Programación dinámica
|
|
|
- José Ignacio Gómez Ramos
- hace 8 años
- Vistas:
Transcripción
1 Algoritmos y Estructura de Datos III Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires 03 de Abril de 2013
2 Repaso Aplica a problemas de optimización donde obtenemos una solución utilizando una serie de decisiones.
3 Repaso Aplica a problemas de optimización donde obtenemos una solución utilizando una serie de decisiones. A medida que tomamos decisiones, subproblemas con la misma forma van surgiendo
4 Repaso Aplica a problemas de optimización donde obtenemos una solución utilizando una serie de decisiones. A medida que tomamos decisiones, subproblemas con la misma forma van surgiendo La clave es guardar el resultado de cada subproblema, en caso de que reaparezca
5 Repaso Aplica a problemas de optimización donde obtenemos una solución utilizando una serie de decisiones. A medida que tomamos decisiones, subproblemas con la misma forma van surgiendo La clave es guardar el resultado de cada subproblema, en caso de que reaparezca Es una combinación entre algoritmos golosos y algoritmos de fuerza-bruta
6 Repaso Al igual que Dividir y Conquistar, resuelve un problema combinando la solución óptima de varios subproblemas
7 Repaso Al igual que Dividir y Conquistar, resuelve un problema combinando la solución óptima de varios subproblemas Los subproblemas tienen un solapamiento.
8 Repaso Al igual que Dividir y Conquistar, resuelve un problema combinando la solución óptima de varios subproblemas Los subproblemas tienen un solapamiento. Cada subproblema es independiente. Solo interesan los resultados.
9 Repaso Al igual que Dividir y Conquistar, resuelve un problema combinando la solución óptima de varios subproblemas Los subproblemas tienen un solapamiento. Cada subproblema es independiente. Solo interesan los resultados. Optimalidad: Una solución óptima esta conformada por subsoluciones óptimas.
10 Cambio mínimo Problema Dados los valores de las monedas V =< v 1, v 2,..., v k > y el monto a devolver, N. Quiero saber la mínima cantidad de monedas necesarias para devolver el cambio de manera exacta.
11 Cambio mínimo Problema Dados los valores de las monedas V =< v 1, v 2,..., v k > y el monto a devolver, N. Quiero saber la mínima cantidad de monedas necesarias para devolver el cambio de manera exacta. Ejemplo V =< 3, 4, 5, 7 > N = 10 S =< 7, 3 > S =< 5, 5 >
12 Caracterizar una solución Probar cualquier combinación de monedas.
13 Caracterizar una solución Probar cualquier combinación de monedas. Hasta cuantas veces uso cada moneda? Cuál sería la complejidad final?
14 Caracterizar una solución Probar cualquier combinación de monedas. Hasta cuantas veces uso cada moneda? Cuál sería la complejidad final? O(2... ). Feo de implementar, y costoso.
15 Pensar recursivamente Definamos la función Cambio(N, V )
16 Pensar recursivamente Definamos la función Cambio(N, V ) El V es estático, nunca cambia, lo podemos olvidar por un momento...
17 Pensar recursivamente Definamos la función Cambio(N, V ) El V es estático, nunca cambia, lo podemos olvidar por un momento... Ahora pensemos si se puede resolver Cambio(N) usando soluciones a instancias más chicas.
18 Pensar recursivamente Definamos la función Cambio(N, V ) El V es estático, nunca cambia, lo podemos olvidar por un momento... Ahora pensemos si se puede resolver Cambio(N) usando soluciones a instancias más chicas. Puedo resolver Cambio(N) sabiendo Cambio(i), i < N?
19 Pensar recursivamente Definamos la función Cambio(N, V ) El V es estático, nunca cambia, lo podemos olvidar por un momento... Ahora pensemos si se puede resolver Cambio(N) usando soluciones a instancias más chicas. Puedo resolver Cambio(N) sabiendo Cambio(i), i < N? La cantidad minima de monedas para devolver i esta relacionada con la cantidad minima para devolver i + 3?
20 Pensar recursivamente Definamos la función Cambio(N, V ) El V es estático, nunca cambia, lo podemos olvidar por un momento... Ahora pensemos si se puede resolver Cambio(N) usando soluciones a instancias más chicas. Puedo resolver Cambio(N) sabiendo Cambio(i), i < N? La cantidad minima de monedas para devolver i esta relacionada con la cantidad minima para devolver i + 3? Qué valores podría tener la última moneda usada?
21 Pensar recursivamente Teorema Sea S =< s 1,..., s m > el cambio mínimo para N. Luego, S i =< s 1,..., s i > es óptimo.
22 Pensar recursivamente Teorema Sea S =< s 1,..., s m > el cambio mínimo para N. Luego, S i =< s 1,..., s i > es óptimo. Prueba Supongamos que hay otra solución S mejor que S i : S = S i S < S i.
23 Pensar recursivamente Teorema Sea S =< s 1,..., s m > el cambio mínimo para N. Luego, S i =< s 1,..., s i > es óptimo. Prueba Supongamos que hay otra solución S mejor que S i : S = S i S < S i. Definimos S = S < s i+1,..., s m > (reemplazar S i por S ).
24 Pensar recursivamente Teorema Sea S =< s 1,..., s m > el cambio mínimo para N. Luego, S i =< s 1,..., s i > es óptimo. Prueba Supongamos que hay otra solución S mejor que S i : S = S i S < S i. Definimos S = S < s i+1,..., s m > (reemplazar S i por S ). S = S + < s i+1,..., s m >= S i + < s i+1,..., s m >= N
25 Pensar recursivamente Teorema Sea S =< s 1,..., s m > el cambio mínimo para N. Luego, S i =< s 1,..., s i > es óptimo. Prueba Supongamos que hay otra solución S mejor que S i : S = S i S < S i. Definimos S = S < s i+1,..., s m > (reemplazar S i por S ). S = S + < s i+1,..., s m >= S i + < s i+1,..., s m >= N S = S + < s i+1,..., s m > < S i + < s i+1,..., s m > = S
26 Pensar recursivamente Teorema Sea S =< s 1,..., s m > el cambio mínimo para N. Luego, S i =< s 1,..., s i > es óptimo. Prueba Supongamos que hay otra solución S mejor que S i : S = S i S < S i. Definimos S = S < s i+1,..., s m > (reemplazar S i por S ). S = S + < s i+1,..., s m >= S i + < s i+1,..., s m >= N S = S + < s i+1,..., s m > < S i + < s i+1,..., s m > = S Absurdo, pues S es mínimo por hipótesis.
27 Ejemplo
28 Ejemplo
29 Algoritmo-CambioMinimo (top-down) Algorithm 1: CambioMinimo Data: V =< v 1,..., v k >,N Result: S if N == 0 then return 0 if res[n] ya calculada then return res[n] res[n] = for i 1 to k do if N v i then res[n] = MIN(res[N], 1 + CambioMinimo(N v i )) ; return res[n]
30 Algoritmo-CambioMinimo (bottom-up) Algorithm 2: CambioMinimo Data: V =< v 1,..., v k >,N Result: S for i 1 to N do res[i] = ; res[0] = 0; for i 1 to N do for j 1 to k do res[i] = MIN(res[i], res[i v j ] + 1) return res[n]
31 Conclusiones Primero entender el problema, y pensar en la solución (aunque sea con algoritmos de fuerza-bruta)
32 Conclusiones Primero entender el problema, y pensar en la solución (aunque sea con algoritmos de fuerza-bruta) Pensar en funciones recursivas, y que parametros necesitarian.
33 Conclusiones Primero entender el problema, y pensar en la solución (aunque sea con algoritmos de fuerza-bruta) Pensar en funciones recursivas, y que parametros necesitarian. Demostrar correctitud del algoritmo.
34 Conclusiones Primero entender el problema, y pensar en la solución (aunque sea con algoritmos de fuerza-bruta) Pensar en funciones recursivas, y que parametros necesitarian. Demostrar correctitud del algoritmo. Hacer muchos ejercicios.
Programación Dinámica 1
Programación Dinámica 1 El método de programación dinámica sirve para resolver problemas combinando las soluciones de subproblemas. Normalmente es usada para resolver problemas de optimización. Al construir
Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013
Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer
Análisis de algoritmos
Tema 09: Programación dinámica Solicitado: Ejercicios 06: Programación dinámica de Fibonacci y Coeficientes Binomiales M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom
Algoritmo de Euclides
Algoritmo de Euclides Melanie Sclar Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires AED III Melanie Sclar (UBA) Algoritmo de Euclides AED III 1 / 21 Ejercicio 2.8 de la práctica Ejercicio
259. El número de combinaciones de m objetos entre un conjunto de n, denotado por n, para n 1 y 0 m n, se puede definir recursivamente por: m
258. Aplicar el algoritmo de programación dinámica para el problema del cambio de monedas sobre el siguiente ejemplo: n = 3, P = 9, c = (1, 3, 4). Qué ocurre si multiplicamos P y c por un valor constante,
4.2. El número de combinaciones de m objetos entre un conjunto de n, denotado por n, para n 1 y 0 m n, se puede definir recursivamente por: m
4.1. Aplicar el algoritmo de programación dinámica para el problema del cambio de monedas sobre el siguiente ejemplo: n = 3, P = 9, c = (1, 3, 4). Qué ocurre si multiplicamos P y c por un valor constante,
RSA: Implementación. Ya resolvimos (3), ahora vamos a resolver (2). IIC3242 Complejidad Probabiĺıstica 28 / 77
RSA: Implementación Para poder implementar RSA necesitamos algoritmos eficientes para los siguientes problemas: (1) Generar primos P y Q (2) Generar números e y d tales que e d modφ(n) = 1 (3) Calcular
Algoritmos glotones. mat-151
Algoritmos glotones (greedy) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 04.06.2009 Algoritmos glotones Algoritmos utilizados en problemas de optimización. Estos algoritmos siguen típicamente
Concepto de Recursión. Características de algoritmos recursivos. Ejemplos
RECURSION Temario Concepto de Recursión Características de algoritmos recursivos Ejemplos RECURSION Metodologías para resolver problemas: 1. Diseño Top Down 2. Recursión 3. Abstracción de Datos 4. Diseño
greedy (adj): avaricioso, voraz, ávido, codicioso, glotón
Algoritmos Greedy Análisis y Diseño de Algoritmos Algoritmos Greedy Características generales Elementos de un algoritmo greedy Esquema de un algoritmo greedy s Almacenamiento óptimo en cintas Problema
ESTIMACIÓN DE TIEMPO Y COSTO DE PRODUCTOS SOFTWARE
Análisis y costo de algoritmos Algoritmos Un algoritmo es un conjunto de pasos claramente definidos que a partir de un cierta entrada (input) produce una determinada salida (output) Algoritmos y programas
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
Algoritmos para determinar Caminos Mínimos en Grafos
Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)
Estrategias de Diseño de Algoritmos
Estrategias de Diseño de Algoritmos Introducción A través de los años, los científicos de la computación han identificado diversas técnicas generales que a menudo producen algorit mos eficientes para la
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para
Técnicas de diseño de algoritmos Programación dinámica
Técnicas de diseño de algoritmos Programación dinámica Luis Javier Rodríguez Fuentes Amparo Varona Fernández Departamento de Electricidad y Electrónica Facultad de Ciencia y Tecnología, UPV/EHU [email protected]
1. Programas y funciones computables
Computabilidad 1 Índice 1. Programas y funciones computables 3 1.1. El lenguaje S........................................... 3 1.2. Programas de S......................................... 3 1.3. Macros...............................................
Problemas de flujo en redes: aplicación a redes de transporte urbano
Problemas de flujo en redes: aplicación a redes de transporte urbano Cristián E. Cortés Universidad de Chile V Escuela de Invierno, Luis A. Santaló 23-27 de Julio 2012 1 1 Outline Caracterización del equilibrio
Tema 2. Divide y vencerás.
Programa de teoría Parte I. Estructuras de Datos. 1. Abstracciones especificaciones. 2. Conjuntos diccionarios. 3. Representación de conjuntos mediante árboles. 4. Grafos. Parte II. Algorítmica. 1. Análisis
Programación dinámica p. 1
Técnicas de diseño de algoritmos Programación dinámica Dra. Elisa Schaeffer [email protected] PISIS / FIME / UANL Programación dinámica p. 1 Programación dinámica En programación dinámica, uno
EI MT1008 Programación II
GRADO EN INGENIERÍA INFORMÁTICA GRADO EN MATEMÁTICA COMPUTACIONAL EI1008 - MT1008 Programación II Curso 2010-2011 Departamento de Lenguajes y Sistemas Informáticos 1. Datos de la asignatura Carácter: Formación
Clases de complejidad computacional: P y NP
1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación
Tema 2 Conjuntos convexos
Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un
Generación de variables aleatorias continuas Método de rechazo
Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa
Funciones Tipos de funciones y Recursividad
Funciones Tipos de funciones y Recursividad SESION 4 Definición Una función es una subrutina o subprograma que forman un programa que realiza tareas bien definidas. Todo programa en C consta de una o más
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL COMPUTACION I
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL COMPUTACION I I. DATOS DE IDENTIFICACIÓN Nombre de la materia: Computación I Código: 2010008 Grupo: 2 Carga horaria: 4 Docencia
Elección de estructuras
Elección de estructuras Algoritmos y Estructuras de Datos 2 Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires 10 de octubre de 2014 Repaso: Qué es elegir
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
Tema 6: Trigonometría.
Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades
Introducción a la indecidibilidad
Introducción a la indecidibilidad José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Lenguajes y problemas Un problema será considerado cualquier cuestión
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
2007/ PROGRAMACIÓN. Tipo: TRO Curso: 1 Semestre: AB CREDITOS Totales TA TS AT AP PA OBJETIVOS. 1.-Introducción.
2007/2008 Tipo: TRO Curso: 1 Semestre: AB CREDITOS Totales TA TS AT AP PA OBJETIVOS 1.-Introducción. -Comprender cómo funciona un lenguaje de programación 2. Características del lenguaje C -Entender las
EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que
EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea
COMPLEMENTO DEL TEÓRICO
ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -
Operadores lógicos y de comparación en programación. Not, and, or Ejemplos. (CU00132A)
aprenderaprogramar.com Operadores lógicos y de comparación en programación. Not, and, or Ejemplos. (CU00132A) Sección: Cursos Categoría: Curso Bases de la programación Nivel I Fecha revisión: 2024 Autor:
Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas
Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas
Sistemas de Ecuaciones. Lineales II
Sistemas de Ecuaciones Lineales II Factorización LU: Eliminación Gaussiana Relación con la factorización LU 521230-1 - DIM Universidad de Concepción Solución de sistemas con matriz triangular Dadas L =
Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III
Metaheurísticas y heurísticas Algoritmos y Estructuras de Datos III Metaheurísticas Heurísticas clásicas. Metaheurísticas o heurísticas modernas. Cuándo usarlas? Problemas para los cuales no se conocen
Números naturales y recursividad
Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números
Análisis y Diseño de Algoritmos
Análisis y Diseño de Algoritmos Notación Asintótica DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Por qué el análisis de algoritmos? Determinar tiempos de respuesta (runtime)
Observación: El método de Euler, es el método de Taylor de orden 1.
METODO DE TAYLOR TEOREMA DE TAYLOR DE ORDEN N Sea y(t) una función tal que sea n veces continuamente diferenciable en el intervalo [a,b] y existe y (N+1) existe en [a, b] Para todo t k + [a, b] abrá un
La segunda observación permite reformular el problema de una manera más simple:
Problema partición Enunciado A: dados N enteros positivos, N>1, decir si estos pueden dividirse en dos grupos cuya suma sea la misma. Ejemplo: si el conjunto es {1,2,3,9,2,11,4}, una forma de partirlo
Propiedades de números enteros (lista de problemas para examen)
Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto
TEORIA DE NUMEROS DIVISIBILIDAD Y NUMEROS PRIMOS. PRUEBAS DE PRIMALIDAD. LA CRIBA DE ERATOSTENES. ALGORITMOS. TEOREMA: EXISTENCIA DE INFINITOS PRIMOS.
. 1 TEORIA DE NUMEROS Temas: DIVISIBILIDAD Y NUMEROS PRIMOS. PRUEBAS DE PRIMALIDAD. LA CRIBA DE ERATOSTENES. ALGORITMOS. TEOREMA: EXISTENCIA DE INFINITOS PRIMOS. (Apuntes de apoyo a clases teóricas) (Tiempo
Gustavo Rodríguez Gómez. Agosto Dicembre 2011
Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz
Ejercicios resueltos. Computación. Tema 3
Ejercicios resueltos. Computación. Tema 3 Ejercicio.- Sea f : N 3 N y g 1 : N N, g 2 : N 2 N y g 3 : N 3 N. a) En los siguientes casos, expresar f como composición de funciones de la misma aridad. 1. f(x,
NP-Completeness: Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Posgrado en Ingeniería de Sistemas
Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Posgrado en Ingeniería de Sistemas Complejidad del problema de la Mochila NP-Completeness: (Knapsack problem)
Inducción Matemática. Departamento de Matemáticas. Inducción Matemática p. 1/31
Inducción Matemática Departamento de Matemáticas Inducción Matemática p. 1/31 Inducción Matemática: Historia Inducción Matemática es un método de prueba relativamente reciente: Inducción Matemática p.
Semana 14 [1/19] Polinomios. 8 de junio de Polinomios
Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema
Fundamentos de Programación. Flujo de Control I: Estructuras selectivas
Fundamentos de Programación Flujo de Control I: Estructuras selectivas El Flujo de Control de un Programa Un algoritmo puede ser construido utilizando combinaciones de tres estructuras de control de flujo
Cuestiones de diagonalización de matrices
Cuestiones de diagonalización de matrices Ximo Beneyto Genius, el secreto de los mejores -49- CUESTIONES RESUELTAS DIAGONALIZACION DE MATRICES CUADRADAS 1.- Un vector propio de una matriz no puede estar
TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015
TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015 1. Asignaciones Eficientes, equilibrios de Walras Una economía de intercambio está constituida por un conjunto de agentes {1, 2,..., I}, con sus relaciones
Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.
Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto
Tema: Funciones, Procedimientos y Recursividad en C#.
Tema: Funciones, Procedimientos y Recursividad en C#. Objetivos Programación I, Guía 6 1 Utilizar la sintaxis de las funciones definidas por el usuario (programador) para resolver problemas. Identificar
Lección 5: Ecuaciones con números naturales
GUÍA DE MATEMÁTICAS I Lección 5: Ecuaciones con números naturales Observe la siguiente tabla y diga cuáles son los números que faltan. 1 2 3 4 5 6 7 8 9 10 11 12 3 6 9 12 Es sencillo encontrar la regla
Programación Dinámica
Leopoldo Taravilse Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Training Camp 2012 Leopoldo Taravilse (UBA) TC 2012 1 / 34 Contenidos 1 Recursión Principio de Optimalidad Ejemplos
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático
Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de
Clase 9 Programación No Lineal
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases
Problemas de VC para EDVC elaborados por C. Mora, Tema 4
Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
Cubiertas convexas II
Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 22 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Cubiertas convexas II 22 de enero del 2013 1 / 41 1 Cubiertas convexas II Algoritmo QuickHull
Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30
1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria
ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica
ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación
Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma
Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad
Identidades Trigonométricas
Identidades Trigonométricas Unidad TR.4: Identidades trigonométricas Las identidades trigonométricas son útiles en la transformación de expresiones. Repaso Hemos estudiado la unidad del circulo ya que
UNIDAD 6: SISTEMAS DE ECUACIONES
UNIDAD 6: SISTEMAS DE ECUACIONES Continuamos con el estudio de la asignatura; ya hemos abordado cinco capítulos del programa de estudio: Los números reales, ecuaciones, desigualdades y algunas de las funciones
Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que
Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =
TEMA 4: Sistemas de ecuaciones lineales II
TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez [email protected] 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
TEMA 1: Algoritmos y programas
TEMA 1: Algoritmos y programas 1.1.-Introducción La razón principal para utilizar un ordenador es para resolver problemas (en el sentido más general de la palabra), o en otras palabras, procesar información
Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim
Teóricas de Análisis Matemático (8) Práctica 6 L Hospital Caso cero sobre cero Veamos tres problemas de límites conocidos: Práctica 6 Parte Regla de L Hospital 3 3 3 sen(3) Los límites y se resuelven mediante
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
Métodos que devuelven valor Dado el siguiente triángulo rectángulo:
Métodos que devuelven valor Dado el siguiente triángulo rectángulo: hipotenusa altura base Para dibujar este triángulo necesitamos los siguientes datos: base y altura La base y la altura, se utilizarán
Algoritmos aleatorizados
Algoritmos aleatorizados IIC2283 IIC2283 Algoritmos aleatorizados 1/109 Algoritmos aleatorizados Vamos a permitir a los algoritmos tener una componente aleatoria I En general esto significa que un algoritmo
Algorítmica y Lenguajes de Programación. Ordenación (ii) En la lección anterior se vieron dos métodos de ordenación:
Algorítmica y Lenguajes de Programación Ordenación (ii) Ordenación. Introducción En la lección anterior se vieron dos métodos de ordenación: Método de la burbuja. Método de la burbuja con señal. El primero
Nicolás Rivera. 23 de Junio de 2011
Teoría de Matroides. Nicolás Rivera 23 de Junio de 2011 Pontificia Universidad Católica de Chile Índice 1 Introducción: Definiciones y Propiedades básicas Índice 1 Introducción: Definiciones y Propiedades
Unidad 5: Geometría analítica del plano.
Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación
1. Conceptos básicos sobre el problema en cuestión y cuestiones afines. 2. Formulación de los correspondientes algoritmos y su pseudocódigo.
Análisis de Algoritmos Ingeniería Informática, EPS-UAM Información general Organización del curso: 13-15 (mínimo-máximo) semanas docentes: 30-33 clases teóricas. 9-12 clases de problemas 26-30 clases prácticas
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32
Capítulo 5: Teoría de Números Clase 1: Primalidad Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Teoría de números En esta parte
Capítulo II. Pruebas en Matemáticas
Capítulo II Pruebas en Matemáticas Ahora nos concentramos en afirmaciones matemáticas y sus pruebas. Se encuentra que tratar de escribir pruebas justificando cada paso se vuelve rápidamente inmanejable,
Entrenamiento ONMAPS Guanajuato. Primaria (Teoría de Números)
Entrenamiento ONMAPS Guanajuato Primaria (Teoría de Números) Un concepto que se usa de manera muy frecuentemente en los problemas de Olimpiada de Matemáticas es el de divisibilidad. Esto no se tratará
2º de Bachillerato Matemáticas Aplicadas a las Ciencias Sociales. Modalidad semipresencial. MATRICES Y SISTEMAS
IES Fra artolomé de las asas urso / º de achillerato Matemáticas plicadas a las iencias Sociales Modalidad semipresencial FIH : MTRIES Y SISTEMS º- alcula,, t t t t siendo, las siguientes matrices: º-
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012
Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema
Introducción a la Geometría Computacional. Análisis de Algoritmos
Introducción a la Geometría Computacional Análisis de Algoritmos Geometría Computacional La Geometría Computacional surgió a finales de los 70s del área de diseño y análisis de algoritmos. Estudio sistemático
