Algebra Lineal Aplicada para Modelos Lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Algebra Lineal Aplicada para Modelos Lineales"

Transcripción

1 Algebra Lineal Aplicada para Modelos Lineales Yuri Miranda Gonzáles Universidad Mayor de San Andrés Carrera de Estadística Abril 203 En el área de modelos lineales y econometría, la necesidad de contar con elementos teóricos sobre algebra lineal es imprescindible para una correcta comprensión y aplicación de estas herramientas, el presente documento muestra un compendio de conceptos, teoremas y demostraciones necesarios para contar con las herramientas teóricas. Es así que el principal objetivo del documento es la comprensión de los siguientes resultados: Al multilpicar un vector por una matriz simétrica idempotente se obtiene la proyección ortogonal de este vector sobre el espacio vectorial generado por las columnas de la matriz. Si Y es un vector de variables N(0; ) de n componentes, que se proyecta ortogonalmente sobre un espacio de dimensión r entonces el cuadrado del módulo del vector proyectado 2 (r). La descomposición de un vector de n componentes como una suma de h vectores ortogonales entre sí, y se expresa el vector como una suma de estos h vectores, entonces el cuadrado del módulo de cada vector de los componentes sigue una distribución 2 (a los del espacio donde se generó). Este compendio es el resultado de las clases impartidas en la Carrera de Estadística de la Universidad Mayor de San Andrés (UMSA), en base principalmente a las siguientes fuentes: Apéndice II de Regresión y Diseño de Experimentos, Daniel Peña 200; Apéndice de derivadas de matrices de Análisis Multivariante, Mardia 99; Capítulo I Vectors of random variables de GAF Seber 987, también el clásico libro de Algebra Lineal de Anton. Vectores. Producto escalar (o interno) de dos vectores yymiranda@gmail.com X 0 Y = Y 0 X = X x i y i

2 2. Norma o longitud de un vector X jxj = p X 0 X = q X x 2 i 3. Un conjunto de k vectores (X ; X 2 ; : : : X k ) son linealmente independientes (LI) si en la siguiente combinación lineal (cl) c X + + c k X k = 0 la única solucion es c = c 2 = = Sea un conjunto de k vectores LI de n componentes, se llama espacio vectorial (E) generado por este, al que contiene todos los vectores Z que pueden expresarse como combinación lineal de estos. si z 2 E ) z = c X + + c k X k 5. La dimensión del espacio E k = número de vectores LI que lo generan.. Ortogonalidad en vectores. Dos vectores son ortogonales, jxj jy j = 0 que es consecuecia de cuando = 90 o ) cos = 0 X 0 Y = jxj jy j cos Por lo tanto: dos vectores son ortoganeles, X 0 Y = 0 ó Y 0 X = 0 2. X es ortogonal a E p si X es ortogonal a todo vector de E p : por tanto si Y 2 E p ) Y 0 X = 0 2 Matrices y formas cuadráticas Algunas propiedades de transpuesta de matrices (A 0 ) 0 = A ; (A + B) 0 = A 0 + B 0 ; (AB) 0 = B 0 A 0 si A = A 0 ) A es simétrica 2. Rango de una matriz A cada A nn se puede asociar un E p generado por sus vectores columna ) el rango de la matriz es la dimensión de este espacio. rango(a) = rango(a 0 ) el rango también es el máximo número de vectores columna o la LI rango(a) n 2

3 2.2 Propiedades de inversa. (AB) = B A para matrices cuadradas no singulares 2. (ABC) = C B A 3. (A 0 ) = (A ) 0 4. A = jaj 5. Si A es simétrica ) A también 2.3 Matriz ortogonal C es una matriz ortogonal si es cuadrada y tal que: y como consecuencia se tiene: C 0 n CC 0 = C 0 C = I C 0 = C por lo tanto las las o columnas de una matriz ortogonal son vectores ortogonales entre si y de longitud. Claro...: C 0 0 CC 0 0 B A ( C 0 Cn 0 B ) C B A C A 0 0 CnC 0 n además: jcj = jc 0 j = 2.4 Matriz de nida positiva Una matriz A es de nida positiva si: Z 0 AZ > 0 donde Z es un vector. Todos los valores propios de A, i > 0 Propiedades:. Toda matriz A de nida positiva es invertible y A es de nida positiva 2. Toda matriz A de nida positiva tiene al menos una matriz N cuadrada tal que: A = NN = N 2 3

4 3 Forma cuadrática Una forma cuadrática (F C) es un escalar con la siguiente expresión: donde:y = 0 y. y n Y 0 AY = nx i= j= nx a ij y i y j C A ; A =matriz de n n: Entonces F C = Y 0 n A nn Y n Una F C es semide nida positiva entonces:. Y 0 AY 0 2. A es de nida o semide nida positiva. Recortar tambien que una matriz de nida positiva cumple: 3. Se llama rango de una FC al rango de la matriz A 3. Diagonalización de matrices simétricas. Valores y vectores propios Ax = x ) det(i A) = 0 los vectores propios de una matriz cuadrada son los x tal que: (I A)x = 0 Nota: Una matriz simétrica tiene i 2 R y autovectores ortogonales. 2. Diagonalización de matrices simétricas Toda matriz A simétrica puede diagonalizarse, mediante la transformación donde: C 0 AC = D C es ortogonal y esta construida con los vectores la con los autovectores de A Los elementos de D serán sus atovalores. Como jcj = jc 0 j = )el determinante de A será el producto de sus raices caracteristicas. El rango de una matriz = al número de i 6= 0 Por lo tanto "si se diagonaliza una matriz simétrica su rango será el número de elementos no nulos de la diagonal principal de la matriz D" 4

5 3.2 Una matriz importante: Matriz Idempotente Es una matriz cuadrada simétrica que cumple: 3.2. Nota AA = A = A 0 A Una matriz idempotente o bien es singular o bien es matriz unidad (matriz singular,jaj = 0; rango r < n orden de la matriz) Claro.... Si jaj 6= 0 ) 9 A y como A es idempotente AA = A A AA = A A IA = I ) A = I ) por tanto una matriz idempotente que no es la I sera singular. Los i de una idempotente son cero o unos... (I A)x = 0 ) Ax = x AAx = Ax Ax = Ax x = 2 x x( 2 ) = 0 = ; = 0 por lo tanto si se diagonaliza una idempotente se obtiene en la diagonal principal el número de unos= rango de la matriz, y el resto de elementos son cero Conclusiónes importantes:. (a) Una matriz idempotente A es siempre semide nida postiva. Dem. X 0 AX ) X 0 A 0 AX ) (AX) 0 (AX) 0 (b) Si A es idempotente ) también será I A Dem. (I A) (I A) = I A IA + AA = I A Traza de una matriz. Si C nn con elementos c ij ) tr(c) = las siguientes propiedades: (a) tr(a + B) = tr(a) + tr(b) (b) tr(a) = tr(a) nx c ij y es un operador lineal, con i= 5

6 (c) tr(abc) = tr(cab) = tr(bca) (d) Si A es idempotente su rango = tr(a): 3.3 Proyección Ortogonal El vector Y de n componentes y dimension p, p < n. La proyección ortogonal de Y sobre E p, es el vector V, que cumple: Y W E p V es decir:. Y = V + W con V 2 E p 2. U 0 W = 0 8 U 2 E p 3.4 Un ejemplo importante... Sea Y un vetor y sea E p un espacio vectorial de dimension engendrado por el vector X,) la proyección de Y sobre X será: Y V=cX X donde c es un escalar. Para hallar V, se tiene V = cx () V + e = Y ) e = Y V el vector e = Y V debe ser ortogonal a V, por tanto a X, es decir X 0 (Y V ) = 0 X 0 Y X 0 cx = 0 X 0 Y = X 0 Xc por tanto c = (X 0 X) X 0 Y 6

7 De () se tiene: V = cx = Xc, entonces... V = X(X 0 X) X 0 Y = AY por tanto la proyección de un vector Y sobre X se obtiene multiplicando el vector por una matriz A = X(X 0 X) X 0 La matriz A es cuadrada de n n, idempotente y de rango igual al del espacio sobre el que se proyecta que en este caso es uno. En efecto:. es cuadrada es idempotente es de rango uno... X n (X 0 X) X0 n = A nn (X(X 0 X) X 0 )(X(X 0 X) X 0 ) = X(X 0 X) X 0 rg(a) = tr(a) = tr(x(x 0 X) X 0 ) = tr(xx (X 0 ) X 0 ) = tr(i) = Estas propiedades encontradas para proyecciones sobre una recta son validas en general, como se desarrolla e los siguietes teoremas: Teorema Sea el vector Y 2 R n y X una matriz de n p donde las las de X son una base de un subespacio vectorial E p. Se tiene la matriz A como: A = X(X 0 X) X 0 La proyección del vector Y sobre el espacio E p es AY donde la matriz A es cuadrada, simetrica, idempotete y de rango p. Demostración. Para la idempotencia, se tiene que como V = AY es la proyección de Y sobre el espacio vectorial R(A) generado por las columnas de A entonces A es idempotente por que la proyección de V sobre R(A) será AV (y tendrá que ser invariante ya que V esta dentro de R(A)). pero V = AY, entonces V = AV AY = AAY lo que quiere decir que tiene que cumplirse A = A 2 por tanto la matriz proyección tiene que ser idempotente. Teorema 2 El cuadrado del modulo de la proyecció de Y sobre E p será: Y 0 AY donde A es idempotente Demostración. El cuadrado del módulo de la proyección es: (AY ) 0 (AY ) = Y 0 A 0 AY = Y 0 AY 7

8 4 Vectores y matrices aleatorias De nición.- Se tiene Z una matriz de variables aleatorias, y X y Y vectores aleatorios entonces: E[Z] = [E] Teorema.- si A = [(a ij )], B = [(b ij )]; C = [(c ij )] matrices constantes, entonces: E[AZB + C] = AE[Z]B + C E[AX] = AE[X] E[AX + BY ] = AE[X] + BE[Y ] De nición.- La covaranza entre dos vectores aleatorios se de ne como: Teorema.- Cov[X; Y ] = [(Cov[X i ; Y j ])] Cov[X; Y ] = E[(X E[X])(Y E[Y ]) 0 ] V [Y ] = [Cov[Y i ; Y j ]] V [X] = E[XX 0 ] (E[X])(E[X]) 0 Cov[AX; BY ] = ACov[X; Y ]B 0 Cov[AX; Y ] = ACov[X; Y ] Cov[X; BY ] = Cov[X; Y ]B 0 V [AX] = Cov[AX; AX] = ACov[X; X]A 0 = AV [X]A 0 Para profundizar los conceptos, demostraciones y ejemplos de estos resultados, puede ver capítuo Vectors of Random Variables de Lineal Regression Analysis G.A.F. SEBER (997) 5 Distribución normal Se tiene y ; y 2 ; :::; y n variables aleatorias indepedientes distribuidas N(; 2 ): Entoces: z = a 0 Y = a y + + a n y n E(z) = X a i V (z) = X 2 a 2 i donde Y es N(; 2 I) y a es un vector de constantes. 8

9 Teorema 3 Si z = a 0 Y z 2 = a 0 2Y donde Y N(; 2 I). Las variables z y z 2 serán independientes si a 0 a 2 = 0 Demostración. Como z y z 2 son normales entonces, incorrelación implica independencia por lo tanto se tiene que Cov(z ; z ) = Cov(a 0 Y; a 0 2Y) = a Cov(Y; Y)a 0 2 = a 2 a 0 2 = a a y sera cero solo cuando los vectores a ; a 2 sean ortogonales. 6 Distribución de formas cuadráticas de variables normales En la forma cuadratica Y 0 AY el vector Y será N(0; I), es decir los compoenentes de Y serán independientes y con = Teorema 4 Para que Y 0 AY se distribuya 2 (r), entonces la condición necesaria y su ciente es que A sea idempotente de orden r Demostración. Si se realiza la trasformación X = CY donde C es ortogonal y diagonaliza a A y X se distribuye normal. Y = C X Y = C 0 X Y 0 AY = X 0 CAC 0 X rx = X 0 DX = x 2 i 2 (r) i= ) Y 0 AY 2 (r) Teorema 5 Si Y N(0; I) se proyecta sobre un espacio vectorial de dimensión r, el cuadrado del modulo de su proyección se distribuye chi cuadrado con r gl. Demostración. El modulo de un vector es p X 0 X: Como la proyección de un vector Y sobre un espacio vectorial es AY, Entoces el cuadrado de su modulo es: (AY ) 0 AY = Y A 0 AY = Y 0 AY 2 (r) Teorema 6 Dos formas cuadráticas Y 0 AY y Y 0 BY serán independientes si AB 0 = 0 9

10 7 Derivadas matriciales Si X es un vector de variables x i,entonces la derivada de una función que depende del vector X es un vector donde sus componentes son las derivadas de f respecto a cada componente. por ejemplo 0 Si f = 8x + 4x 2 + 6x =. Si f = a = a 2. Si f = X 0 AX, donde A es una matriz cuadrada y 0 = 2AX 3. Si f = AX, donde A es una matriz cualquiera 4. Otras = = = = jxj (X0 0 = 2BA 8 Inversa de una matriz particionada Si A = A A 2 A 2 A 22 Donde A y A 22 son matrices cuadradas no singulares y se de ne B como: B = (A A 2 A 22 A 2) se tiene: A = B BA 2 A22 A22 2B A BA 2 A22 9 Determinante Si A = A A 2 A 2 A 22 0

11 se tiene: jaj = ja 22 j A A 2 A 22 A 2 = ja j A 22 A 2 A A 2 Propiedades de inversas de sumas de matrices Se tiene las matrices A y C no singulares, y la siguiente multiplicación: (A + BCD) = A A B(DA B + C ) DA como un caso particular con b y d como vectores se tiene: (A + bd 0 ) = A ( + d 0 A b) (A b)(d 0 A ) 0 Bibliogra a [] Anton, "Algebra Lineal", [2] Daniel Peña, "Regresión y Diseño de Experimentos", 200 [3] G.A.F. Seber, "Linear Regression Analysis", 997 [3] Mardia, "Análisis Multivariante", 989

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

1.1 De niciones basicas

1.1 De niciones basicas 1 ALGEBRAMATRICIAL 1.1 De niciones basicas 1.1.1 Matriz Una matriz de orden, o de dimensi on, M por N (escrita como M N) es un conjunto de M N elementos ordenados en M las y N columnas. Por tanto, una

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Matriz inversa generalizada y descomposición del valor singular

Matriz inversa generalizada y descomposición del valor singular Matriz inversa generalizada y descomposición del valor singular Divulgación Fernando Velasco Luna y Jesús Hernández Suárez Laboratorio de Investigación y Asesoría Estadística, Facultad de Estadística e

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

Resumen de Teoría de Matrices

Resumen de Teoría de Matrices Resumen de Teoría de Matrices Rubén Alexis Sáez Morcillo Ana Isabel Martínez Domínguez 1 de Octubre de 2004 1. Matrices. Generalidades. Definición 1.1. Se llama matriz de orden m n sobre un cuerpo K a

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

CORPORACIÓN UNIVERSITARIA REMINGTON

CORPORACIÓN UNIVERSITARIA REMINGTON 1 Programa: Asignatura: Contaduría Pública. Algebra Lineal. Nivel: 03 Créditos: 3 OBJETIVOS - Estudiar la representación matricial del modelo lineal para optimizar el manejo operativo del mismo. - Analizar

Más detalles

PROGRAMA INSTRUCCIONAL ÁLGEBRA LINEAL

PROGRAMA INSTRUCCIONAL ÁLGEBRA LINEAL UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Introducción al Algebra Matricial

Introducción al Algebra Matricial Introducción al Algebra Matricial Alvaro G. Parra Versión preliminar y bajo revisión. Marzo 00 Alumno de Magíster en Economía Financiera de la Ponti cia Universidad Católica de Chile. Todos los errores

Más detalles

Traza de una Matriz Cuadrada

Traza de una Matriz Cuadrada Traza de una Matriz Cuadrada Departamento de Matemáticas, CSI/ITESM 10 de septiembre de 2008 Índice 7.1. Definiciones y propiedades básicas.................................. 1 7.2. La traza de un producto........................................

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA PROGRAMA INSTRUCCIONAL DATOS BÁSICOS DE LA ASIGNATURA Nombre de la asignatura: Código Semestre U.C. Pre- Requisito ALGEBRA LINEAL

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

PROGRAMA DE CURSO. Resultados de Aprendizaje

PROGRAMA DE CURSO. Resultados de Aprendizaje PROGRAMA DE CURSO Código Nombre MA1102 Algebra Lineal Nombre en Inglés Linear Algebra SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0 5,0 Requisitos MA1101

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales 15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACM-9303

Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACM-9303 1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : ACM-9303 Horas teoría-horas

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b)

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b) PROBLEMAS RESUELTOS DE DETERMINANTES Determinantes de la selectividad de Andalucía. Determinantes de órdenes, y. Determinantes de orden n. ENUNCIADOS Determinantes de selectividad Antes del.. Se sabe que

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

DETERMINANTES Profesor: Fernando Ureña Portero

DETERMINANTES Profesor: Fernando Ureña Portero : CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Matrices triangulares y matrices ortogonales

Matrices triangulares y matrices ortogonales Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.

Más detalles

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura: 4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Álgebra Lineal Taller N 3 con Matlab

Álgebra Lineal Taller N 3 con Matlab Álgebra Lineal Taller N 3 con Matlab Tema: Espacios vectoriales y subespacios. Independencia lineal. oordenadas, bases y dimensión. ambio de ase. Transformaciones lineales. Diseñado por Rosa Franco rbeláez.

Más detalles

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0) 53 EJERCICIOS de DETERMINANTES º BACH. Cálculo de determinantes. Propiedades: 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33 55 3 5 g) 13

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para

Más detalles

Matrices y Determinantes

Matrices y Determinantes Matrices y Determinantes Definición de matriz Matriz Una matriz es un ente matemático equivalente a una tabla; es decir, es un arreglo de elementos de cualquier naturaleza (aunque, en general, suelen ser

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN José Carlos de Miguel Domínguez Agustín Ramos Calvo Dpto. de Métodos Cuantitativos para la Economía y la Empresa Fac. de C.C.E.E. Santiago de

Más detalles

Vectores aleatorios. Estadística I curso 2008 2009

Vectores aleatorios. Estadística I curso 2008 2009 Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015.

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015. Apuntes de álgebra lineal Eduardo Liz Marzán Enero de 2015 Índice general 1 Introducción 7 11 Operaciones internas y estructura de cuerpo 7 12 Números complejos 8 13 Vectores 10 2 Matrices y determinantes

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Tema 5. Análisis de componentes principales

Tema 5. Análisis de componentes principales Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 5. Análisis de componentes principales 5.1. Introducción. El análisis de componentes principales

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

CURSO CERO DE MATEMÁTICAS

CURSO CERO DE MATEMÁTICAS CURSO CERO DE MATEMÁTICAS Dr. García Alonso, Fernando Luis. Dr. García Ferrández, Pedro Antonio. -- RESUMEN TEORÍA DE ÁLGEBRA Matrices Las matrices constituyen una herramienta fundamental para la ejecución

Más detalles

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA FORMULARIO PARA LA PRESENTACIÓN DE LOS PROGRAMAS DE ASIGNATURAS UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA CARRERA/S: Licenciatura

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles