Coeficientes Aerodinamicos Cl Cd Cm
|
|
|
- Elvira Giménez Roldán
- hace 8 años
- Vistas:
Transcripción
1 Coeficientes Aerodinamicos Cl Cd Cm con un aprofondimiento de Cm al respecto de la estabilidad de vuelo Asi entenderà Ud. los coeficientes aerodinamicos al terminar las paginas siguientes Complemento al curso Prototipacion de Articulos Volantes Magister Tecnologias en Diseno Universidad Andres Bello, Santiago, Chile II semestre 2006 Marco Testi Schnaidt
2 Un perfil submergido con un angulo de ataque a en un flujo fluido recibe presiones a lo largo de todo su perimetro. Al variar de la velocidad, la densidad y la viscosidad del fluido, al variar de la dimencion del perfil, al variar de a y de la forma del perfil, la distribucion de presion cambia. Por lo siguiente, se examineran los contributos de las dos ultimas variables. Experimentalmente o computacionalmente se traza un grafico donde al eje x se relaciona la posicion a lo largo de la cuerda del perfil, y al eje y se relaciona una cantidad llamada coeficiente de presion Cp, indicativa de la presion o depresion presente en el perimetro del perfil a la posicion x. Se trazan dos curvas, una relativa al intrados del perfil (lado inferior) y otra relativa al extrados distrubuciones de Cp por el mismo perfil a dos a distintos. La curva superior se refiere al extrados Una presion multiplicada por la surfaz donde actua es una fuerza. Una fuerza multiplicada por un brazo de palanca al respecto de un polo/axis es un momiento de fuerza al respecto del polo/axis. Un coeficiente es una cantidad adimencional que se presta mejor al tratamento analitico. Trabajando con coeficiente de presion, se obtienen correspondientes coeficientes de fuerza y momiento. Los coeficiente en argumento son : Cl, coeficiente de sustentacion, indicativo de la fuerza sobre el perimetro del perfil perpendicular al flujo Un tipo de Cd, coeficiente de resistencia, indicativo de la fuerza paralela al flujo Cm, coeficiente de momiento, indicativo del momiento de fuerza al respecto de un polo. Por default el polo es al 25% de la cuerda del perfil a partir del borde de ataque. Dicho Cm se indica con Cmac o simplemente Cm Siguen las expresiones analiticas de los tres :
3 Calculo de sustentacion (L) resistencia (D) y momiento (M) por un elemento de ala a partir de los coeficientes aerodinamicos del perfil utilisado El simbolo r representa la densidad del fluido en el cual se esta volando, en el caso de interes es el aire, que tiene una densidad de aprox 1.2 kg/m 3 al nivel del mar El simbolo q representa una cantidad que se llama presion dinamica. Como escrito en la formula, depende de la densidad del fluido y de la velocidad del fluido 1. Calculo del coeficiente de momiento (Cm) al respecto de un polo arbitrario (ej: centro de gravedad), calculo del Cm total de un conjunto de elementos al respecto del centro de gravedad En la ultima equacion el simbolo S significa que hay que hacer la suma de cada Cmcg por todos los elementos (i) que se consideran. Es una equacion simplificada y aproximada por entender el concepto base. 1 En el sistema internacional (SI) las presiones se miden en Pascal (Pa). Pa= N/m Pa=~ 1 Atm
4 Dinamica sobre el coeficiente de momiento Cm en funcion del angulo de ataque a A cada a corresponde un cierto Cm, que se obtiene con metodos computacionales o experimentales. El conjunto de los valores constituye el grafico Cm en funcion de a. Cuando el perfil esta generando un cierto Cm a un cierto a, significa que tiene tendencia a rotear y de consecuencia va a variar su angulo de ataque a. Un nuevo a implica un nuevo Cm: se jenera entonces un perseguimiento a lo largo de la linea del grafico entre a y Cm. La manera de perseguirse representa la dinamica real del perfil. Dinamica estable En el dibujo sobre la convencion, el perfil esta volando hacia la izquierda (el fluido llega de la izquierda) Cuando el perfil esta generando un Cm<0 significa que tiene tendencia a rotear en sentido antiorario y de consecuencia va a diminuir su angulo de ataque a. Cm>0 tendencia a rotear en sentido orario (a aumentarà). Cm=0 el perfil no tiene ninguna tendencia. NB: diminuir o aumentar a no es en su valor absoluto! Ej: si a es 5 y disminuye, va a llegar a 6 y no a 4 Dinamica instable se nota de antemano que la pendiente del grafico es la opuesta al precedente. La dinamica consecuente tiene un comportamiento divergente el caso con a inicial negativo tiene correspondientes efectos divergentes hacia el otro extremo del grafico
5 Dinamica al entorno de una region neutra En una region con Cm=0 el perfil no tiene tendencia a rotear. Por turbulencias externas, a, puede variar y llevar el perfil en otras regiones del grafico. Consigue que: el grafico de izquierda es el mismo de la situacion con dinamica estable. Se puede verificar que las perturbaciones reconducen el perfil a la region neutra el grafico de la derecha es el mismo de la situacion instable. Se puede ver que las perturbaciones reconducen el perfil a las regiones instables Esta claro que las perturbaciones existen en qualquiera region del grafico y generaran variaciones de a, estables o instables segun el grafico Variando la forma del perfil varia la curva Cm vs. a, Agregando una surfaz de control y deflexionandola, tambien se varia la forma del perfil: Notar que el angulo a al cual el Cm = 0 (marcado con un circulo) (Cm=0 el perfil se estabilisa = no tiene tendencia a rotear) cambia en funcion de la forma del perfil En general, la deflexion de una surfaz de control (o la variacion de camber) sobre un mismo perfil genera una traslacion de la curva hacia arriba (deflexion negativa) o hacia abajo (deflexion positiva) De la interpretacion de los graficos, se entiende que el perfil buscarà de volar a un cierto angulo de ataque en funcion de la deflexion de la surfaz de control (o camber) del perfil. Si esto no està claro, releer lo antecediente hasta cuando lo sea.
6 dcm/da : derivada de Cm al respecto de a La caracteristica de estabilidad del perfil resulta mas explicita si se pasa a la analisis del grafico de la derivada de Cm al respecto de a, osea el grafico que ilustra la pendiente del grafico precedente. La conclusion es que, en las regiones del grafico donde: el valor de dcm/da es <0, el perfil es estable el valor de dcm/da es >0, el perfil es instable el valor de dcm/da es =0, el perfil es neutro se note porfavor que los graficos de las varias curvas de Cm en funcion de la deflexion de la surfaz de control (grafico a la derecha en alto) tienen todos + - el mismo grafico de derivada, lo que significa que la deflexion de una surfaz de control (por angulos relativamente limitados) NO cambia la ESTABILIDAD del perfil, pero SI cambia el COEFICIENTE DE MOMIENTO del perfil. Gracias por su atencion Las curvas de Cm mostradas son exemplificativas y simples. Pueden ser mucho mas ruidosas y complejas Conclusion El grafico Cm vs. a determina la dinamica del perfil sobre su rotacion y la(s) posicion(es) estables Se puede calcular o determinar experimentalmente el grafico Cm vs. a por un sistema de perfiles completo, es decir por UN AVION Existe una forma mas eficaz de analisar el grafico de Cm pasando a la derivada del Cm en funcion de a (derivada aerodinamica de momento) Now go out and practice
AERODINÁMICA Básica e Intermedia.
Por: Mauricio Azpeitia Perez AERODINÁMICA Básica e Intermedia. Introducción. La teoría de vuelo está basada en la aerodinámica. El término aerodinámica sederiva de la combinación de dos palabras griegas:
HIDRODINÁMICA. Profesor: Robinson Pino H.
HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:
El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).
1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca
Calculo del Centro de Gravedad de un aeromodelo
Calculo del Centro de Gravedad de un aeromodelo Previamente a todo lo que vamos a ver, sería interesante reflexionar sobre Qué es el centro de gravedad y por qué es tan importante? Cuatro son fundamentalmente
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.
Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ
SANDGLASS PATROL El Ala y el Perfil, definiciones previas Por Gizmo
El Ala y el Perfil, definiciones previas Por Gizmo El Perfil aerodinámico Imagen del Naca Report Summary of airfoil data de I.H. Abott y A.E. von Doenhoff (NACA Report 824 NACA-ACR-L5C05 NACA-WR-L-560,
Cuarta Lección. Principios de la física aplicados al vuelo.
Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.
Figura 1: Ejes de rotación del avión.
LECTURA DE AERONÁUTICA Centro de gravedad de un avión. M. C. Gabriel F. Martínez Alonso El día 17 de diciembre de 1903 los hermanos Wilbur y Orville Wright fueron los primeros en lograr el vuelo controlado,
Flujo externo. R. Castilla y P.J. Gamez-Montero Curso Introducción. Fuerzas aerodinámicas
Flujo externo R. Castilla y P.J. Gamez-Montero Curso 20-202 Índice Índice. Introducción 2. Fuerzas aerodinámicas 2.. Arrastre de fricción y de presión....................................... 2 2.2. Coeficientes
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
MATERIA: TÉCNICAS DE VUELO ULTRALIVIANO
MATERIA: TÉCNICAS DE VUELO ULTRALIVIANO 1. SI LA DENSIDAD DEL AIRE DISMINUYE: a. DISMINUYE LA RESISTENCIA b. AUMENTA LA SUSTENTACIÓN c. AUMENTA LA TRACCIÓN DE LA HÉLICE d. AUMENTA LA RESISTENCIA 2. EL
Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?
Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo
EVALUACIÓN DE CÓDIGO POR VIENTO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez
EVALUACIÓN DE CÓDIGO POR VIENTO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez NOMBRE DEL DOCUMENTO: Reglamento de Construcciones, Capítulo XX- Diseño de Estructuras de Construcción,
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
Módulo 3: Fluidos reales
Módulo 3: Fluidos reales 1 Fluidos reales Según la ecuación de Bernouilli, si un fluido fluye estacionariamente (velocidad constante) por una tubería horizontal estrecha y de sección transversal constante,
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.
Mecánica del Vuelo del Avión
Mecánica del Vuelo del Avión Parte II: Estabilidad y Control Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros
3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:
III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden
JUAN ZITNIK Manual de vuelo del PIPER PA-11 Aerodinámica AERODINAMICA
Definición AERODINAMICA Es la rama de la mecánica de fluidos que se ocupa del movimiento del aire y otros fluidos gaseosos, y de las fuerzas que actúan sobre los cuerpos que se mueven en dichos fluidos.
CENTRO DE GRAVEDAD DE UN SÓLIDO
CENTRO DE GRAVEDAD DE UN SÓLIDO El centro de gravedad de un sólido es el punto imaginario en el que podemos considerar concentrada toda la masa del mismo. Por tanto, es el punto donde podemos considerar
Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.
Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica
Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS
XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS
Manual para el diseño de una red hidráulica de climatización 3 A ntes de comenzar a estudiar cualquier problema de flujo, es necesario conocer algunas características y propiedades físicas de los fluidos,
Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2
DIAGRAMA DE BODE Semestre 2010/2 El Diagrama de BODE se conforma por dos gráficas logarítmicas de: La magnitud de una función de transferencia senoidal: 20log G(jw) ; La unidad de medida que se usa, es
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
Bolilla 12: Óptica Geométrica
Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La
Distancia focal de una lente convergente (método del desplazamiento) Fundamento
Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.
Cómo leer la curva característica de una bomba?
Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante
FUNCIONES TRIGONOMÉTRICAS
FUNCIONES TRIGONOMÉTRICAS Sugerencias para quien imparte el curso: Por ningún motivo se debe dar por hecho que todos los alumnos recuerdan perfectamente a las razones trigonométricas, y a las principales
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Como calcular el C.G.:
El Centro de Gravedad es un punto critico que deberemos acondicionar para obtener las caracteristicas de vuelo de nuestro modelo. Ante un modelo terminado el aeromodelista se enfrenta a la pregunta del
DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.
DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto
SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x
Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan
TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)
TEMA II.5 Viscosidad Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) [email protected] División de Ciencias Naturales y Exactas, Campus Guanajuato,
Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:
Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE
Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
PRESIÓN Y ESTÁTICA DE FLUIDOS
La presión se define como una fuerza normal ejercida por un fluido por unidad de área. Se habla de presión sólo cuando se trata de un gas o un líquido. Puesto que la presión se define como fuerza por unidad
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular
ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y
I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO
UNIDAD 7 Trazo de curvas
UNIDAD 7 Trazo de curvas El trazo de curvas se emplea en la construcción de vías para conectar dos líneas de diferente dirección o pendiente. Estas curvas son circulares y verticales. CURVAS CIRCULARES:
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes.
Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Física General Práctica # 4 Espejos y lentes I. Introducción. Los fenómenos de reflexión y refracción están presentes en nuestra vida diaria:
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA A ENTREGAR POR EL ALUMNO Ing. RONIO GUAYCOCHEA Ing. MARCO DE NARDI Lic. FABRIZIO FRASINELLI Ing. ESTEBAN LEDROZ AÑO 2014 1 ESTÁTICA CUESTIONARIO 1. Que es una magnitud
La dinámica del rotor
La dinámica del rotor El secreto de un mando cíclico preciso y un vuelo suave está en el perfecto equilibrado del rotor. Sin embargo se conocen dos tipos de equilibrado: el estático y el dinámico. Donde
convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección
convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
ESTADÍSTICA SEMANA 3
ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...
Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.
Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo
CONCEPTOS CLAVE DE LA UNIDAD 3
CONCEPTOS CLAVE DE LA UNIDAD 3 1. Razón trigonométrica seno. Si θ es la medida de algún ángulo interior agudo en cualquier triángulo rectángulo, entonces a la razón que hay de la longitud del cateto opuesto
CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen,
CAPITULO 5 PROCESO DE SECADO 5.1 SECADO DE ALIMENTOS Se entiende por secado de alimentos la extracción deliberada del agua que contienen, operación que se lleva a cabo en la mayoría de los casos evaporando
Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta
ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados
EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)
Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
Examen de Ubicación. Física del Nivel Cero Enero / 2009
Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles
Física para Ciencias: Trabajo y Energía
Física para Ciencias: Trabajo y Energía Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Trabajo (W) En la Física la palabra trabajo se le da un significado muy específico: El trabajo (W) efectuado
LABORATORIO DE MECANICA INERCIA ROTACIONAL
No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.
EQUILIBRIO ESTATICO. Primera condición de equilibrio. Inercia: Sumatoria de fuerzas = 0 Sistema lineal de fuerzas. Sistema de fuerzas concurrentes
EQUILIBRIO ESTATICO Primera condición de equilibrio. Inercia: Sumatoria de fuerzas = 0 Sistema lineal de fuerzas Sistema de fuerzas concurrentes Sumatoria Fx = 0 Sumatoria Fy = 0 Wx + Tx + Rx = 0 Wy +
MAXIMOS Y MINIMOS RELATIVOS
MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial
M E C Á N I C A. El Torbellino. El Torbellino
M E C Á N I C A M E C Á N I C A Los torbellinos o vórtices se forman en fluidos (gases y líquidos) en movimiento. Para describir el movimiento de un fluido (según Euler) se necesita determinar en cada
IX. Análisis dinámico de fuerzas
Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
MECANICA DE LOS FLUIDOS
MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
2.2 Rectas en el plano
2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
Equilibrio y Movimiento de los objetos
Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento
3.1 Situaciones que involucran funciones trigonométricas
3.1 Situaciones que involucran funciones trigonométricas Ejemplo 1) La traectoria de un proectil disparado con una inclinación respecto a la horizontal con una velocidad inicial v 0 es una parábola. Epresa
Módulo 9 MECÁNICA DEL VUELO
Módulo 9 MECÁNICA DEL VUELO Primera parte: INTRODUCCIÓN 3 1.VISIÓN GENERAL: 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión
Magnitud experimental Fr (N)
Universidad de Antofagasta Facultad de Ciencias Básicas Departamento de Física Asignatura: Biofísica Carrera: Medicina Objetivos: Comprobar que las fuerzas obedecen a la operación de adición de vectores.
Universidad Autónoma del Estado de México Plantel Ignacio Ramírez Calzada Guía de Geometría Analítica Semestre 2012 B
Universidad Autónoma del Estado de México Plantel Ignacio Ramírez Calzada Guía de Geometría Analítica Semestre 2012 B NOMBRE ALUMNO CUENTA No. NOMBRE MAESTRO GRUPO MÓDULO I: RECTA 1. Traza y comprueba
DEL BRAZO EN EL GESTO DEPORTIVO DEL BLOQUEO EN VOLEIBOL
Viref-76 ANÁLISIS BIOMECÁNICO AL MOVIMIENTO DEL BRAZO EN EL GESTO DEPORTIVO DEL BLOQUEO EN VOLEIBOL POR: PABLO ESTEBAN GIRALDO GONZÁLEZ JORGE IVÁN ISAZA RAMÍREZ REZ Estudiantes de sexto semestre de Licenciatura
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Dinámica de Fluidos. Mecánica y Fluidos VERANO
Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo
Valores Máximos y Mínimos
Valores Máimos y Mínimos MATE 01 Cálculo 1 /0/016 Prof. José G. Rodríguez Ahumada 1 de Actividades.5 Referencia: Teto Sección.1 Etremos en un intervalo Valores Máimos y Mínimos, Ver ejemplos 1 al 4; Ejercicios
Instituto de Física Universidad de Guanajuato Agosto 2007
Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que
Guía 9 Miércoles 14 de Junio, 2006
Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)
Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas
El método del lugar de las raíces.
El método del lugar de las raíces. Las características de un sistema de lazo cerrado son determinadas por los polos de lazo cerrado. Los polos de lazo cerrado son las raíces de la ecuación característica.
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín
UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede
TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO. Ms. Sc. Ing. Jorge Briones G.
TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO Ms. Sc. Ing. Jorge Briones G. [email protected] EJEMPLO DE EROSION INTERNA EN PRESAS DE MATERIALES DE PRESTAMO PRESAS DE MATERIALES DE PRESTAMO Presa
Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS
Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio
