explican las fuezas electostáticas? 1.1. Cuál es la causa de los fenómenos de electización?
a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación.
FUERZAS 1- NAURALEZA DE LAS FUERZAS a) Concepto Es toda acción de capaz de cambia el estado de eposo o movimiento de un cuepo, o de poduci en el alguna defomación. b) Caácte vectoial Los efectos de una
PROBLEMAS DE ELECTROESTÁTICA
PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín
2.7 Cilindros, conos, esferas y pirámides
UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos
PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación
OPCIÓN A FÍSICA PAEG UCLM- JUNIO 06 PROBLEMA.- Una onda viajea que se popaga po un medio elástico está descita po la ecuación y x, t = 0 sin 5πx 4000πt + π/6 Las unidades de x son metos, las de t son segundos
Tema 0 Conocimientos previos al curso de Física
Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional
Dinámica. Principio de Inercia
Dinámica Hemos estudiado algunos de los distintos tipos de movimientos que existen en la natualeza. Ahoa, llegó el momento de explica po qué se poducen éstos movimientos, y de esto se encaga la dinámica.
