TERCERA LEY DE NEWTON
|
|
|
- Marcos Navarrete Ríos
- hace 9 años
- Vistas:
Transcripción
1 ESTATICA DEFINICIÓN.- Es parte de la Mecánica Clásica que tiene por objeto estudiar las condiciones para los cuerpos se encuentren en equilibrio. Equilibrio.- se dice que un cuerpo se encuentra en equilibrio si se encuentra en reposo ( Equilibrio estático) y/o cuando el cuerpo se encuentra en movimiento uniforme ( Equilibrio cinético). I LEY DE NEWTON ( Ley de la Inercia) Un cuerpo de masa constante permanece en estado de reposo o de movimiento con una velocidad constante en línea recta, a menos que sobre ella actúe una fuerza. I Condición de Equilibrio o equilibrio de Traslación.- Un cuerpo se encontrará en equilibrio cuando la fuerza resultante que actúa sobre él, sea igual a cero, para esto, las fuerzas componentes deben ser necesariamente coplanares y concurrentes. = 0 II Condición de equilibrio o equilibrio de rotación.- Todo cuerpo se encontrará en equilibrio o tendra una velocidad angular uniforme si los moentos que se generan por las fuerzas actuantes respecto a un punto de giro resulta nula M = 0 F 1 RESUMEN: F 3 F = 0 F x y M o = 0 = 0 F 2 TERCERA LEY DE NEWTON ( Ley de la Acción y la Reacción ) Si un cuerpo le aplica una fuerza a otro (acción); entonces el otro le aplica una fuerza cual y en sentido contrario al primero (reacción).
2 PROBLEMAS. 1.-Mediante un dinamómetro se suspende un peso de 120N del modo que indica la fig. uno de ellos señala 100N y está inclinado 35 respecto de la vertical.hallar la lectura de otro dinamómetro y el ángulo que forma con la vertical. Haciendo el D.C.L. 100N 35º θ T Por la primera condición de equilibrio: x = 0 ; T x -100 Sen35º =0 T x = 100 Sen35º = 57.36N y = 0 ; T y +100 Cos35º-120 = 0 T y = Cos35º= 38.08N Fy α = arc tan ( ) Fx = 33.58º 120N 2.-Hallar la fuerza que ejerce sobre el pie el dispositivo de tracción de la figura. Haciendo el D.C.L. 150N Por la primera condición de equilibrio: x = 0 ; 150 Cos55º+150 Cos25º- F x =0 F x = N y = 0 ; 150 Sen55º Sen25º- F y = 0 F y = 59.48N F F x + F y 2 2 = = Fy α = arc tan ( ) Fx = 15º =
3 3.-La fig. representa un aparato de tracción de Russell para fijación femoral. Determine la fuerza Fa total aplicada a la pierna por este aparato cuando se cuelga de el un peso de 45N. Haciendo el D.C.L. 45N 30º F a 45N 45N 30º x 0.35cm La resultante será: F a = F x + F Donde: F x = -45Cos30º-45Cos30º = 77.94N F y = 45-45Sen Sen30º = 90N = = = 90N Fa F x + F y Fy α = arc tan ( ) M A = 0 Fx = 30º xf a sen30º- 0.35(45) = (45) x = = 0. cm 35 90Sen30º y 4.-La figura representa la cabeza de un estudiante inclinada sobre su libro la cabeza pesa 45N y está sostenida por la fuerza muscular Fm ejercida por los extensores del cuello y por la fuerza de contacto Fc ejercida por la articulación atlanto-occipital. Dado que el módulo de Fm es de 54N y que está dirigido 35 por debajo de la horizontal. Determine el módulo y la dirección de la fuerza Fc.
4 Haciendo el D.C.L. F m 35º F y θ F g Por la primera condición de equilibrio: x = 0 ; -F cx + F m Cos35º =0 Fcx = 44.23N y = 0 ; F cy - F m Sen35º- Fg = 0 Fcy= 54Sen35º N F F cx + F cy 2 2 = = Fy α = arc tan ( ) Fx = 59.8º =87.90N F x 5.- El antebrazo de la figura con respecto al brazo forma 90º y sostiene en la mano unpeso de 50 N, considerando como la masa total del antebrazo y mano es de ubicado a 18 cm de la articulación del codo. Determine el momento que se produce en dicha articulación y el valor de la fuerza F m ejercido por el bíceps. 6.-En la figura se muestra la mano de una persona presionando una balanza que marca 15kg, considere el peso del antebrazo y mano 3.5 kg ubicado a 18 cm del punto 0. a) Determine el momento que se genera en el codo b) cuál es el valor de la fuerza Fm c) Cuál es el valor de la fuerza de contacto Fc.
5 7.-Los adultos jóvenes pueden ejercer una fuerza máxima de 40 kg sobre el aparato que se muestra, suponiendo que el aparato se coloca a 28 cm del codo y el bíceps está unido a 5 cm del codo. Determine las fuerzas que se generan en el bíceps y el húmero. 8.- Joe y Sam transportan un peso de 120 lbs sobre una tabla de 10 pies, tal como aparece en la figura, la tabla pesa 25 lbs. Si el peso se ubica a 3 pies de las manos de Joe. Cuales son las fuerzas que soporta cada uno.
6 9.-Un atleta preparado para dar un salto hacia arriba pesa 80 kg como se indica en la figura. Cuáles son los módulos de las fuerzas que soporta el piso? 10.-Una persona de 90 kg se ubica en la posición que se muestra encima de un andamio si el andamio pesa 50 kg. Cuál es la tensión que soporta cada cuerda 11.-Un hombre lleva una tabla de 3 m de longitud con una mano empuja hacia abajo sobre uno de los extremos, y con la otra mano soporta hacia arriba, suponiendo que la tabla 12 kg y en el otro extremo lleva un peso de15 kg. Qué fuerza soporta cada mano?
7 12.-En la figura se muestra una araña de luces los cuales son soportados por cables inextensibles y sin peso. Determine el peso de las luminarias. 13.-El hombre de la figura está a punto de poner la canoa sobre sus hombros, La canoa mide 5.4 m de longitud y pesa 38 kg, su centro de gravedad está en su centro, Cuál es el módulo de la fuerza F 1 que aplica el hombre a la canoa mientras se halla en la posición que se muestra. Su esposa que no sabe nada de física intenta ayudarle levantando la canoa levantando en el punto A. Explicar que esto no ayuda en nada al hombre. En que punto tendría que levantar la canoa para que realmente le ayude. 14.-Una escalera de 3.65m está apoyada a una pared con un ángulo de 34. Un pintor de 90 kg ha subido a 91 cm de la parte superior, si el coeficiente de rozamiento entre pared. piso y escalera es 0.4. a) cual es el momento que se genera en el punto 0 debido al hombre. b) suponiendo que la escalera pesa 25 kg.determine las fuerzas que soportan el piso y la pared.
8 15.-El antebrazo de la figura está a 50 con respecto al brazo y sujeto en la mano un peso de 15 lbs. A) Cuál es el módulo de la fuerza ejecida sobre el antebrazo por el bíceps. B) Hallar el módulo de la fuerza ejercida por el codo sobre el antebrazo. Considere el peso del antebrazo y mano de 3.5 kg ubicado a 8 de la articulación del húmero. 16.-Estando en postura erecta el centro de gravedad del cuerpo está sobre una línea que cae a 1.25 pulg delante de la articulación del tobillo. El músculo de la pantorrilla ( el grupo de músculos del tendón de Aquiles) se une al tobillo a 1.75 pulg por detrás de la articulación y sube en ángulo de 83. A) Hallar la fuerza Fm en este músculo cuando el hombre de 150 lbs de peso que esté de pie. B) Cuál es la fuerza de contacto Fc ejercida en la articulación del tobillo?
9 17.-En el aparato de Storm que se indica, el paciente se sienta en el borde de una mesa y levanta la tabla mediante un aparato sujeto a uno de los pies y conectado a la polea por medio de una cuerda, si el peso W es de 4 kg y la tabla pesa 5 kg y tiene 1.2m. Determine el momento individual del peso W y de la tabla alrededor del gosne 0. considere el ángulo θ = 26. Cuál es valor de la Ft. 18.-En la figura se muestra las fuerzas sobre el pie de un hombre de 90 kg en posición agachada. Determinar el módulo de la fuerza Fm y la dirección de la fuerza Fc ejercida en la articulación del tobillo.
10 19.-Una pierna en la posición de la figura se mantiene en equilibrio gracias a la acción de un ligamento Pactclar. A partir de las condiciones de equilibrio. Hallar la tensión T del ligamento y el valor de la dirección de la fuerza R considerando la masa de la persona de 90 kg masa de la pierna 9 kg y β = 37
UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA
UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA BIOINGENIERÍA CÁTEDRA: "BIOMECÁNICA" GUÍA DE EJERCICIOS Nº 1: Aplicaciones de Mecánica de Cuerpos Rígidos a la Biomecánica: Cinética de la Postura
BIOESTATICA. Llamamos componente X de una fuerza al valor de la X del punto que determina el extremo de la fuerza
UERZAS BIOESTATICA Las fuerzas se representan con flechas. La información que proporcionan es: El tamaño de la flecha es proporcional al módulo, de manera que cuando más intensa sea la fuerza mayor tamaño
Estática. Fig. 1. Problemas números 1 y 2.
Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección
Regresar Wikispaces. Siglo XXI
ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp
PROBLEMAS ESTÁTICA FARMACIA
PBLEMAS ESÁICA AMACIA PBLEMA 1 La figura muestra el diagrama de fuerzas sobre la cadera izquierda de una persona de 70 kg puesta en pie que apoya todo su peso sobre el pie izquierdo (ha encogido la pierna
Sólido Rígido. Momento de Inercia 17/11/2013
Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del
Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos
Fuerzas 1. Al igual que las demás fuerzas, las fuerzas gravitatorias se suman vectorialmente. Considerar un cohete que viaja de la Tierra a la Luna a lo largo de una línea recta que une sus centros. (a)
FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO
4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión
INSTITUTO TECNOLOGICO DE SALTILLO
INSTITUTO TECNOLOGICO DE SALTILLO SEGUNDA LEY DE NEWTON PROBLEMAS COMPLEMENTARIOS 1.- Se muestran 3 bloques de masas m1 = 2 kg. m2 = 3 kg. m3 = 8 kg. Si se supone nulo el roce, calcular la aceleración
Física e Química 1º Bach.
Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por
FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2
FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y
Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS
UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =
Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar
Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar
Física I : 178 : =2,500
Guía de Trabajo Momento de Torsión INSTRUCCCIONES: Resuelva de manera clara y ordenada cada uno de los siguientes ejercicios mostrando en detalle su procedimiento. 1._ Encuentre la masa m necesaria para
GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1
GUÍA DE EJERCICIOS Física Aplicada 2 CUERPO RIGIDO 1º cuatrimestre de 2012 1 Modelos en Física Modelos Sólidos Fluidos No se considera su extensión ni orientación Partícula Se considera su extensión y
SEGUNDO TALLER DE REPASO
SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:
EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN
EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
EQUILIBRIO ROTACIONAL Y MOMENTO
EQUILIBRIO ROTACIONAL Y MOMENTO Un efecto de las fuerzas es modificar el estado de movimiento de un cuerpo, el cual puede ser traslacional y rotacional. Cuando el movimiento producido por una fuerza sobre
TALLER # 1 ESTÁTICA. Figura 1
TALLER # 1 ESTÁTICA 1. Una barra homogénea de 00N de peso y longitud L se apoya sobre dos superficies como se muestra en la figura 1. Determinar: a. El valor de la fuerza F para mantener la barra en la
FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA
FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los
EQUILIBRIO ESTATICO. Primera condición de equilibrio. Inercia: Sumatoria de fuerzas = 0 Sistema lineal de fuerzas. Sistema de fuerzas concurrentes
EQUILIBRIO ESTATICO Primera condición de equilibrio. Inercia: Sumatoria de fuerzas = 0 Sistema lineal de fuerzas Sistema de fuerzas concurrentes Sumatoria Fx = 0 Sumatoria Fy = 0 Wx + Tx + Rx = 0 Wy +
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago
Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez
2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de
LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO
LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO I. LOGRO Comprobar experimental, gráfica y analíticamente la primera y segunda condición de equilibrio a través de diagramas de cuerpo libre.
F 0 + F 1 C) ( F 0 + F 1 )/2 D) F 0 E) 0 F 0 M fig. 18 F 1 6. Un avión y un auto deportivo están moviéndose con MRU, en la misma dirección. Respecto de las fuerzas que se ejercen sobre estos cuerpos es
Julián Moreno Mestre tlf
www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º
Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante
Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se
a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.
Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
A) Composición de Fuerzas
A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos
F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos
Preguntas y problemas propuestos de aplicación de las leyes de Newton 2015-II 1 Leyes de Newton, impulso, la fuerza de gravedad (peso), fuerza elástica, fuerzas disipativas. Leyes de newton o principios
TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012
TERCERA EVALUACIÓN DE Física del Nivel Cero A Abril 20 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 25 preguntas de opción múltiple
Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Taller de Fuerzas MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Una pelota de plástico en un líquido se comporta de acuerdo a su peso y a la
Leyes de Newton o Principios de la dinámica
Leyes de Newton o Principios de la dinámica La dinámica se rige por tres principios fundamentales; enunciados por Isaac Newton en 1687 en su obra Philosophiae naturalis principia mathematica ; conocidos
GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I
UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I 1. Calcular la aceleración (en m/s 2 ), si: m = 5 kg, F 1
FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto
FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto 1 1. EJERCICIOS 1.1 Una caja se desliza hacia abajo por un plano inclinado. Dibujar un diagrama que muestre las fuerzas que actúan sobre ella.
TALLER N 2 - DINÁMICA DE LA PARTÍCULA
TALLER N 2 - DINÁMICA DE LA PARTÍCULA 1. 2. 3. 4. 5. 6. a) Muestre que el movimiento circular para una partícula donde experimenta una aceleración angular α constante y con condiciones iniciales t = 0
Problemas de Estática y Dinámica ESTÁTICA (versión )
Problemas de Estática y Dinámica ESTÁTICA (versión 081008) 1. El sistema de cables flexibles de la figura se utiliza para elevar un cuerpo de masa M. El sistema se halla en equilibrio en la posición indicada
COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO
1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE
E J E R C I C I O S D E LAS L E Y E S D E N E W T O N
E J E R C I C I O S D E LAS L E Y E S D E N E W T O N A.- Instrucciones.- En el paréntesis a la izquierda de cada aseveración escriba la letra que corresponda a la respuesta correcta. 01.-( ) A la parte
GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO
GUÍ DE PROLEMS Nº 5: UERPO RÍGIDO PROLEM Nº 1: Un avión cuando aterriza apaga sus motores. El rotor de uno de los motores tiene una rapidez angular inicial de 2000 rad/s en el sentido de giro de las manecillas
Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco.
Antecedentes Dinámica Los griegos hicieron modelos del sistema solar. Aristarco Tolomeo Antecedentes La Europa medieval hizo sus contribuciones. Copérnico Primera Ley de Kepler Los planetas se mueven en
ϭ Σ F y PROBLEMAS RESUELTOS y se requiere encontrar F T1 La tensión de la cuerda 1 es igual al peso del cuerpo que cuelga de ella.
EQUILIBRIO BAJO LA ACCIÓN DE FUERZAS CONCURRENTES 4 CAPÍTULO 4: EQUILIBRIO BAJO LA ACCIÓN DE FUERZAS CONCURRENTES 45 LAS FUERZAS CONCURRENTES son todas las fuerzas cuyas líneas de acción pasan a través
Calculo las velocidades iniciales en equis y en Y multiplicando por seno o por coseno.
TIRO OBLICUO Cuando uno tira una cosa en forma inclinada tiene un tiro oblicuo. Ahora el vector velocidad forma un ángulo alfa con el eje x. ( Angulo de lanzamiento ). Para resolver los problemas uso el
Unidad 3: Dinámica. Programa analítico
Unidad 3: Dinámica Programa analítico Principios de la dinámica: inercia, masa, acción y reacción. Unidad de masa (SIMELA). Masa y Peso de un cuerpo. Efecto de una fuerza aplicada a una masa. Relación
CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES
DEPRTMENTO DE ELECTROMECNIC INGENIERI ELECTROMECNIC 1 EJERCICIO Nº1 TRJO PRCTICO Nº 2 SISTEM DE FUERZS EQUIVLENTES Si el peso ubicado en el punto tiene un valor de 20 KN, determine el valor de la carga
Cuestionario sobre las Leyes de Newton
Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,
Guía 4: Leyes de Conservación: Energía
Guía 4: Leyes de Conservación: Energía NOTA : Considere en todos los casos g = 10 m/s² 1) Imagine que se levanta un libro de 1,5 kg desde el suelo para dejarlo sobre un estante situado a 2 m de altura.
Cuáles son las componentes de la tercera
Curso de Preparación Universitaria: Física Guía de Problemas N o 3: Dinámica: Leyes de Newton Problema 1: Tres fuerzas actúan sobre un objeto que se mueve en una línea recta con velocidad constante. Si
Física para Ciencias: Dinámica: Equilibrio
Física para Ciencias: Dinámica: Equilibrio Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Equilibrio En equilibrio la aceleración a de todos los cuerpos en el sistema es nula. T N T m 1 m 2 f F
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca
FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO
5. DINÁMICA FORMULARIO 5.1) Una grúa de puente, cuyo peso es P = 2x10 4 N, tiene un tramo de L = 26 m. El cable, al que se cuelga la carga se encuentra a una distancia l = 10 m de uno de los rieles. Determinar
Aplicaciones de los Principios de la Dinámica. 1 Bachillerato
Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.
Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?
UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?
TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO
TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.
EQUILIBRIO ROTACIONAL Y MOMENTO
EQUILIBRIO ROTACIONAL Y MOMENTO Un efecto de las fuerzas es modificar el estado de movimiento de un cuerpo, el cual puede ser traslacional y rotacional. Cuando el movimiento producido por una fuerza sobre
1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4.
TALLER DE DINÁMICA 1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. Respuestas: (T1 =37 N; T2=88 N; T 3 =77 N; T4=139
INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A:
INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: DOCENTE: ING. ALEXANDER CABALLERO FECHA DE ENTREGA:
UD 10. Leyes de la dinámica
UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,
DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N
DINÁMICA 1. Sobre una masa de 2Kg actúan tres fuerzas tal como se muestra en la figura. Si la aceleración del bloque es a = -20i m/s 2, determinar: a) La fuerza F 3. Rpta. (-120i-110j)N b) La fuerza resultante
Física: Roce y Resortes: Ley de Hooke
Física: Roce y Resortes: Ley de Hooke Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Equilibrio En equilibrio la aceleración a de todos los cuerpos en el sistema es nula. T N T m 1 m 2 f F g =
Guía de Repaso 12: Primera Ley de Newton g=10 m s 2
Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 1) Dos fuerzas F1 y F2 actúan sobre un pequeño cuerpo; F1 es vertical hacia abajo y vale F1=8,0 N, mientras que F2 es horizontal hacia la derecha y vale
( ) 2 = 0,3125 kg m 2.
Examen de Física-1, 1 Ingeniería Química Examen final Enero de 2014 Problemas (Dos puntos por problema) Problema 1: Un bloque de masa m 1 2 kg y un bloque de masa m 2 6 kg están conectados por una cuerda
1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg.
Ejercicios de física: cinemática y dinámica 1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. 2º Calcular la masa de un cuerpo que aumenta
LAS FUERZAS y sus efectos
LAS FUERZAS y sus efectos Definición de conceptos La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento
El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).
1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad
Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción
ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),
2DA PRÁCTICA CALIFICADA
2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA
1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. Figura Nº 2. FiguraNº 1. FiguraNº 3 FiguraNº 4
1 1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. FiguraNº 1 Figura Nº 2 FiguraNº 3 FiguraNº 4 2. Una bolsa de cemento de 325 N de peso cuelga de tres
PROBLEMAS PROPUESTOS
PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio
Guía de vectores. coordenadas ortogonales, puede ser negativa. determinan sus direcciones cuando sus orígenes coinciden.
Guía de vectores 1. Con respecto a los vectores, todas Ias afirmaciones siguientes son verdaderas excepto: a) La componente de un vector, correspondiente a un sistema de coordenadas ortogonales, puede
1. Dibuja el Sol y la Tierra y las fuerzas que se ejercen sin considerar otros objetos en el universo. R:
Capítulo 3.DINÁMICA I: 29 3.1. Fuerzas de interacción o Tercera ley de Newton 3.2. Segunda ley 3.3. Primera y segunda ley. 3.1. Fuerzas de interacción o Tercera ley de Newton: Todas las fuerzas se generan
Las Leyes de Newton. 1. El principio de la inercia. 2. Proporcionalidad entre la fuerza ejercida sobre un cuerpo y la aceleración resultante.
COMPLEJO EDUCATIVO SAN FRANCISCO Profesor: José Miguel Molina Morales Primer Periodo GUIA DE CIENCIAS FISICAS Segundo Año General Las Leyes de Newton El trabajo teórico de Isaac Newton diferencia dos etapas
ESTÁTICA DE ESTRUCTURAS Guía # 1
ESTÁTI DE ESTRUTURS Guía # 1 1. Para las siguientes figuras 1, 2 3, determinar los centros de gravedad, respecto al eje correspondiente. igura 1 igura 2 igura 3 2. Descomponga la fuera de 120[kgf] en dos
Guía para oportunidades extraordinarias de Física 2
Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento
Fuerza de rozamiento en un plano inclinado
Fuerza de rozamiento en un plano inclinado En esta página analizamos detalladamente un problema muy común en un curso de Física cuya solución no se suele presentar de forma completa. Un bloque de masa
GUIA Nº5: Cuerpo Rígido
GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia
IES Menéndez Tolosa La Línea de la Concepción. Consejería de Educación JUNTA DE ANDALUCÍA
Consejería de Educación JUNTA DE ANDALUCÍA IES Menéndez Tolosa La Línea de la Concepción Fuerzas en la misma dirección y sentido F r F r r r F + F r r r R = F + F R = F +F Fuerzas en la misma dirección
FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015
UNSL ENJPP 5 AÑO B1 Y B2 FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015 1. Un ascensor de 1500 kg se mueve hacia arriba y hacia abajo sostenido por un cable. Calcula la tensión en el cable para los siguientes
Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014
Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia
F= 2 N. La punta de la flecha define el sentido.
DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.
Problemas propuestos y resueltos equilibrio estático Elaborado por: Profesora Pilar Cristina Barrera Silva
Problemas propuestos y resueltos equilibrio estático Elaborado por: Profesora Pilar Cristina Barrera Silva Física, Sears, volumen 1, doce edición 11.13 La barra mostrada en la figura se encuentra en equilibrio,
Respuesta correcta: c)
PRIMER EXAMEN PARCIAL DE FÍSICA I 04/11/016 MODELO 1 1.- La posición de una partícula que se mueve en línea recta está definida por la relación x=t -6t -15t+40, donde x se expresa en metros y t en segundos.
GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.
1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9
DINÁMICA II - Aplicación de las Leyes de Newton
> INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas
Estática Sólido rígido momento
Estática Sólido rígido Torque (momento, momento de torsión) Producto Vectorial : Equilibrio de Cuerpos Rígidos Centro de Gravedad Estabilidad y Equilibrio Palancas y Ventaja Mecánica Palancas en el Cuerpo
CLASE I Estática de las construcciones I
Introducción a las construcciones CLASE I Estática de las construcciones I Casa sobre el arroyo. Mar del Plata. Amancio Williams Física: estudio de los fenómenos que sufren los cuerpos Cinemática Mecánica
Problemas de Física I
Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar
Equilibrio y Movimiento de los objetos
Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento
F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.
CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes
