Módulo 9 MECÁNICA DEL VUELO
|
|
|
- Natalia Belmonte Padilla
- hace 9 años
- Vistas:
Transcripción
1 Módulo 9 MECÁNICA DEL VUELO
2 Primera parte: INTRODUCCIÓN
3 3 1.VISIÓN GENERAL:
4 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión X w ligado en cada instante al vector velocidad aerodinámica del avión Z w en el plano de simetría, orientado hacia abajo en la actitud normal del avión, perpendicular a X w Y w completa el triedo a derechas Ángulo de asiento de la velocidad ɤ: Ángulo de asiento del avión θ: Sistema de ejes Cuerpo F b Ángulo de balance del avión ϕ: Ángulo de ataque α: Ángulo de resbalamiento β: 4
5 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión X w ligado en cada instante al vector velocidad aerodinámica del avión Z w en el plano de simetría, orientado hacia abajo en la actitud normal del avión, perpendicular a X w Y w completa el triedo a derechas Ángulo de asiento de la velocidad ɤ: Sistema de ejes Cuerpo F b Ángulo existente entre el vector velocidad aerodinámica (eje x w ) y su proyección sobre el plano horizontal 5
6 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión X w ligado en cada instante al vector velocidad aerodinámica del avión Z w en el plano de simetría, orientado hacia abajo en la actitud normal del avión, perpendicular a X w Y w completa el triedo a derechas Ángulo de asiento del avión θ: Sistema de ejes Cuerpo F b Ángulo existente entre el eje x b del avión y su proyección sobre el plano horizontal 6
7 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión X w ligado en cada instante al vector velocidad aerodinámica del avión Z w en el plano de simetría, orientado hacia abajo en la actitud normal del avión, perpendicular a X w Y w completa el triedo a derechas Ángulo de balance del avión ϕ: Sistema de ejes Cuerpo F b Ángulo existente entre el eje y b yla intersección del plano y b z b con el plano horizontal 7
8 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión X w ligado en cada instante al vector velocidad aerodinámica del avión Z w en el plano de simetría, orientado hacia abajo en la actitud normal del avión, perpendicular a X w Y w completa el triedo a derechas Ángulo de ataque α: Sistema de ejes Cuerpo F b Ángulo existente entre la proyección del vector velocidad aerodinámica (x w ) sobre el plano de simetría del avión y el eje x b 8
9 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión X w ligado en cada instante al vector velocidad aerodinámica del avión Z w en el plano de simetría, orientado hacia abajo en la actitud normal del avión, perpendicular a X w Y w completa el triedo a derechas Ángulo de resbalamiento β: Sistema de ejes Cuerpo F b Ángulo existente entre el vector velocidad aerodinámica (x w ) y su proyección sobre el plano de simetría del avión 9
10 Segunda parte: ACTUACIONES DE LOS AVIONES CON MOTOR A REACCIÓN
11 1. ECUACIONES DEL MOVIMIENTO: V L T sin T W cos m r T cos T dv D W sin m dt c 2 Para vuelo recto (r c = ) horizontal(γ=0) no acelerado se tiene (T<<L y ε T <<1): 11 W T L D C L C D
12 2. VUELO HORIZONTAL RECTILÍNEO Y UNIFORME: 12 V.H.R.U: Empuje necesario
13 V.H.R.U: Vuelo en primer y segundo régimen 13 V.H.R.U: Efecto de la altitud de vuelo
14 Potencia disponible. (Motor a reacción) V.H.R.U: Potencia necesaria y potencia disponible 14
15 3. ACTUACIONES INTEGRALES: i L W W c c c E ln 1 L f D ej W W c R W c c g m f 15 f i ej W W c c S R D 2 T c f ej donde:
16 16 4. ASCENSO Y DESCENSO RECTILÍNEO UNIFORME:
17 5. VIRAJE EN UN PLANO HORIZONTAL: ϴ Lsin m Lcos W V r r c dv T D m dt 2 R g V n g n 1 V 2 Nota: ecuaciones expresadas en ejes intrínsecos al movimiento 17
18 6. PULL-UP EN UN PLANO VERTICAL: V Para : 0 2 n g n g V R 1) ( 1) ( V n n grandes n Para 1 : S W gc R g L 2 S W n C g L 2 18
19 7. DIAGRAMA V-n: Aviones acrobáticos: -4 n 9 Aviones pequeños: -2 n 3.8 Aviones de transporte muy grandes: -1 n 2.5 Diagrama de maniobras para un peso y altitud dados V S velocidad de entrada en pérdida V A velocidad de maniobra de proyecto V C velocidad de crucero de proyecto V D velocidad de picado de proyecto V S velocidad de flaps de proyecto 19
20 7.2 Efecto de la altitud y del peso : h=15000ft Sea Level W= N Sea Level h=10000ft W= N 20
21 21 8. CURVA POLAR PARA DISTINTOS Nº MACH:
22 8.1. Curvas de parámetros corregidos: Sustentación y resistencia aerodinámicas: 1 Interesará transformar las M ScL KM ScL curvas de empuje y resistencia para que aparezcan estos 0 M ScD KM ScD 2 parámetros corregidos L/δ y W/δ L a 2 1 D a 2 22
23 Actuaciones en ascenso:
24 Actuaciones en descenso:
25 8.4. Actuaciones integrales (efectos de compresibilidad): cl a0 ds M c c c dt c L D D ej 1 dw c W ej dw W 25
26 26 9. RESUMEN DE LA ACTUACIONES INTEGRALES CON MOTOR A REACCIÓN
27 Tercera parte: ACTUACIONES DE LOS AVIONES CON MOTOR ALTERNATIVO Y HÉLICE
28 1. POTENCIA DISPONIBLE: P C D ep P m h N consumo específico s.( J / s ) ó Kg h. HP 28
29 29 2. VUELO HORIZONTAL RECTILÍNEO Y UNIFORME
30 Vuelo en primer y segundo régimen:
31 31 3. ASCENSO RECTILÍNEO Y UNIFORME:
32 32 4. DESCENSO RECTILÍNEO Y UNIFORME:
33 5. ACTUACIONES INTEGRALES: Fórmulas de Breguet para motor alternativo +hélice R E h C ep C C L D W 0 ln W h CL 2 2 2S W1 W0 C C ep D 33
34 Cuarta parte: ACTUACIONES EN DESPEGUE Y ATERRIZAJE
35 1. ACTUACIONES EN DESPEGUE: F T D r( W L) Puede obtenerse una expresión aproximada de la distancia de despegue haciendo uso de las siguientes hipótesis: El empuje del motor se mantiene constante t Se considera un valor medio de [D+μ r (W-L)] Considerando como velocidad de despegue pg la velocidad de entrada en pérdida incrementada en un 20% 35 S LO W g SC T D ( W L) Lmáx r med
36 36 Variación de fuerzas durante el despegue:
37 1. ACTUACIONES EN ATERRIZAJE: F D ( W L) r med Puede obtenerse una expresión aproximada de la carrera de aterrizaje haciendo uso de las siguientes hipótesis: Se considera un valor medio de [D+μ r (W-L)] Considerando como velocidad de aterrizaje la velocidad de entrada en pérdida incrementada en un 30% S L W g SC D ( W Lmáx r L) med 37
38 38 Variación de fuerzas durante el aterrizaje:
ESTRUCTURA GENERAL DEL CURSO PARA LA OBTENCION DEL CARNET DE PILOTO DE ULTRALIGERO. PROGRAMA DE ENSEÑANZA DEL CURSO.
ESCUELA DE VUELO SAN TORCUATO ESTRUCTURA GENERAL DEL CURSO PARA LA OBTENCION DEL CARNET DE PILOTO DE ULTRALIGERO. PROGRAMA DE ENSEÑANZA DEL CURSO. A.- CURSO TEORICO I. 1.- Teoría elemental. 1.1.- Introducción.
Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura
Índice general Índice general Presentación Prólogo Nomenclatura V X XIII XV 1 Introducción 1 1.1. Introducción a la ingeniería aeroespacial............. 1 1.2. Clasificación de las aeronaves...................
AERODINÁMICA Básica e Intermedia.
Por: Mauricio Azpeitia Perez AERODINÁMICA Básica e Intermedia. Introducción. La teoría de vuelo está basada en la aerodinámica. El término aerodinámica sederiva de la combinación de dos palabras griegas:
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
Asignatura: MECÁNICA DEL VUELO (Código 153) AERONAVES
Asignatura: MECÁNICA DEL VUELO (Código 153) Especialidad: AERONAVES Curso/Cuatrimestre: TERCER CURSO / PRIMER CUATRIMESTRE Tipo de Materia: TRONCAL Créditos: 7,5 Conocimientos previos: Departamento: Aerotecnia,
CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.
CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es
VELOCIDAD Y ACELERACION. RECTA TANGENTE.
VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Cinemática. Marco A. Merma Jara Versión:
Cinemática Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Cinemática Movimiento Unidimensional Movimiento Unidimensional con aceleración constante Movimiento Bidimensional Movimiento
El Helicóptero. 1. Introducción. Introducción. Aplicaciones del helicóptero. Denición: aeronave de alas giratorias (rotor) que proporciona
El Helicóptero Denición: aeronave de alas giratorias (rotor) que proporciona. Introducción.2 Introducción a los helicópteros sustentación, propulsión, control, y que permiten a la aeronave mantenerse en
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática
1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
MATERIA: TÉCNICAS DE VUELO ULTRALIVIANO
MATERIA: TÉCNICAS DE VUELO ULTRALIVIANO 1. SI LA DENSIDAD DEL AIRE DISMINUYE: a. DISMINUYE LA RESISTENCIA b. AUMENTA LA SUSTENTACIÓN c. AUMENTA LA TRACCIÓN DE LA HÉLICE d. AUMENTA LA RESISTENCIA 2. EL
Problema de tiro parabólico. Ejercicio resuelto. Planteamiento y pseudocódigo. (CU00252A)
aprenderaprogramar.com Problema de tiro parabólico. Ejercicio resuelto. Planteamiento y pseudocódigo. (CU00252A) Sección: Cursos Categoría: Curso Bases de la programación Nivel II Fecha revisión: 2024
Problemas de Cinemática 1 o Bachillerato
Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una
TURBOHÉLICES Y SU OPTIMIZACIÓN
TURBOHÉLICES Y SU OPTIMIZACIÓN INTRODUCCIÓN OPTIMIZACIÓN DE LA POTENCIA DE LA HÉLICE DISCUSIÓN DE LOS VALORES ÓPTIMOS DEFINICIONES M 0 V 0 P MP SFC Si V s baja, p aumenta pero I
Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal.
IES Menéndez Tolosa (La Línea) Física Química - 1º Bach - Composición de moimientos 1 Indica, considerando constante el alor de la aceleración de la graedad, de qué factores depende el alcance máimo en
1 - RODAJE DE BAJA VELOCIDAD
1 - RODAJE DE BAJA VELOCIDAD 1 Confirmar peso y balanceo dentro de los limites 2 Confirmar 80 lts. de combustible en los tanques 3 Ejecutar lista de chequeo 1 - INSPECCIÓN PRE VUELO 4 Ejecutar lista de
SANDGLASS PATROL El Ala y el Perfil, definiciones previas Por Gizmo
El Ala y el Perfil, definiciones previas Por Gizmo El Perfil aerodinámico Imagen del Naca Report Summary of airfoil data de I.H. Abott y A.E. von Doenhoff (NACA Report 824 NACA-ACR-L5C05 NACA-WR-L-560,
Física. Choque de un meteorito sobre la tierra
Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
FUERZAS CENTRALES. Física 2º Bachillerato
FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
UNIVERSIDAD NACIONAL SEDE MEDELLIN MAQUINARIA PARA CONSTRUCCIÓN
16. EL BULLDOZER. 16.1 INTRODUCCIÓN. El bulldozer es una herramienta instalada en la parte delantera de un tractor de orugas o de ruedas y que sirve para excavar y empujar materiales al mismo nivel de
TEMA II: CINEMÁTICA I
1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Técnico Profesional FÍSICA
Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta
F1 Mecánica del Vuelo
29.4.8 Miguel Ángel Gómez G Tierno DVA/ETSIA Madrid, 8 octubre 28 ETSIA-UPM ÍNDICE Sistemas de referencia más importantes Ángulos entre los ejes cuerpo y los ejes horizonte local Ángulos entre los ejes
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)
Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,
Parcial I Cálculo Vectorial
Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es
Cuarta Lección. Principios de la física aplicados al vuelo.
Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.
Ejercicios de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Ejercicios de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. Cinemática Movimiento rectilíneo 1. Un ciclista marcha por una región donde hay muchas subidas y bajadas. En las cuestas arriba lleva una
LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF.
GRUPO # 4 to Cs PRACTICA DE LABORATORIO # 3 Movimientos horizontales OBJETIVO GENERAL: Analizar mediante graficas los diferentes Tipos de Movimientos horizontales OBJETIVOS ESPECIFICOS: Estudiar los conceptos
Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil
Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo
Ejercicios resueltos
Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético
Ing ROBERTO MOLINA CUEVA FÍSICA 1
Ing ROBERTO MOLINA CUEVA FÍSICA 1 1 CINEMÁTICA Describe el movimiento ignorando los agentes que causan dicho fenómeno. Por ahora consideraremos el movimiento en una dimensión. (A lo largo de una línea
Apéndice A. Curso para piloto privado
Apéndice A a. Aplicación.- El presente Apéndice establece los requisitos para un curso de piloto privado en la categoría de avión y helicóptero. b. Requisitos de inscripción.- La persona deberá contar
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /
Unidad V: Integración
Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral
TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es
TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento
Mecánica del Vuelo del Avión
Mecánica del Vuelo del Avión Parte II: Estabilidad y Control Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética
2. PRINCIPIOS DE VUELO
ANEXO I-B PROGRAMA TEÓRICO PARA LA OBTENCIÓN DEL CARNÉ DE PILOTO DE ULTRALIGERO El programa que a continuación se detalla contiene la instrucción mínima teórica que se deberá impartir a los alumnos-piloto
Tema 4: Dinámica del movimiento circular
Tema 4: Dinámica del movimiento circular Ya has estudiado las características del movimiento circular uniforme, calculando la velocidad de giro, relacionándola con la lineal y teniendo en cuenta además
) = cos ( 10 t + π ) = 0
UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
La Hoja de Cálculo en la resolución de problemas de Física.
a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de [email protected]
CÁLCULO DE G5 AVIONES
CÁLCULO DE G5 AVIONES INTRODUCCIÓN María Luisa López Villarejo Juan Carlos Rayo Linares DISEÑO Ana María Huerta Rivera CONTROL Y ESTABILIDAD AERODINÁMICA Diego Martínez Fernández INGENIERÍA CONCURRENTE
Mecánica del Vuelo del Avión
Mecánica del Vuelo del Avión Parte I: Actuaciones del Avión Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros
Optimización del Diseño Sizing and Trade Studies
Optimización del Diseño Sizing and Trade Studies Tema 18 Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial Y Mecánica de Fluidos Cálculo de Aeronaves Sergio Esteban Roncero, [email protected]
asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia.
CAP. 4: CINEMÁTICA DE LA PARTÍCULA. Modelo de partícula: se aplica a cuerpos muy pequeños comparados con el diámetro de la menor esfera donde cabe la trayectoria completa del cuerpo. Equivale a considerar
FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico
1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué
SEÑOR USUARIO DIRECCIÓN DE LICENCIAS AL PERSONAL. Azopardo N 1405 PISO 2 C.A.B.A. (C1107ADY) - - Tel.
SEÑOR USUARIO TEMA: VUELO SOLO ALUMNO PILOTO Se recuerda lo establecido en las REGULACIONES ARGENTINAS DE AVIACIÓN CIVIL PARTE 61, SECCION 61.87 Requerimientos para el vuelo solo de alumno piloto : (a)
ANEXO I-C PROGRAMA TEÓRICO PARA LA OBTENCIÓN DEL CARNÉ DE PILOTO DE ULTRALIGERO
ANEXO I-C PROGRAMA TEÓRICO PARA LA OBTENCIÓN DEL CARNÉ DE PILOTO DE ULTRALIGERO El programa que a continuación se detalla contiene la instrucción mínima teórica que se deberá impartir a los alumnos-piloto
DPTO. FISICA APLICADA II - EUAT
Práctica 1 Estática en el plano 1.1. Objetivos conceptuales Comprobar experimentalmente las ecuaciones del equilibrio de la partícula y del sólido rígido en el plano. 1.2. Conceptos básicos Un sistema
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre
Departamento de Física y Química
1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.
Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico
NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están
DESARROLLO DE UN SIMULADOR DE VUELO DE SEIS GRADOS DE LIBERTAD DEL FMA IA-63 PAMPA
DESARROLLO DE UN SIMULADOR DE VUELO DE SEIS GRADOS DE LIBERTAD DEL FMA IA-63 PAMPA E. Malamud y G. Scarpin Facultad de Ingeniería - Instituto Universitario Aeronáutico Av. Fuerza Aérea 6500 - (X5010JMX)
Cinemática I. Vector de posición y vector de desplazamiento.
COLEG IO H ISPA N O IN G L ÉS +34 922 276 056 - Fax: +34 922 278 477 La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos
Guía 9 Miércoles 14 de Junio, 2006
Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional
Flujo externo. R. Castilla y P.J. Gamez-Montero Curso Introducción. Fuerzas aerodinámicas
Flujo externo R. Castilla y P.J. Gamez-Montero Curso 20-202 Índice Índice. Introducción 2. Fuerzas aerodinámicas 2.. Arrastre de fricción y de presión....................................... 2 2.2. Coeficientes
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean
PILOTO PRIVADO AVIÓN
FACTOR DE CARGA UNIDADES G ANAC Figura 1. Vector de sustentación SUSTENTACIÓN RESULTANTE CUERDA RESISTENCIA VIENTO RELATIVO CENTRO DE PRESIÓN Figura 2. Tabla de factor de carga. ÁNGULO DE INCLINACIÓN FACTOR
Movimiento y Dinámica circular
SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
Velocidad. La aceleración siempre vale cero en el MRU.
4 RESUMEN Resumo todo el libro en estas primeras páginas. Es todo lo que está dentro de los recuadros. Lo hago por si necesitás buscar rápido una fórmula o querés darle una mirada general a todo el libro.
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE
TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO
NIVEL SEPTIMO Fuerza y movimiento Fuerzas que actúan simultáneamente sobre un objeto en movimiento o en reposo Condición de equilibrio de un cuerpo Fuerza peso, normal, roce, fuerza aplicada Diferencia
Resumen del Curso Características de la Aeronave
INTRODUCCIÓN: Interjet basó su operación con una flota de aviones Airbus A320 desde el año 2005, ofreciendo una alternativa de transporte aéreo para satisfacer la creciente demanda en el mercado de pasajeros.
TEMA 14: ENGELAMIENTO
TEMA 14: ENGELAMIENTO 1 DEFINICIÓN E INTRODUCCIÓN El engelamiento sobre una aeronave se define como el depósito de hielo sobre la misma, que se produce cuando el agua líquida subfundida se congela al impactar
Actuaciones Avanzadas
Cálculo de Aeronaves Sergio Esteban Roncero, [email protected] 1 Actuaciones Avanzadas Tema 17 Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial Y Mecánica de Fluidos Cálculo de Aeronaves Sergio
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA A ENTREGAR POR EL ALUMNO Ing. RONIO GUAYCOCHEA Ing. MARCO DE NARDI Lic. FABRIZIO FRASINELLI Ing. ESTEBAN LEDROZ AÑO 2014 1 ESTÁTICA CUESTIONARIO 1. Que es una magnitud
CINEMÁTICA I FYQ 1º BAC CC.
www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula
b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero.
1. Sean los vectores que se encuentran en el paralelepípedo tal como se muestran en la figura, escoja la alternativa correcta: a) b) c) d) e) 2. Sean tres vectores A, B y C diferentes del vector nulo,
GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA
MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA P P 1 0 A P 1 P (x (x 2 ) (0) (1) (x 1 )
Equilibrio y Movimiento de los objetos
Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento
TERCERA LEY DE NEWTON
ESTATICA DEFINICIÓN.- Es parte de la Mecánica Clásica que tiene por objeto estudiar las condiciones para los cuerpos se encuentren en equilibrio. Equilibrio.- se dice que un cuerpo se encuentra en equilibrio
Interacción electrostática
Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho
JUAN ZITNIK Manual de vuelo del PIPER PA-11 Aerodinámica AERODINAMICA
Definición AERODINAMICA Es la rama de la mecánica de fluidos que se ocupa del movimiento del aire y otros fluidos gaseosos, y de las fuerzas que actúan sobre los cuerpos que se mueven en dichos fluidos.
Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS
Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El
Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.
Taller 3 para el curso Mecánica II. Pág. 1 de 8 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 3 - Curso: Mecánica II Grupo: Encuentre la respuesta para cada uno de los ejercicios
Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011
Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga
CAPÍTULO 2. RESISTENCIAS PASIVAS
CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.
Componentes Electrónicos Pasivos
1 Componentes Electrónicos Pasivos Resistores no lineales 2 Resistores no lineales Termistores NTC y PTC Varistores VDR Fotorresistores LDR Piezorresistores Magnetorresistores MDR 3 Termistores NTC Resistencia
1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)
1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los
CINEMATICA. es la letra griega delta y se utiliza para expresar la variación.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO
Examen de Ubicación. Física del Nivel Cero Enero / 2009
Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles
EXAMEN CESSNA 182G 1964 CC - KLC
CLUB UNIVERSITARIO DE AVIACION EXAMEN CESSNA 182G 1964 CC - KLC 1.- Qué motor tiene el avión? a) Continental I0-470-R c) Lycoming I0-470 b) Lycoming 0-470-R d) Continental 0-470-R. 2.- Qué limitaciones
10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si
Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
ovimiento de traslación de la tierra alrededor del sol
ovimiento de traslación de la tierra alrededor del sol que observamos? el sol se desplaza 1 por día hacia el este con respecto a las estrellas fijas las estrellas salen 4 mas temprano cada día se mueve
Estática. Equilibrio de un cuerpo rígido
Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio
